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1. Introduction

We consider an N-person game under the evolution of the system described by a
stochastic differential equation with a special form. The cost function of each player
consists of the expectation of quadratic and bilinear terms of the strategies and quadratic
term of state of the system. And, the strategy space available to each player consists of
a closed ball in an Euclidean space. Then, each player wishes to minimize his cost func-
tion in a finite time interval. So, under the assumption that the quadratic term of stra-
tegy chosen by each player in cost function is positive semidefinite and that there exists
a solution of the optimality equation, we show that there exists an equilibrium point con-
sisting of a pure multistrategy. Further, we give the necessary and sufficient condition
for a pure multistrategy to be an equilibrium point. Next, when the quadratic term may
not be positive semidefinite, we can construct an equilibrium point consisting of an atomic
probability measure by modifying the term so as to be convex. The essential part of our
technique is due to applying the methods of Williams (Ref. 8) and Wilson (Ref. 9) in
quadratic game to the optimality equation of N-person stochastic quadratic game.

2. Formulation for N-person stochastic differential game

In this paper, we consider the evolution of the system described by a stochastic differ-
ential equation in an n-dimensional Euclidean space R” of the following form: for ¢ ¢ [0,
T],

dx(t)=[A@x()+ g}l B.(H)ui(t, x)] dt+o(®)dB(F) (1)

x(O) =Xp & Rn’

where
(1) the matrix functions A(#) and ¢ (#) are continuous in ¢ and of orders # X »,
(2) the matrix functions B;(?), i=1, 2, ..., N, are continuous in # and of orders n X p;,
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(3) wi(Z, x) is the strategy used by player ¢ at a pair (¢, x) of the time ¢ ¢ [0, T] and
the value in R” of x at the time ¢

The o-field ® of [0, T]x R” is A([0, T])x B(R"), where B([0, T]) denotes the Lebes-
gue o-field of [0, T] and B (R") denotes the Borel o-field of R*. Letting U; be the o-field of
Borel subsets of Ui= {u; ¢ RPi: |u;|2<M;)} for a positive constant M;, an admissible pure
strategy u; for each player 7 is defined by the following measurable function:

wi: ([0, T]x R*, ®)— (Ui, Wy)

So, when player i uses a pure strategy #;, an action «,(¢, x)& U; is chosen by #; at each
(¢, x) € [0, T]x R” without any collaboration to any others. Further, in order to define a
mixed strategy, we introduce the notation P(U:), which denotes the set of all Borel proba-
bility measures on (U;, ;). Letting C(U;) be the set of all real-valued continuous functions
on Ui, C(U:) is a separable space with metric induced by supnorm. So, by considering
P(U;), endowed with weak topology induced from C(U;) (see Ref. 4 and 7), we can define
an admissible mixed strategy for player i by the following measurable function:

u;: ([0’ T:] XR”) SD)'—>(l) (Ui)’ W))

where (P(U;), W) denotes P(U;) endowed with weak topology. So, when player i uses
a mixed strategy u;, an action # € U; is chosen by the probability measure #,(¢, x) ¢ P(U;)
corresponding to #; at each (¢, x). Therefore, each term B;(f)«;(¢, x) in the stochastic
differential equation (1) denotes an expectation of B;(f)u(u € U;) by the probability mea-
sure u; (¢, %), i. e.,

Bi®u;(t, ) =S o, B O du;(t, ) .

Especially, if #;(#, x) is an atomic probability measure which selects actions #u*, k=1,
2, ..., p, with probabilities vf (¢, x), with

)
vk (1, 1) >0, 3 vkt =1,

by using the notation (%) denoting the probability measure concentrated at the single
action u € Ui, u;(¢, x) can be written as

b
312, %) 3(uk)
=1
and
Bi(®H)ui(t, x) =kii‘,lvf (¢, x) Bi (t) u*.

And, an N tuple of admissible strategies #= (u1, %», ..., %) is said to be a multistra-
tegy.
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Now, when a multistrategy #= (u1, #s, ..., up) is used, each player ie {1, 2, ..., N}
receives the expected cost of the following form:

F@ =g (] 0 @) +us(t, 9 2 Rii (0w 6, 9de+

+x(T)" Fi(T) =(T)}, (2)
where

(i) the matrix functions Qi (¢#) and Ri;(f) are measurable in ¢, symmetric and of
orders n X n,

(ii) the matrix Fi(T) is symmetric and of orders » X,

(iii) the matrix functions Ri;(¢), i#J, are measurable in ¢ and of orders pi X pj,

(iv) the notation E,{ <} denotes the expectation by the probability measures cor-
responding to a multistrategy #.

