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Introduction

In this paper, we shall consider compact connected differentiable transformation
group on spheres with codimension two principal orbit and two isolated singular orbits.

We shall prove the following

THEOREM. Let ¢: GX S"—>S" (n>>5) be differentiable action of a compact connected Lie
group G on n-dimensional sphere S* with codimension two principal orbit and two isolated
singular orbits. Then ¢ has the same orbit structure as one of the following linear actions
unless n="17, 11, 15, 23, 31, 39.

(1) A compact connected Lie group G and a representation ¢ = ¢, P 01, where ¢, is an
orthogonal represeniation with codimension two principal orbit.

(@2) The group SU ()x UQ)x UQ) (or SUk)x U(1)) and the representation ¢=[pr@c
(| U)X UQ)] (or the restriction, respectively).

(B) The group SpR)xSp(1)xSp(1) (or Sp(k) xSp1), Sp(R)x T1x Sp(1) and the re-
presentation, p=vr@u (vo*|Sp(1))x Sp(1)) (or the restriction, respectively). Here “the same
orbit structure’ means the same orbit types and the equivalent slice representation of the
corresponding orbit, and pr and vi denote the standard representation of SU (k) and Sp(k)
respectively.

In this paper we shall consider only differentiable actions and use the following nota-
tions: '

Q, R, C, H: the field of rational, real, complex or quoternion numbers, respectively

A,, B,, C,, D,: the classical simple Lie group of rank #z

G,, Fy, Eg, E;, Eg the exceptional simple Lie group

‘G~ G’: two Lie groups G and G’ are locally isomorphic

G°: the identity component of G

KoL: the essentially direct product of K and L

Ad: the adjoint representation
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Ok, ik, vk: the standard representation of SO(k), SU(k), Sp (k) respectively.

1. Examples

In this section we shall give examples of orthogonal transformation groups of (42—1)
—-sphere and (8k—1)-sphere with codimension two principal orbits. This section is due to
[5].

Let M(m, n:F) denote the set of all mxX»n matrices over F'(F denotes C or H). Put
<X, Y>="Trace X*Y for X, Y& M(m, n:F), where X* denotes the conjugate transpose
of X. For X&M(m, n:F), let rank X or 7kX be the maximun number of linearly in-
dependent column vectors of X.

Examples A. Let G;=SU(k)x T1x Tt and G,=SU(k)x T1. Define actions ¢ (¥ and
¢® of G, and G, on S*~1CM(k, 2:C) by the formulas:

9021)( (A, 2y, 22)’ (Xlr XZ))z(AXIEI’ AXZZ_Z)
(P%,Z)( (A' Z), (le XZ)) = (AX129 AXZ)) Where AESU(k)v 2, Zi ETl' (Xls XZ) E M

(k, 2:C). Straightforward computations show the following;
(1) For X=(X,, X,) with reX=2 and <Xj, X;>+#0

(Gl>x={([z 2 :]z z) s Tl}
2}

GiX)=SU(R)/SUk—2)xSt  i=1,2.

(2) For X=(Xi, X,) with 7k X=2 and <X, X;>+0

: 21 0
(G)x ={( [ 2y
0 =*

21 0
(Gz)Xz{([ 1 ],21)12161“}
0 =%

Gi(X)=SU(k)/SU (k—2) i=1, 2.

, 21, 22) :ziETl}

(3) For X=(X,, X;) with rk X=1 and <X, X;>+0

z 0)
(G)x= ([ , 2, z):zETl
0 =% .
z 0)
(Go)x= , 1}:zET
0 *
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Gi(X)=S2t-1x S1 i=1, 2.
(4) For X=(X;, X,) with rk X=1 and <X, X, >=0

(Gl)x={( [zl % ] , 21, 22):2.' & Tl} for X;+#0
(Gl)X={( = ] zz): 4 Tl} for X;#0

(Gz)X={( 1 *], z):zE Tl} for X;+0

(‘Gz)X={( [ © *],z):zETl} for X,+0
Gi(X)=S%-1  i=1,2 |
Examples B. Let G;=SpkB)xSp(1)xSp(l), G,=Sp(k)x T1xSp(1) and Gs%Sp (k)
Sp(1). Define actions ¢, ¢(? and ¢ of Gy, G; and G; on S3~1 by the formulas:

