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1. Reflexivities with modifiers

Denote by X’ and X" the first conjugate spece and the second one of a normed space
X respectively. And for a subset 4 of X’ let °4 and A° denote the annihilator of 4 in
X and in X" respectively. We shall use briefly the symbol 4°° in place of (A4°)°.

Let F be a subset of X’ and consider the linear operator ar =p-w : X———>X"/F° where
w:X —X"/F° is the natural operator,
X'"/F° being the quotient normed space defined in the usual way. It is a problem to
find out a subset F of X’ such that the operator mg is surjective, namely wr (X)=X"/F°.
When such a subset F' exists in X', we shall call, for a time, X to be reflexive with the
modifier F°, or shortly reflexive (mod. F°). A trivial example of such a subset is the
set (0) consisting of the zero element O of X' alone, for (0)°=X". If F; and F are
two subsets of X’ such that F; D Fz we have F1° < F,°, hence if X is reflexive
(mod. F,°) it is so also with the modifier F»°. A maximal subset F' of X’ for which X
is reflexive (mod. F°) may be, in general, a proper subset of X’. Since (X’)°=(0), X

is reflexive (mod. (X’)°) if and only if X is reflexive in the usual sense. It is easy to

—X'"" is the canonical imbadding and u: X"

prove the following

Tuporem 1. X' is reflewivz (mod. ((X))°), whare w(X) mzns the closure with respect
to the norm topology of X'. And X"'=m(X") @ (#®(X))° where m : X'———X" 43 the
canonical imbedding.

Proor. For any &/ & X' define ' &X'’ by a'v=a""(zx) for each #» & X. Then we
have a/""—m! & (w(X))°. Since (w(X))°=@(X))° and (XD N @(X))°=(0), the
proof is complete.

This theorem implies, as a spzcial case, that X’ is reflexive if X is reflexive. J. Dixmier
(2, Theorem 157 has shown that X"'=n;(X") @ (®(X))° where X is a Banach space.
This is also a special casz of our Theorem 1, for w(X) is closed if X is complete.

Since (vF)°=F°, where vF means the closed linear subspace generated by ¥/, we may
assume, in this problem, that F is a closed linear subspace of X', without loss of
generality.

The following theorem follows from the second part of Theorem 1.



THEOREM 2. We canmot find out in X" any closed linew subspace G wnich contgins
7(X) (if X is complete, m(X)) as a proper subspacz and relative lo which X' is reflexive
(mod. G°). o ‘

PrOOF. (w(X))°—G@G° is ncn-empty, for otherwise we have 7(X)=G.

This theorem implies that if X’> is reflexive (consequently, reflexive (mod. (X/)°), n(X)
=X" (if X is complete, n(X)=X" i. e. X is reflexive als2). |

THEOREM 3. Let a normed spxcfe\"X ba ra fdea;ibz (mod. F°), Then evary closzd linewr
subspace Y of X such that Y° — F s raflexiva (mod. G°) whera

G=°(T")=F°);.

I'" : Y'———Y°° being the congruence operator (isometrical linewr isomorphism) inducad by
—X.

the szcond adjoint operator of the inclusion operator I: Y-

RemMarRk. When X is reflexive in the usual sense, every closzd linear subspa'f’cé Y of X
is also reflexive. This result is a special case of Theorem 3. For, in this case, we may
put F=X' as we notéd before, and the relation Y° < F' is true without any assumption

on Y.
Proor. cf THEOREM. 3. Let I' : X'/Y°
by the first adjoint opzrator of I. Namely we have
(II[ZI/'/]>?/:3}I(1:’I/), (I//y,/>.7)I:yI,(I,E.’1},j> \
for any 2’ &€ X', vy &€ Y and y"" &Y” where (2'] means the element of X'/¥° repre-
sented by /. Let p: X'"———X"/F° and v : Y'———=Y"/(I")~1(F°) be the natural

operators. Consider the diagram

—Y'" be the congruencz operator induced

T

Y Yy Y YT -L(FO)
I . : | \._r

2‘!/1 Ul ___)Ié// 2 X/IJ)FO

where 7 is the canonical imbedding and J is the injection induced naturally by I". The

commutativity relations #I=1"t and puI'’=.Jy are verified easily. Consequently we have
prl=Jvr. ! (1)
Moreover v ,
ST =IEY) = YOO B, (2)

It follows from our assumption that for an arbitrary element "/ & Y°° there exists an
element 2, & X such that a''—nx, & F° < Y°°, Therefore nz, & Y°° Since Y is
closed we have °(Y°)=7Y. Hence n(X) [ Y°°=nI(Y) and therefore 2, is an element
of Y. This result and the injectiveness ef JJ and the~relations- (1), -(2)-sheew- @s the
surjectiveness of vr. Now it follows from the relation G°> (I')-1(#°) that ¢ : Y——



Y"/@G° is surjective. The proof is complete.