We introduce the notation (z‘ﬁ, vi) for a multistrategy #= (w1, #2, ..., Ui—1, Vi, Uij+1, +..
up) that results from changing the strategy u; of player i to v; in @= (w1, 4, ..., ).
Then, if there exists a multistrategy %= (u1, s, ..., up) such that, forall ;e (1, 2, ..., N}
and all strategies v;,

Titwy < Ji@7, vy), (3)

this # is said to be an equilibrium point.

3. An equilibrium point in pure strategies

We consider the following optimality epuation:

i 1 X . 2Wi(t, x) :
Wit x) +—2 j§=1 d]k(t)——'——'axj xR +nzl7m {(<ABDx@) +
+ %1 Bj(t)uj, Wi (t, ) >+Li(t, x, @)} =0 (4)
=

with Wi(T, x) =x(T)" Fi(T)x(T),
where
(a) Wit n="7LD
(b) ajik () is the (4, k) th element of the positive definite matrix function a¢ () =

a(Ha(t),

i _( oWi(t, %) oWi(t, x) oWwi(l, x) \
<C> Wx(t, x)_( axl ’ axz 9 sy axn

(d) the notation <+, * > denotes the inner product,
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N
(e) Li(t, x, @) =x(t) Q () x(¥) +ui’21 Rij(®)u;,
i=

(f) u; denotes a strategy used by player i.

Then, under the assumption that each matrix function R;; (¢), i =1, 2,..., N, is positive
semidefinite and that there exists a solution Wi (¢, x) of the equation (4), we show that the
game has an equilibrium point in pure strategies. Further, we give a necessary and
sufficient condition for a pure multistrategy to be an equilibrium point. So, introduceing

N
the following notation defined onkg1 Uk for each (¢, x) ¢ [0, T]x R":

Kith 3, ) =AW+ 5 B (i, Wit, >+

+Li(t, x, @), (5)
we can write as follows: for #= (u, %, ..., up) and ai= (W1, <y Uity Uit1y -y UN),
Ki(t, x, n) =ui’ Rii () ui+ui’'Si(¢, x, ﬁ:\) +Ti(t, x, z‘c/i\) +Zi(t, %), (6)
where
Si(t, x, @1) = 3 Rij(yuit+Bi(t) Wit ),
JF1
Ti(t, x, %)= Y uj Bi(t)y Wi(t, %)
Y
and

Zi(t, x)=x(t) A(Y Wi(t, %) +x@) Q () x(8).

Lemma 3.1 If the matrix functions Rii(t), i=1, 2, ..., N, are positive semidefinite,
there exists a pure multistrategy w*= (u¥, u¥, ..., u"A‘,) such that, for each (t, x) e [0, T]x
R'andi e (1,2, ..., N}

Ki(t.x, w*) =< Ki(t, %, (ﬂ*/f\, vi)) Jfor any pure strategy vi.

Proof. Foreachice {1,2, ..., N}, Ui is convex and compact. Since R;ii(¢) is positive
semidefinite, the function #i—wu:i" Rii ({)u: is convex on U;. So, Ki(¢, x, %) is convex in #i
for fixed uj, i+j and (¢, x). Further, for fixed i, (¢, x) and each j+i, Ki(¢, x, #) is linear
in #; and, therefore, is contiuous in #;. Then, using Theorem 3. 1 in Ref. 5, there is a
#= (u?, u3, ..., u%) such that, for each i and (¢, %),

Ki(t, %, ;) = Ki(¢, x, @7, v:))  for all vi.

