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As pointed out by A. Wulfsohn in Zbl. 372 #46061, the argument of the theorem of [3]

is incomplete. We give a correct proof (Theorem 5) as a consequence of a characteriza-
tion of a type I factor direct summand of a $W^{*}$-tensor product of two $W^{*}$-algebras. The
author wishes to take this opportunity to deeply thank Professor A. Wulfsohn for his use-
ful suggestions.

1. Tensor products of abelian $W^{*}$-algebras.

For a locally compact Hausdorff space $X$ with a Radon measure $m$ let $L^{\infty}(X, m)$ be the
algebra of all essentially bounded measurable functions on $X$, and let $L^{2}(X, m)$ be the
Hilbert space of all measurable square integrable functions on $X$. Each function $f\in L^{\infty}$

(X, m) gives rise to a multiplication operator $\pi(f)\in B(L^{2}(X, m))$ , defined by $(\pi(f)g)(s)$

$=f(s)g(s)(g\in L^{2}(X, m),$ $s\in X$ ). We may identify $f\in L^{\infty}(X, m)$ with $\pi(f)$ , and $L^{\infty}(X$,
m) with $\pi(L^{\infty}(X, m))$ [ $1,$ $I$ , \S 7, Th\’eor\‘eme 2].

Let $X$ and $Y$ be compact Hausdorff spaces with Radon measures $m$ and $n$ respec-
tively. Then we have canonically $L^{2}(X\times Y, m\otimes n)=L^{2}(X, m)\otimes L^{2}(Y, n)$ , the Hilbert
space tensor product. In this situation, we have the following two lemmas.

LEMMA 1. Let $L^{\infty}(X, m)\otimes L^{\infty}(Y, n)-$ be the $W^{*}$-tensor product of $L^{\infty}(X, m)$ and $L^{\infty}(Y$,
$n)$ . Then $L^{\infty}(X\times Y, m\otimes n)=L^{\infty}(X, m)\otimes-L^{\infty}(Y, n)$ .

PROOF. For each $f\in B(L^{2}(X, m))_{*}$ , the predual of $B(L^{2}(X, m))$ , let $R_{f}$ : $B(L^{2}(X, m))$

$\otimes-B(L^{2}(Y, n))\rightarrow B(L^{2}(Y, n))$ be a unique a-weakly continuous linear map satisfying
$R\gamma(a\otimes b)=<f,$ $a>b(a\in B(L^{2}(X, m)),$ $b\in B(L^{2}(Y, n)))$ . Let $g\in L^{\infty}(X\times Y, m\otimes n)$ with
$g\geq 0$ . For a vector state $f;a\rightarrow(a\xi|\xi)(a\in B(L^{2}(X, m)),$ $\xi\in L^{2}(X, m))$ , we have $R_{f}(g)$

$\in L^{\infty}(Y, n)$ . Then for a normal state $f,$ $R_{f}(g)\in L^{\infty}(Y, n)$ , and for $f\in B(L^{2}(X, m))*,$ $Rf(g)$

$\in L^{\infty}(Y, n)$ . Hence $R_{f}(g)\in L^{\infty}(Y, n)$ for any $g\in L^{\infty}(X\times Y, m\otimes n)$ and $f\in B(L^{2}(X, m))_{*}$ .
Similarly, for each $f\in B(L^{2}(Y, n))_{*}$ let $L_{f}$ : $B(L^{2}(X, m))-\otimes B(L^{2}(Y, n))\rightarrow B(L^{2}(X, m))$ be a
unique $\sigma$-weakly continuous linear map satisfying $L_{f}(a\otimes b)=<f,$ $b>a(a\in B(L^{2}(X, m))$ ,
$b\in B(L^{2}(Y, n)))$ . Let $g\in L^{\infty}(X\times Y, m\otimes n)$ . For each $f\in B(L^{2}(Y, n))_{*}$ we have $ Lf(g)\in$
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$L^{\infty}(X, m)$ . $SinceL^{\infty}(X\times Y, m\otimes n)\supseteq L^{\infty}(X, m)\otimes-L^{\infty}(Y, n)$ , by [5, Theorem2. $1$] $L^{\infty}(X\times Y$,
$m\otimes n)=L^{\infty}(X, m)\otimes-L^{\infty}(Y, n)$ .