P (A, a1, g2), Xy, Xo)=(AX1q1, AX,q5)

¢§¢2) (A’ z, q)’ (Xls XZ))=(AX1;’ AXZ_q-)

¢'§¢3) (Av Q), (-XI) XZ))Z(AXIE, AXZ); where AESp(k), z2& Tls 7SS Sp(l) (Xb -X2)
&Mk, 2:H). Straightforward computations show the following;
(1) For X=(X,, X,) with rk X=2 and <X, Xo>+0

q
(GI)X={ ( a |,4a.49 )thSp(l) }

(Gz)X={( zz‘ ,z,z):zETl}

\ * ,
1 .

()
*

Gi(X)=Sp(k)/Sp(k—2)x S3 0=1,2
(2) For X=(X;, X,) with rk X=2 and <X;, X, > =0

q
(Gl)X={( ' 2 |, 9 fIz):qiESP(l)}

(GZ)X={< ? q ,zq>:zET1,qesp(1)}

q
(Gs)x={( 1 ,q)inSP(l)}
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Gi(X)=Sp(k)/Sp(k—2) i=1,2
(3) For X=(Xy, X;) with rk X=1 and <X, X;>#0

Gox={([? ,] ¢ a):acspm}
(Gz)X={([z *: ,z,z):zE Tl}

@or={([ ]9}

Gi(X)=S#-1x 53  j=1,2

(4) For X=(X;, Xp) with rk X=1 and <X;, X,> =0

(GI)X={([ql *],ql, qz)tqiESP(l)} for X,#0
Gox={([% ,] & @) :acsp®} for X0

*] , 2, q): 2T q& Sp(l)} for X;#0

(
(_Pq *],z,q):zETl,qESp(l)b} for X,+0
(‘q *]»Q)ZQESp(l)} for X,#0

(

(1 L] 9:aesp@}  for Xpxo

Gi(X)=S4%%"1, i=1,2

Note that in the above presentation of isotropy subgroup the notation “=" means “up

to conjugacy.”

2. Statement of results

In this section we shall prove the main theorem modulo some propositions which are
proved in the subsequent sections. In the following let G be a compact connected Lie
group and G act on #n-sphere S” almost effectively with codimension two principal orbit
G/H, two isolated singular orbits G/K;, G/K, and hence two non-isolated singular orbits
G/L,, G/L,. Put ki=codim G/K; and li=codim G/L;. We may assume that HCL,, L,,

Ll: Lz CKl and Ll: LzCKz.
We have the following

PropPosITION 1. G/ K is simply connected for i=1, 2 and hence K; is connected for i=1, .

ProPOSITION 2. If G/Ki+#pt., then we have
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N
J (L-+tha=i1) 33 fis+h= if by #ky, Where
&
N
l S ik if ky=k,=Fk, where n—1=(N+1) (k—1).

=0

P(G/K:) =

Here P(X) denotes the Poincaré polynomial of a space X.

ReMARK 1. It is easy to see that G/K; is a point if and only if G/K; is a point.

Consider the action of K; on S*;—! induced by the slice represetation K; —> SO(k:).
This action has codimension one principal orbit K;/H and two singular orbits K;/L; and
Ki/L,. Put p=dim K;/H—dim Ki/L,=1,—2 and ¢=dim K;/H—dim K;/L;=1,—2.

It follows from results in [4] that there are following cases;

Case 1. p, q; odd>1.