Next, in order to complete the proof, we show that #° can be replaced by a measur-

N
able function #* from [0, T]x R” into II1 Ur. Since U; is separable, it follows that, for
k=
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any real number a,

(¢, x): min Ki(t, x, @7, v:)) < a )

= U {¢t, : Ki(t, 5, @7, o)) < a }, (7)
Uiari
where I'; denotes a countable dense subset of U;. Then, since, for fixed v;, Ki (¢, x, (ﬁo/tt vi))
is measurable with respect to ®, from (7)
min Ki(¢, x, (Z_tof\, i)
v
is measurable with respect to ®©. Consequently, since K (¢, x, (z?"?: ;)) is continuous in v;,

by using Lemma 1 of Ref. 1, we can prove that there exists a measurable function «¥
from [0, T]x R” into U; such that

min Ki (¢, %, @7, v)=Ki &, %, (@7, wF)).

vi

Here, Ki (¢, x, (z‘to/i\, v;)) is convex with respect to »; and the minimum is attained by
u?. So, it follows that the minimum point #? can be replaced as #¥ for each i. Hence, for

eachie(l, 2, ..., N} and (¢, x), we can get

min Ki (¢, x, (@%7, 0:)=Ki (¢, %, @*).

Vg

Thus, the lemma is proved.
Here, applying Ito stochastic differential rule to each solution Wi (¢, x) and using

Ezl{| 1 Wit 90 ()|2d<=,

we can get
Wi, ) =FEx (| (=W}, 9 —AG % ®W ¢, 9] dt+WiT, 5}, (8)
where
Wit el B ey EWED
AL, x, w) Wi(t, x)_7j§=1 ajir () 3% 0%k -+
+Ki(t, x, a)—Li(¢, %, ). (9)

THEOREM 3. 1 Suppose that there exist the solutions Wi(¢, x), i=1, 2, ..., N, of the opti-
mality equations (4). The game has an equilibrium point in pure strategies.
Proof. From the existence of the solution Wi of (4) and the result of Lemma 3. 1,
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there exists a multistrategy #* such that

Wi (2, x)+min (A, x, @) Wi(t, x) +Li(¢, x, #)} =
U

=Wi(t, x)+A{, x, w¥) Wit, x) +Li (¢, x, #¥) =0. (10)
So, by using the equation (8) with (ﬂ*/tt v;) instead of # and an inequality with (ﬂ*/'t Vi)
instead of #* in (10), i. e.,
Wit £+ A, 5 @5 o) Wit 9 +Lit, , @5 0:)=0,
it follows that
Wi0, 10) =E 7 w)[SOT Li (¢, %, (@7, vi)) det+ Wi (T, %)]. (11)
Also, inserting (10) into (8) with #* instead of #, it follows that
Wi (0, 50) = Egal{| Li ¢, x, ¥ dt+Wi(T, )], (12)

Then, from the definition of Li(¢, x, #), (11) and (12), it holds that, for any pure strategy
v; of player ¢

Ege (7 (30 @030 + 33 0¥ Rij (1) w¥1at+ Wi T, x)
u 0 i=1 J

N
SE ) oy (§; (50 @Ox0+ 2 0iROw1d+ Wi m). (3

Consequently, we arrive at
Ji@*) < Ji@@*5, vi) for all pure strategies vi.

Thus, the theorem is proved.

Throughout this paper, a scalar multiple 41 of the identity matrix I is simply denoted
by the scalar 4.

From Lemma 2.2 in Ref.9 and Theorem 2. 2 in Ref. 8, the necessary and sufficient
condition for a pure multistrategy #* to be an equilibrium point is given by the following
theorem.

THEOREM 3. 2 For a pure multistrategy uw* to be an equilibrium point, it is necessary
and sufficient that, for eachic (1, 2, ..., N} and (¢, x), there exists 2i (¢, x) < 2% (¥) such that

Z(Rii (t) — A (t: x)) u>1'<(t’ x) +St (t) X, ﬁ*?(t, x))=0,

Ai (¢, x) (Mi— |u¥ (¢, x) |) =0,

where
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A5 () =min {milglui’ Rii (t) i, 0} .

4. An equilibrium point constructing of a mixed strategy

We consider the general case in which the matrix functions Ri: (¢), i=1, 2, ..., N,
may not be positive semidefinite. So, we introduce the following modified optimality
equation of (4):

i 1Y o Wit 1) g ~
Wt (t7 x)+7]§=1alk<t) ax] oxz + min K*(ti X, #) =0

where for any pure multistrategy #= (u1, g, ..., uy)
Kt %, m)=Ki(t, %, @) — 25(8))| wi|2

=ui' (Rii () — Ae(D) wi+wi’ Si (¢, %, w1) +

+Ti(t, %, %)+ Zi (2, ). (15)