LEMMA 2. If $p$ is a minimal projection in $L^{\infty}(X, m)-\otimes L^{\infty}(Y, n)$ , then there are minimal
projections $p_{1}$ and $p_{2}$ in $L^{\infty}(X, m)$ and $L^{\infty}(Y, n)$ respectively such that $p=p_{1}\otimes p_{2}$ .

PROOF. Let $N_{1}=\{s\in X, m(\{s\})\neq 0\},$ $N_{2}=\{t\in Y, n(\{t\})\neq 0\}$ . Then $N_{1}$ and $N_{2}$ are at
most countable. Let $m_{1}$ be the atomic part of $m$ , defined by $m_{1}(E)=m(E\cap N_{1})$ for each
measurable set $E\subseteq X$, and put $m_{2}=m-m_{1}$ . Then $L^{\infty}(X, m)=L^{\infty}(X, m_{1})\oplus L^{\infty}(X, m_{2})$ .
Similarly, let $n_{1}$ be the atomic part of $n$, defined by $n_{1}(F)=n(F\cap N_{2})$ for each measurable
set $F\subseteq Y$, and put $n_{2}=n-n_{1}$ . Then $L^{\infty}(Y, n)=L^{\infty}(Y, n_{1})\oplus L^{\infty}(Y, n_{2})$ . Since $m_{2}$ satisfies
$m_{2}(\{s\})=0$ for each $s\in X,$ $m_{2}\otimes n$ also satisfies $m_{2}\otimes n(\{s\times t\})=0$ for each $s\times t\in X\times Y$.
Hence for each $\epsilon>0$ and $s\times t\in X\times Y$ there is a neighborhood $U(s\times t)$ of $s\times t$ such that $m_{2}$

$\otimes n(U(s\times t))<\epsilon$. Then there is a finite open covering $\{Ui\}_{i-1}^{n}$ of $X\times Y$ with $m_{2}\otimes n(U_{1}\cdot)$

$<\epsilon$ $(i=1, \ldots , n)$ . If $q$ is a miminal projection in $L^{\infty}(X, m_{2})\otimes-L^{\infty}(Y, n)$ , by Lemma 1 we
have $q\in L^{\infty}(X\times Y, m_{2}\otimes n)$ . Hence there is a measurable subset $E$ of $X\times Y$ such that
$\pi(\chi E)=q$, where $\pi(\chi E)$ is the multiplication operator of the characteristic function $\chi E$ of $E$.
Then there is a subset $U$ in the above covering such that $\pi(\chi E\cap U)\neq 0$ . Since $q$ is a mini-
mal projection, $\pi(\chi E)=q\leq\pi(\chi E\cap U)$ . Hence $ m_{2}\otimes n(E)\leq m_{2}\otimes n(E\cap U)\leq m_{2}\otimes n(U)<\epsilon$ .
Since $\epsilon$ is arbitrary, $m_{2}\otimes n(E)=0$, and so $\pi(\chi_{E})=q=0$. This is a contradiction. Thus
there is no minimal projection in $L^{\infty}(X, m_{2})\otimes-L^{\infty}(Y, n)$ . Similarly, there is no minimal
projection in $L^{\infty}(X, m_{1})\otimes-L^{\infty}(Y, n_{2})$ . Consequently, we have $p\in L^{\infty}(X, m_{1})\otimes-L^{\infty}(Y, n_{1})$ .

The algebra $L^{\infty}(X, n_{1})\otimes-L^{\infty}(Y, n_{1})$ is-isomorphic to the algebra $L^{\infty}(N_{1}\times N_{2})$ of all
bounded functions on $N_{1}\times N_{2}$ . Since each minimal projection in $L^{\infty}(N_{1}\times N_{2})$ is the charac-
teristic function of a point of $N_{1}\times N_{2},$ $p$ can be written in the form: $p=p_{1}\otimes p_{2}$, where $p_{1}$

and $p_{2}$ are minimal projections in $L^{\infty}(X, m)$ and $L^{\infty}(Y, n)$ . This completes the proof.
LEMMA 3. Let $A$ and $B$ be abelian $W^{*}\cdot algebras$ . Let $p$ be a minimal proiection in the

$W*\cdot tensor$ product $A\otimes-B$. Then there are minimal proiections $p_{1}$ and $p_{2}$ in $A$ and $B$ respec-
tively such that $p=p_{1}\otimes p_{2}$.