Ki/L;=Ski—!j and K;/H=K;/L,x Ki/L,

Case 2. p; odd>1, g; even.
1) Ki/Lj=Ski~lj and Ki/H=K;/Li X K;/L,
2) ki—1=2(p+q+1
P(K;/L)=1+ta) (1+tr+d), P(Ki/Ly)=(1+1r) (14-tp+a)
P(Ki| Hy=1+t?) (1+ta) 1+ tp+a).
Case 3. p=1, g; even.
1) Ki/Lj=S*!j and K;/H=S!x Sa
2) ki—1=2¢+3
P(K:/L))=QQ+ta) A+ 1tatt), P(Ki/Ly)=(1+1¢) (1+tath)
P(Ki/HY=A+1t (1+ta) 1+42at)
Case 4. p=1, ¢; odd.
1) Ki/Lj=S*—!j and K;/H=S'x S¢
2) ki—1=2¢+3
P(K;/L)=1+fa*, P(K;/L)=1+¢
P(Ki/H)=1+1?) (1+t2a+)
3) ki—1=5, p=qg=1
P(Ki/L))=1+t, P(Ki/Ly)=1+18
PKi/Hy=1+¢t) 1+8)
4) ki—1=4, p=¢q=1
P(K;/L;j)=1, P(K;/H)=1+8
5) ki—1=7,p=p=1
P(Ki/Lj)=1+8, P(Ki/H)=(1+ )2
Case 5. p, ¢; even.
1) Ki/Lj=Sk—!jand Ki/H=K;/L,x Ki/L,
2) Let Ki"’ be the almost effective part of the action of Ki. Ki'’~A;, B, or Gz. Ki”’
N Lj~T1x A, and Ky’ "H~T'x T*,
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3) Ki/Lj=C3/CixCy Ki/,H=C3/C;xC;xCy.
4) K;/L;=Fy4/B,, Ki/H=F,/D;,.

REMARK 2. Since K; acts linearly on S*;—! with codimention 1 principal orbit, it fol-
lows from result in [2] that the action of K; on S*;—!is induced by one of the following
representations in Table 1 if the slice representation of K; is maximal i.e. there is no com-
pact connected Lie group K such that K contains K; as proper subgroup and K admits a
representation K—>SO(k;) with codimension two principal orbit.

Assume that the slice repesentation of K; is not maximal. Let K’/ be the almost
effective part of the action of Ki on Sk—1. Then there is a compact connected Lie group
K which contains K;’/ as proper subgroup and admits a representation K—SO(%:) which
is maximal in the sense above. Let H; and H be principal isotropy subgroup of the action
of K/’ and K respectively. We can show that Ki’’/H;=K/H. In fact, let Hi=(K"")x
=K. N Ki"’. Since Ki’’/H; is a sumanifold of K/K . and hence dim K;"'/Hi=ki—2=dim
K/K ., we see that K;/H;=K/K, and K is a principal isotropy subgroup. It follows that
the maximal compact connected Lie groups for cases on pages from 5 to 6 are given in
Table 1.

Table 1
Case Group Representation | dim | Principal orb. P%if zzlarx;gp&!gn
Gi; is transitive 14¢ra-t
Casei-1) | Gix G, 1472 ST11x Sra-?
on S7;~! 14-¢r27t
A-Fe2r-3)(A+ 22777
SU(2) x SUr) [pe Rc prlr dr | Wr,2x S?
A+ A+
(L4 #771) (14 #775)
Sp (2) X Sﬁ(f) V3 ®H vr¥ 8r X2 X S¢
Case 2-2) A+ A+
A+15 A+ %)
UQ)x Spin (10) | [ Rc 4", R 32 | G/T*xSU@4)
1+2) A+1%)
A+ A+#)
U(5) [A2ps] R 20 | G/SU2)2x T
A+#)A+#)
7=2) (1 +#r-7)
SO(2) x SO(r) QA+tr-3)(
Case 3-2) ) p2 PR p 2r | V52 xSt
7; even 2 r 2 A+ QA+t
Case 4-2) 144273
S0(2)x SO(r)
. R pr 2r | Vi x §?
3|5 odd m@zp ’ 14-¢
Case 4-4) | SO(3) S?p;—0 5 S013)/Z,+2Z, | 1
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Case 4-5) | SU(2)x Sp(1) Y2 QHY* 8 G/finite gr. 148
Case5 | SUG) Ad 8 |sU@/T* | SUG)/AixT
Case 5 Sp(3) A2yz—0 14 | Sp(3)/Sp(1)® | Sp(3)/Sp(2)
Case 5 Sp(2) Ad 10 | Sp(2)/T? Sp2)/SpLyx T
Case 5 G, Ad 14 | G./T? G./SpAY)x T
Case 5 Fy ©4 26 | F,/Spin(8) F./Spin(9)

Note that groups G, x G, in case i-1) are not necessarily maximal

We have the following
PRrROPOSITION 3. ki=Fk,.