2.  Operator 2z and Conditions for reflexivity

Let a normed space X be reflexive (mod. F°). Since w(°F)=n(X)NF° the operator

7r induces a linear isomorphism
4 : X/°F——X"/F°,
And for any element (2] & X/°F which is represented by x& X,

140All= inf llzz+y’|I< inf [lme+y”||=[C2l.
y'EF° y'En(°F)

Thus we have ||%||=<1. Let % be the inverse linear operator of %. From 1 < II%[I. Il
we have ||Z%||=1.

TueorReM 4. If X is reflexive Banacn spacs, then ||| =1.

Proor. Since #(X)=X" we have n(°F)=F° and |42]|=IC2]l.

Consider now the inverse problem of this theorem. Let X be a Banach space which is
reflexive (mod. F°) and the operator & has the norm [Z|=1. In this case ||%| =1 and
% is a congrueuce operator. Let C: X——— X/°F be the natural operator, C' : (X/°F)’

—(°F)° be the congruence operator induced by the first adjoint operator of C, and
C'": ((°F)°) —(X/°F)" be the adjoint operator of C’. On the other hand, a theorem
due to M. Krein and V. Smulian (4] gives us a congruence operator s: X" /(°F)°°
((°F)°), defined by s (2" J=x"1|cF)> for any x’; &€ (2] where (x/] & X"/(°F)°° is the

element represented by 2" & X" and x”1|¢°F)> means the restriction of 2'; to (°F)°.

—_

Since F° DO (°F)°° we can consider the natural operator N : X"/(°F)°° —X"]F°,
By these relations we have the following diagram
% N s c"
X/OF-———>X-.”/F°K—~————-XU/(°F)°°——>((°F)°)'————>(X/°F)“.

Now let ¢ : X/°F———(X/°F)" be the canonical imbedding. Than we have, for any
() &€ X/°F and § & (X/°F)/,

(el )E=Ela]=E(Ca) = (O'&) = (mx)(C'8) = (sLma: ) (') = (C"(s(maD))E,
where (2] & X"/(°F)°° is th= element represented by nxz & X’. (Note that [wl=
(o) implies () =Cmx5) and vice versa, for n(°F)=n(X) N (°F)°°.) Thus we have
o(2x)=C0"(s{wa)) and &(a)=Ns—1(C")~1g(a]. |
Therefore X/°F is reflexve if and only if the operator N is a congruence, that is F°=
(°F)°°. Since F is closed subspace, this condition is equivalent to the regular closedness

of F. If this condition is satisfied, X is reflexive provided that °F is reflexive [1J. Thus
we have the following )

THEOREM 5. L2t X bz a Banach space, reflexive (mod. F°). If F 1is reqularly closed



and the opzrafor Z& has the norm ||Zk||=1 and °F s reflexive, then X s reflexive.

TueoreMm 6. Let X be a Banach space, reflexivz (mod. F°). If F is total over X and
the operator Sk has the norm ||ZR||=1, then X and F' are canonically equivalent (5] (X 1s
F-reflexivz 16)). ‘

Proor. From the assumption [|Z&||=1, % is a congruence. Since °F=(0) X, 4=nF.
X"/F° and F' are congruent by the operator k: X'/ F° —F" defined by k' J=2"|F
for any ("] € X"/F°. Put @ =kenwgp : X———F'. Then (@) f=@»)f=,f(2) for any
2 & X and f & F. Thus ¢ is the canonical mapping (5].

L Singer [6] proved the following corollary. This is also a corollary of our Thoerem 6.

CoroLLARY. FEvery conjugate space X' of a Banach space X s w(X)-reflexive,

Proor. Put F=n(X). Then, it follows from Theorem 1 that X’ is reflexive (mod. F°).
Moreover F is total over X’'. The operator 4= (m)r : X'——X""/F° is a congruence
operator. For, when x’ & X', we have
{ sup I(nla;’—l—y’”)a;”]}

Iedr @Dl = inf {orie X7
y"EF |2 =1

Sup |al.llal,/+ylllw//| l
> inf J{a'eX" = sup |2'z|=|2'||
y'eFe 2| =1 I 2
fa)| =1
Thus we have [|(wDF [[=1. Moreover |[(mwDF (@)|I=|m12’||=|2]l.

Therefore 4 is a congruence operator. Thus the operator ZR=%-1=((w)r)~! has the
norm ||&k||=1.

3. Other criterions

If g is surjective, we have #(X)+ F°=X" and X is reflexive when Fecn(X).

Let M be the null manifold ef 2/ & F° that is M={2'EX'|a""2'=0}.
If X" 4 0, M is a proper closed linear subspace of X’. From the Lemma in (3, V.3.10.7,
M° is a one-dimensional closed linear subspace of X" gznerated by a'. Therefore *BFE is
null- or one-dimensional, for #(°M) < M°. If °M is null-dimensional M is total over
X and hence X is non-reflexive [(5). When °M is one-dimensional we have w(°M)=M°
S 2, and therefore the next theorem follows. ;

THEOREM 7. Let X be reflexive (mod. F°). If the wnull manifold of x" s non-total
over X for each 2/ & F° (x''>0), X s reflexive.
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