PROOF. There is a locally compact Hausdorff space $X$ with a Radon measure $m$ such
that $\cup X;=X,$ $ X;\cap Xj=\phi$ for $i\neq\dot{\prime}$, each $X$; is compact and open, and $L^{\infty}(X, m)$ is $- isomor\cdot$

phic to $A$ ; there is a locally compact Hausdorff space $Y$ with a Radon measure $n$ such
that $\cup Y_{k}=Y,$ $Y_{k}\cap Y_{j}=\phi$ for $k\neq j$, each $Y_{k}$ is compact and open, and $L^{\infty}(Y, n)is*\cdot isomor-$

phic to $B[1, I, \S 7, 2-3]$ . Let $m$; be the restriction of $m$ to $X$; and let $nk$ be the restriction
of $n$ to $Yk$. Since $L^{\infty}(X, m)=\Sigma_{j}\oplus L^{\infty}(Xi, m;)$ and $L^{\infty}(Y, n)=\Sigma h\oplus L^{\infty}(Yh, nh)$ , we have
$L^{\infty}(X, m)\otimes-L^{\infty}(Y, n)=\Sigma_{i,h}\oplus L^{\infty}(X;, mj)$ El $L^{\infty}(Y_{h}, nk)$ . Since $p$ is a minimal projection,
there is a $W^{*}\cdot subalgebraL^{\infty}(X;, m;)\otimes-L^{\infty}(Y_{k}, nk)$ which contains $p$ . By Lemma 2 there
are minimal projections $p_{1}$ and $p_{2}$ in $L^{\infty}(Xj, m;)$ and $L^{\infty}(Yk, nk)$ such that $p=p_{1}\otimes p_{2}$.
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2. The main results

THEOREM 4. Let $M$ and $N$ be $W^{*}$-algebras. If $z$ is a central projeclion in $M\otimes-N$ such
that $(M\otimes-N)_{z}$ is a type I factor. Then there are central projections $p$ and $q$ in $M$ and $N$

respectively such that $(M\otimes-N)_{z}=Mp\otimes-N_{q}$ .
PROOF. By [4, Proposition 2. 2. 10] $M$ and $N$ can be written as follows: $ M=Md\oplus$

$M_{c},$ $N=Nd\oplus N_{c}$, where $Md,$ $N_{d}$ are of type I and $M_{c},$ $N_{c}$ are continuous. By [4, Theo $\cdot$

rem 2. 6. 6] $Md\otimes-N_{d}$ is the type I direct summand of $M\otimes-N$. Hence $z\in Md\otimes-Nd$ , and
$(M\otimes-N)_{z}=(Md\otimes-N_{d})_{z}$ ; so we may assume that $M$ and $N$ are of type I.

By [4, Theorems 2. 3. 2 and 2. 3. 3] $M$ can be written as follows: $M=\Sigma i\oplus A;\otimes-L(Hi)$ ,
where $Ai$ is an abelian $W*\cdot algebra$ and $H_{i}$ is an $i\cdot dimensional$ Hilbert space. Similarly,
we have $N=\Sigma;\oplus Bj\otimes-L(Kj)$ , where $Bj$ is an abelian $W^{*}$-algebra and $Kj$ is a $j\cdot dimen$.
sional Hilbert space. Then there is a canonical $*$-isomorphism of $M\otimes-N$onto $\Sigma;,j\oplus(A$;

$\otimes-L(Hi))\otimes-(Bj\otimes-L(Kj))$ . Since each $(A;\otimes-L(H_{i}))\otimes-(Bj\otimes-L(Kj))is*$-isomorphic to ($Ai$ \copyright

$Bj)\otimes-L(Hi\otimes Kj)$ , there is $a^{*}\cdot isomorphism$ of $M\otimes-N$ onto $\Sigma i,j\oplus(A;\otimes B-j)\otimes L(H-i\otimes Kj)$ .
Hence there is a $canonical*$-isomorphism $\Phi$ of the center of $M\otimes-N$ onto $\Sigma;,j\oplus Ai\otimes-Bj$ .

Since $(M\otimes-N)_{z}$ is a factor, there is a pair $(i, j)$ of cardinal numbers such that $\Phi(z)\in$

$A_{;\otimes j}^{-}B$ and $\Phi(z)$ is a minimal projection in $A^{-}i\otimes Bj$ . By Lemma 3 there are minimal pro $\cdot$

jections $p;\in A$; and $q;\in Bj$ such that $\Phi(z)=p_{i}\otimes qj$ . Hence there are central projections $p$

and $q$ in $M$ and $N$ such that $z=p\otimes q$, so that $(M\otimes-N)_{z}=Mp-\otimes N_{q}$ .