ProrosiTiON 4. P(K;/L:)=P(K,/L;) for i=1, 2.

ProposITION 5.  If n is even, then Ki=K,=G.

7

We shall consider the cases in which two isolated singular orbits are not both fixed

points and hence # is odd.

Let G=Gx T*° be the decomposition of G into product of semi-simple part G and torus
Ta, We may assume G is simply connected. Put Ki=K;° T¢(Ki;=the semi-simple part of

K3).

Consider the following commutative diagram;

G/ Ki) ® Q—> 71 (Ki) ®

0

_ ! _
7 (GNKi) Q® Q —> 71 (G) (% Q=0
Q— m(G)®R—0
b b3
ﬂl(P(Ki))L@) Q— m(THR® R

0

where p is the projection G—>T%. It follows that ¢=b and (GNKi)°=K;. Since G/K;
—> G/K; is a finite covering and =;(G/K:)=1, we have G/Ki=G/K; and GNKi=Ki.
Thus we have proved the following
ProposiTION 6. G/Ki=G/K;.
REMARK 3. If m(G/Li) ® Q=m,(G/Li) ® Q=0, then we see that G/Li=G/Li, where L;
is the semi-simple part of L;.
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We have the following

PrOPOSITION 7. Let G be the product of simple Lie groups Gi; G=G1%X .... X Gtand K
be a semi-simple subgroup of G with rk K=rk G—1. Then we have the following two pos-
sibilities;

K=K X .... XK, K; is a subgroup of Gi
or

K=(Kx ... xK:) o Ko, Ki is a subgroup of Gi, vk Ko=1 and the number of i such that
Di(Ko)#1 is just two and rk Ki+7rk pi(Ko)=rk G;i for anyi. Here pi denotes the homomor-
bhism pi : Ko G KGG—>Gi.

broj

ProposiTION 8. If kis odd, then rk G=7kK; fori=1, 2 and if k is even, then vk G=rk
Ki+1 fori=1, 2.

ProPOSITION 9. Let t and s:; be the number of simple factors of G and K; respectively.
Then we have

if k=6, si=t
if k=5, si=t+1 and
if k=4, si=t—1.

PrOPOSITION 10. Let G=GyX .... X Gt be the decomposition of G into the product of
simple Lie groups. Then we have
Q) If k=6, then G/Ki=Gy/Ki X ... x Gt/Kit or G/Ki=(A; X ... X G)/A X ...XKit)eKio
=Gy/KizX ... X Gt/ Kit, where K;; is simple Lie group.

(2) If k=5, Then G/Ki=G,/Ki;j X ... X Gt/ Kit, where rk Gi=r1k Ki;.

Let U; be the identity component of the ineffective kernel of the action of K; on S*—1;
Ki;=Ki’’-U;. Assume that there is no direct product summand Gj/K;j, where Ki; is a
factor of Ki”’, in the product decomposition G;/Ki; X ... X Gt/ Kit (see Proposition 10) for

“both i=1, 2. Then there is a simple factor of G, say G;, which contains semi-simple
factor of U; and U,. It is clear that rk G, =2.

We have the following

ProrosiTiON 11. Assume that Ui+1 and Uy +1 and there is a simple factor G, of G
such that GiN K, and G, N K3 are semi-simple factors of U, and U,, respectively. Then the
action of the restriction has a unique orbit type. "

ProposITION 12. Let G be a simply connected simple Lie group of rank = 2 and H a
subgroup of G such that vk H=rk G—1. If nis greater than 5 and dim G/H=<n—2, then
G cannot act on S™ with a unique orbit type G/H.

REMARK 4. It follows from the above arguments that we may consider only the case
in which there is at least one non-trivial direct product summand G;/K;; of G/K; where
Kij is a factor of K;’’ for at least one i.