Then, since Ri; (z‘)—&,{< () is positive semidefinite, we show that an equilibrium point is
constructed by an atomic probability measure under the assumption that there exists a
solution Wi (¢, x) of (14). Now, it follows from Lemma 3. 1 that there exists a pure mul-
tistrategy #¥*=(u¥, u¥, ..., u;':,) such that

Ki(t, x, %) = K L@, x, (z?*/i\, v;)) for any pure strategy vi. (16)

Further, from Theorem 3. 2, it follows that, for this #* and each (¢, x), there exists 2i (¢,

|
with Wi(T, x) =x(T)’ Fi(T)x(T), (14)
%) <24 (9 satisfying

2 (Rii (£) — 4 (8, x) ¥ ¢, %) +Si(¢, %, @K ¢, %)) =0,

(i (t, x) —25(t)) (Mi — |uF (@, %) |) =0. o)

Let @*=(uf, u¥, ..., uf) be the multistrategy in (16). For eachie {1, 2, ..., N} and
(¢, x) € [0, T] X R”, we consider two cases:

(a) if |k, x) | =M; or 2L () =0, let
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(b) otherwise, i. e., |#¥(¢, x)|<M; and 45 (#)<{0. Since {ui ¢ R?i: |ui|=1} is
compact subset in R?i it follows from the definition of 2%(¢) that there exists u: () ¢ R?i
such that

lwi () | =1, ui(t) Rii()ui(t)= 24 (t). (18)
Let
B=B}({ x) and B=P}(t, %)
be the solution of an equation
|6k, %) +Bui (£) |2=Da? (19)
and, then, let
ul (¢, x)=u¥(t, x)+B} (¢, 1) ui(t)

u? (t, x) =k, ) +B2(, %) wi(D). (20)

By making use of v} (¢, x)=|B} (¢, x) | /(I1B} (¢, )|+ |8} &, #)|) and v} (¢, x)=1—v} (¢, %), we
can show the following equations:

é}luf ¢ 0=1, kﬁluf &, ut ¢, 5 =u¥(, 5). @1

So, we can make the following mixed strategy:

ci(t, x) = v} (t, )0 (u} (¢, x))+v7 (¢, )0 (uf (¢, %)), (22)

but, in the case (a), oi(¢, ¥) can be chosen as the pure strategy d(«¥(t, x)). If we can
understand explicitly (¢, x) in (22), we write o; instead of o: (¢, ). Also, when a mixed
multistrategy g= (g1, tta, ..., #) is used, the corresponding expected function of Ki(Z, , %)

for player i is

Ki(@, x, ;1)=§ K@, x, w)dp (@)
N
I yp
k=1

=Ki(t, % ) =240 i) dpsi () (23)

where

dp (@) =dps (1) dpts (o) ... dpey (uy).
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LemMMA 4.1 Let ie (1,2, ..., NY. Then, for o in (22) and w* in (16),
Ki(, x, (67,0 (w) =K (4, %, @, ui)  for all ui e Ui, (24)
where
(0%, 8(u)) = (01, ..., Oim1, D), Oi1, oy Oy

Proor. By suing o, v’; and u’j-, k=1, 2, omitting (¢, x) in (22), it follows that

a

K4, %, (0%, 0 (ui))

. N
=y (Rir () — ()it 33 3105 (i’ SiCt, 5, u5) +
J=1k=

J#i
+Ti@t, %, w5)) +Zi (2, %)
=ui' (Rii (t) — @) ui+ jJZZ‘.l wui' Si(t, %, w¥) +
j#i
+Ti(t, x, w¥) +Zi(t, x)
=Kt % (@5 ui)),
where
Si(¢, x, u’;) =Ri; (t)u’j—I—Bi &O'WEL(, %)
and
Ti (¢, x, u’;)=u’§' Bi(t) Wit x).
Thus, the proof is complete.