Let $A$ and $B$ be $C^{*}\cdot algebras$ and let $ A**andB*\#$ be second duals of $A$ and $B$. The
spatial $C*\cdot tensor$ product $A\otimes_{a}B$ is canonically embedded in $A^{\gamma*}\otimes-B^{**}$ by [6, $Th\acute{e}0\mathfrak{X}me$

$1]$ .
THEOREM 5. In the above situation, let $\pi$ be an irreducible representation of $A\otimes_{\alpha}B$ on

a Hilbert space H. Suppose that a state $x\rightarrow(\pi(x)\xi|\xi)(\xi\in H)$ on $A\otimes_{\alpha}B$ has a normal
extension $g$ to $A**\otimes-B^{\gamma*}$. Then there are representations $\pi_{1}$ and $\pi_{2}$ of $A$ and $B$ respectively
such that $\pi$ is equivalent to $\pi_{1}\otimes\pi_{2}$ .

PROOF. Let $(\rho, \eta)$ be the representation associated with $g$ . Since $\rho(A\otimes_{a}B\gamma\eta$ is dense
in the representation space of $\rho$ , and $\Vert\rho(x)\eta\Vert=\Vert\pi(x)\xi\Vert$ for $x\in A\otimes_{\alpha}B$, we may assume that
$\rho$ is a normal extension of $\pi$ to $A^{\circ Ie}\otimes-B^{**}$ on $H$ and $\eta=\xi$ . Hence $\rho$ is irreducible. Then
there is a central projection $z$ in $A**\otimes-B\#*such$ that $(A\#*\otimes-B^{\gamma*})_{z}$ is $*$-isomorphic to
$\rho(A^{*}\otimes-B^{*\kappa})$ , so that $(A**\otimes-B^{g*})_{z}$ is a type I factor. By Theorem 4 there are central
projections $p$ and $q$ in $ A*\#$ and $B\#*$ such that $(A^{r}\otimes-B\#\#)_{z}=A^{*r_{p}}\otimes-B^{\{\alpha_{q}}$ . By [4, Theo-
rem 2. 6. 6] factors $A^{X\#_{p}}$ and $B^{W_{q}}$ are of type I. $Let\pi\sim$ be the restriction of $\pi$ to $A([2,$ $p$ .
9, Definiton 3]). Then the weak closure of $\sim\pi(A)$ is $\rho(A*\otimes I)$ , and is-isomorphic to $A^{z\alpha_{p}}$ .
Hence $\pi$ is a type I factor representation. By [2, p. 7, Proposition 2] there are represen $\cdot$

tations $\pi_{1}$ and $\pi_{2}$ of $A$ and $B$ respectively such that $\pi\simeq\pi_{1}\otimes\pi_{2}$ .
EXAMPLE 6. Let $A$ and $B$ be $UHF$ algebras. Under the embedding $A\otimes_{\alpha}B\subseteq A*r^{-}\otimes B^{1*}$,
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the canonical injection $\Psi$ of $A\otimes_{a}B$ into $(A\otimes_{a}B)^{R}$ has no normal extension to $A^{**}\otimes-B^{**}$.
PROOF. By [2, p. 20, Proposition 7] the spatial $c*$-tensor product $A\otimes_{\alpha}B$ is a unique

$c*$-tensor product of $A$ and $B$. Then. by [2, p. 32, Theorem 6] and Theorem 5, there is a
pure state $f$ on $A\otimes_{\alpha}B$ which has no normal extension to $A\#\#\otimes-B**$.

Suppose that $\Psi$ has a normal extension $\overline{\Psi}$ to $A^{\gamma}*^{-}\otimes B^{t*}$. Since $f$ may be regarded as
an element $\overline{f}$ of the predual of ( $A\otimes_{\alpha}B^{\mu}$, we have

$ f(x)=\overline{f}(\overline{\Psi}(x))(x\in A\otimes_{a}\otimes$ .
Hence $f$ has a normal extension to $AI*^{-}\otimes B\#*$. This is a contradiction, and completes

the proof.
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