For convience, we shall list the Poincaré polynomials of some homogeneous spaces.
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Table 2
K G P(G/K) K G P(G/K)
Ay E, 1+#54 ... B, Bry 14 p4r+s
As Es 1+85+ ... B, Dris 14242
A, G, 1426 Cr Cri1 14p4r+s
Ar Aria 14-g2r+t Cs F, 1+8+...
Ay Cria 1+254 ... Dy B, 1+ 227
A, Bri1 1484 ... D, Eg 148244204 .,
Ar Dy iy 14284 ... D, F, A48 (1484 119)
As E; 1+#54 ... Dy Briy 14 ghr-14 fAr+34 for+a
A E, 1+654 ... D;s Es 148485487 . ..
A, Eq 1+864 ... D, E, 14684884,
As F, 14854 ... D, Ey 1425+ ...
A, G, 14+284 ... G; B; 1+
B, F, 14184418 D, Dyyy 14 g2r - g2riq-phrtt
E; E, 1+804 ... E; " E 148124 ...

We shall consider each case on pages from 5 to 6 separately.

At first we shall prove that the cases 2, 3, 4-2), 3), 4), 5) and 5 do not occur. In the
following let K;’’ be the almost effective part of the action of K; on S¥—! and U; the iden-
tity component of the ineffective kernel of K; on Sk—1.

Case 2. /;=5; odd, /,=4; even.

1) Put k—/[,=2r and k—l,=27,+1. Note that k=/,+/,—2. Since k is odd, we see
that tk G=rk K; and G/Ki=G/K,=G1/Ky X ... X G¢t/Ky, where rk Gi=rk Ky. It
follows from remark 4 that we may assume K;; and K, are factors of K;’’ and G;/Ky;
#pt or G2/K13#pt. Moreover we may assume that K;; and Kj; act on S2?71 and S272+1
transitively respectively. Possible type of K is B, C2(71=2), G2(r;,=3) and possible
type of Kz is Ars, Drat1, Cratvizy Cravr2X C1,y B3(7,=3) or By(7:=7).

Assume G,;/K;;=pt. :

K, ~ As,; Since rk Gy=1k K3, Gy is G5 (7,=2), E;(r;=T) or Eg(r,=8). In this case
we see that P(G/K,)= (1+1¢5+ ...) P. Since k=1Il;+l,—2=2(r+r;)+3, this is impossible.

K3 ~ Dy, 41; In this case Gy is Byy41, Es(72=T), F4(r,=3). We see that P(G/K;)=(1
+272+2) P, (148124204, . ) Por (14#8+4116) (1+#8) P. Since k=2(7+72)+3, these cases
are all impossible.

K2 ~ Cy or Crx Cy; This case does not occur, because there is no simple Lie group of
rank r other than C, which contains as proper subgroup.
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K3 ~ B3; This case does not occur, because Bj; is the only Lie group of rank 3 which

contains Bj.
K,» ~ B;; Clearly G; must be F,. Hence we have P(G/K;)=(1+4#8+#6)P, which is

N
not equal to >} %D, because k=2 (r;+7;)+3>9.

i=0

Thus we have shown that G# K;;. Recall that possible type of K;i;is By,, Cir1=2) or
G2(7'1=3).

K1 ~ B,,; In this case G, is F4(r;=4). Hence we have P(G/K;) = (1+t841#6)P,

N
which is not oqual to X} #G*-D,
=0

K;, ~ C,, G3; This case does not occur, because there is no simple Lie group of rank
2 which contains C; or G, as proper subgroup.

2) k—1=2p+q)+1=2(l+l—4)+1. ,

Since k is greater than 6, we see that G/Ki=G;/ K1 X ... X Gt/ Kyt or G3/ KX ... X Gt
/ Ky, where K;; is a simple Lie group. Let Kj; be a simple factor of K;’/ such that G/ K,
#pt. Let K be the maximal compact connected Lie group which contains K;’’ and
admits a representation K—— SO (%) with the same principal orbit as K;’’. It follows from
Table 1 that possibilities of K are followings.
@® K~SU@)xSU(r); v

In this case we see that £=4r. Note that Kj; is locally isomorphic to a subgroup of
SU(2) or SU(7).

K1~ A,: Possibility of G, is A,, B; or G4, none of which satifies P(G/K;) =i1_§v‘_,0 Hk—1),
since £>8. _

Ky ~ As(s<7): Possibility of Gy is Ass+1, Bs+1, Cs+1, Ds1, Es1 (s=5, 6, 7), Es(s=7,
8) or Gy(s=2). For any Gy, it follows from Table 2 that P(G/ Kl);&il‘é Hk=1),

Ky ~ Bs(r =2s+1): Gy is, one of Bsy, Fy(s=3) or Fy;(s=4). Itis easy to see that
P(G/Ky)# goti(k—l).