LeEmMMA 4.2 Let ie{l,2, ..., N}. Then, for any mixed multistrategy Zc/i\z (1, M2y ooy ti—15
N _
Ui+ - ) € II P(Uk) and i th element oi of o in (22), it follows that
k=1

k+i

Ki@t, %, (17, 00) =KL (2, %, (17, 0 (u¥). (25)

N
Proor. Consider two cases: for any # ¢ H1 Ur
k=

(a) if w¥(@, x)=M; or 24(£) =0, by using the notation:
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3G )= (3 (uy), (), ...r B(Wi_y), 3(thisr), .., 8 (sn)),
K, %, @), 00) =K§(t, %, (@7, w¥)
(b) otherwise,

Kit, %, (0@, ai))

2y k(R ; ko k' e
v () (Rii () —25(0) wi+uy S %, 80) +

+Ti(t, %, %) +Zi(t, %)

=¥ (Rii () — 2(0) wh+u¥Sit, 2 a7) +Tit, %, @0) +
Nk ok ] *
—i—kglvi B; wi' (Rii (¢)— 2% (@) uF+
N kiakna § (N ;
+ S DY (R (O~ M) w4 Zi 0, ).
From (21), we have

3104 =0
k=1

and since by (19)

M

VA(BER =— B < BE =M}~ uF%,

k=1

from (18), it follows that
é v (B8 2 Ui’ (Rii ()— 2 (&) wi=0.
By (15), (26), (27) and (28), we get

Kit, % Q@D), o)) =Ki(t, x, @@, u¥).

—_—N A’
Integrating toth sides of (29) with respect to any pie I 1P( Ur), we have
k=

k+i

- —_ - —_—N —_— N\ N
Kk, x, (pt, a))= K (¢, %, (¢i, w¥) for any pi eIl P(Up).

k+i

(26)

@7

(28)

(29)
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Hence, the lemma is proved.
Now, since from (19) and (20), we have

|uk|2=p1% for each ke (1, 2},
it follows by Lemma 4. 1 and Lemma 4. 2 that, ¢ in (22) and #* in (16),

- . _ . 2
Ki(t, % 6) = Kg(t, % o)+ 24(0)3} vf [uf |2

=Ki(t, %, o)+ 25@) M2 by |uf|2=M?
=KLt %, (ai, @)+ L) M?
(by Lemma 4. 2 with o instead of s )

=KL, % %) +25@&) M} by Lemma 4. 1. (30)

On the other hand, it follows from (16) and Lemma 4. 1 that for 6= (g1, 0, ..., @ N in
(22),

Ki(t, %, @)+ 250 M2<K L, x, %5, u))+ 2 (t) M2 for any ui ¢ U;
=K§(t, % (o7, 8(u) +4(8) M?
=Ki(t, % (3 7, 9 (i) + 240 (MF—wi?)
(by 2% () <0 and |u:|<M;)

=Ki(t, %, (a7 3 (ui)). (31)
Integrating both sides of (31) with respect to i ¢ P(U;), we have

K@, %, w%)+ 25() M?<Ki(¢, %, (77/1'\, ©i)) for any pi € P(Us).

THEOREM 4. 1 Suppose that there exists a solution Wi(t, x) of (14). Then, the multist-
rategy o in (22) is an equilibrium point, i. e.,

Ji(e) =< Ji(o%, i) for all mixed strategies pi.
Proor. From (14) and (30), the following equality holds

2Wi (2,

x) . —
0x; 0xk +Ki(t, %0)

Wit x) +5 2 a;r(t)
])k=1
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_wi 1 & 02Wi(t, x) i -
=W;(, x) +7j,k2==la]k(t) 3%; Oxk + K4, %, a*) +
+25(t) M?

=40 M},

that is, by using the notation in (9),

Wi, x)+A(t, % o) Wit, ©)+L;(¢, x, 0) =24@) M2, (32)
Inserting (32) into (8) with ¢ instead of #, we have

Wi (0, %) =E7 [SOTL" ¢, %, &) dt+Wi(T, x)]— (S:z,ﬁg(t) dt) M2 (33)

On the other hand, from, (14) and (31), the following inequality holds: for any mixed
strategy p:

) MEEWE(E D+AQ, %, (o5, ) Wilt, )+

+Lit, %, (i, pi).

Inserting (34) into (8) with (o7, ) instead of #, we get

Wi 20 =E 7 () Lit, 5 (o7 m) dt+Wi(T, 01—

T._.
— %@ anmz. (35)
Combining with (33) and (35), we arrive at, for any mixed strategy i,
L Lit, % @)at+WiT, ]

T._. — ;
SE 7,y L) it 5 @7 p)dt+ WiT, 2)1. (36)
Since
Wi(T, x) =x(T) Fi(T)x(T),
it follows from (2) and (36)
Ji(e) =< Ji(oi, mi) for any mixed strategy pi.

Thus, the thorem is proved.
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