By the same arguments it can be shown that cases of Kj; ~ Cs, Ds and Es do not
occur.
@ K~ Sp@)xSp(n);

In this case we see that #=8r. By the same arguments as the case of @, we can
show that this case does not occur.
® K~ Spin(10);

In this case we see that £=32. Since Kj, is locally isomorphic to a subgroup of
Spin(10), K1, is type of D,(4=r<5), A(1=r=<4), B2=<r=4) or G,. It is not difficult to

N

see that there is no simple Lie group G; such that P(G,/K;)+ Zoti(k‘l).
=

@ K~SU®);
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In this case we see that £#=20 and Kj; is locally isomorphic to a subgroup of SU(5). It
is easy to see that this case does not occur.

Case 3. [;=3, [,==4; even.

1) k=L+1—2; odd. ,

Let G,/Ky; be a positive dimensional direct product summand of G/K; where K;; is a
simple factor of K;’’. Since & is odd, we see that rk G;=rk K;;. Note that if & is 5, Kj; is
not necessary simple. Since Kj’/ acts on S!x S?7 (k—[,=27) transitively, we see that Kj;
is locally isomorphic to a subgroup of SO(2r+1) and acts on S? transitively. Hence Kj;
is type of A;(r=1) Bj, G2(r=3) or Csz(r=2). It is not difficult to see that there is no

. N
simple Lie group G; such that rk G;=rk Ky; and P(G/K;)= 2(‘,) fie—1),
=

2) k—1=2g+3=2[—1.

Let K be the maximal compact connected Lie group which contains K7’ and admits
a representation K——>SO(k) with the same principal orbit as K;’’. It follows from Table
1 that K is locally isomorphic to SO(7) (r; even). Thus K;"’ is locally isomorphic to a sub-
group of SO(7). It is easy to see that ris /,. Let Kj; be a simple factor of K;’’ such that
Gi/Ky, is a non-trivial direct product summand of G/Kj.

Ky, ~ As(r=2s); In this case possible type of G; is As+1, Bs+1, Cs+1, Ds+1, Ess

_ N
(s=5,6,7), Fy(s=3), Go(s=1, 2), Es(s=7, 8). Itis easy to see that P(G/K,)+ Zj(.) #ik—1),
Kiy ~ Bs(r=2s+1); In this case possible type of G;is Bsy1, Ds410r Fy(s=3,4). If
N
G1=Bs4,, then P(G/K)=1+#+14+ ... Since k—1=2r—1>4s+1, P(G/K)# Z}Oti(k“l).

It is easy to see that cases of K;; ~ Ds4+; and Fy do not occur.

Ky, ~ Cs(r=4s); In this case possible type of G;is Cs+; or Fy(s=3). Itis easy to
see that Cs+; and F, are inadequate.

We shall omit the proof of the fact that cases of Ky; ~Ds, Gy, Fy, Es (s=6, 7, 8) do not
occur, since they are tedius, but are not difficult.

Case 4. [;=3, [,=3; odd.

2) In this case we see that £#=2/,. Let K;; be a simple factor of K;"’ such that G,/ Ky;
#pt, where G; is a simple factor of G. It follows from Table 1 that Ky is locally iso-
morphic to a subgroup of SO(¥) (r=1I,). Hence Kj; is type of As(r=2s+1), Bs(r =2s+1),
Cs(r=4s), Ds(r=2s), Go(r=T), Fy(r=26), E¢(r=27), E;(r=56) or Eg(r=248).

K, ~ As; Note that k=2r. If Gi=As+;, then we see that P(G/Ky)=1++3+ ...,

which is not equal to f}]o tik=1 because r=2s-+1. If G is a simple Lie group which con-
tains As, of rank s or zs-}—l and is not Asi1, then we see that P(G/Ky)=1+1¢%+ ..., which
is impossible.

By the same arguments it can be shown that other case does not occur.

3) k=6, l;=I[,=3. :

Let K;; be as above. Then it follows from Table 1 that K;; ~ A; and hence G,=A4;
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or G,. Itis easy to see that G;=A;. Thus we see that G/K;=A3/A; or Ay/A;x G'|U;.
Similarly we see that G/K,=A,/A, or A;/A;XG""|U,. If one of G’/U; and G”’/U, is a
point, then n=11. If G’/U#pt and G’’/U,+pt, then it follows from Propositions 11 and
12 that G’'=G''=A,, U,=U,=A,, which implies that P(G/K;) =1+42#+.... Thisis im-
possible.

4) k=5, ;=1,=3.

Let Ki; be as above. Since k& is odd, we see that rk G;=rk K;;. It is easy to see that
this case does not occur.

5 k=8, =1[,=3

Let K;; be as above. It follows from Table 1 that K;; is type of 4;.. Then G; must
be B;. By the same arguments as in 3), it can be shown that »=15.

Case 5. [y, [,=4; even.

1) Put 27i=k—/;. Then we have k=2(r;+7,)+2 and £=6. Since K;’’ acts transi-
tively on Sk—lhixSk—1:, K,"=K;; X K;, and K;; must be one of A;, By, C, or G,. We
assume that G;/Kj, is not point.

K1 ~ A;; Gy must be of rank 2 and one of A,, B, or Ga. It is clear that if G;=G.,

then P(G/K,) # i‘bﬁ(k—l).

Assume that G;=A4,. Then £ must be 6 and hence r;,=7,=1. Thus we see that Kj;
=Kp,=A, If Ky/'=K,, then G/K,=G/K,=G/A, and hence n=11. Thus we have U,
#1and U#1 and G/K1=A3/ A1 X G’ [Uy, G/ Ky=A,3/A1 X G"'|U,, where G’ /U,#pt, G’ /U,
#pt. It follows from Propositions 11 and 12 that G'=A4,, G'’=A,; and U;=U,= A,,
which is impossible. Next assume that G;=B,. Then %, must be 7 and hence »,=1 and
7,=2. Since 7,=2, we see that K;~B,. If G»/Ki;#pt, G, must be Bs, C; or D; and
hence P(G/K)=1+#+¢t1+ ... 0or 1+2f7+ ..., which isimpossible. Thus we have shown
that G/K;=B,/B;, which implies that =15, or U;#1. Thus we see that U;#1 and U,
#1. By the same arguments as in case of G;=A, we can show that this does not occur.

K1~ B,; If G, is of rank 7, then r=4 and G,=F,. We have P(G/K,) =1+ 8+ 64

Since £=2(r,+7r+1)=10, P(G/K)) is not equal to Z_‘, #&%&—1D, Next we assume that
rk Gi=7r+1. Then Gi=Br4+; or Dyy;. It is not difficult to see that P(G/ KD+ 2 HGk—D,

Ki; ~ C,; Since there is no simple Lie group except C; which contains C 2 as proper
subgoup and of rank 3, G, is C;. We have then P(G/K))=1+#1+.... Since k=2(r;+7,
+1)=6+427r,, 7, must be 3 and G,=K1,=C, or C, % C,, which means that »=23.

Ki; ~ G; It is easy to see that this case does not occur.

2) Assume K;’’ ~ A,. Then k=8 and [;=1[0,=4. G, must be G;, A3, C3or B;. Itis
easy to see that G;=A4;. If U;=1, then »n=15. If U,;#1 and U,#1, then we see that
G/K;=S"x G’'/U, and G/K,=S7x G'’/U,. By the same arguments as the case 1) we can
show that this case does not occur. Assume K;"’ ~ C,. Then £=10 and G; must be Cj,
which is not adequate, because P(G/K)=1+#1+ ... #1+¢tk~14, .. Assume K;"’ ~ Gy
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Then £=12 and G,=B;, which is easily seen to be inadequate. Since the proof of the
fact that the cases 3) and 4) do not occur is completely analoguos to the above cases, we
shall omit its proof. Thus we have proved that the cases 2, 3, 4-2), 3) 4) 5) and 5 do not
occur.

Next we shall consider the cases 1 and 4-1). We use the the same notations as above;
Ui denotes the identity component of the ineffective kernel of the action of K; on S¥—! and
Ki'’ the almost effective part of the action of Kion S¥~1,

Case 1. /,=5; odd, /,=5; odd.

At first we shall show that the semi-simple part G of G acts on S” with same orbits
as G and isotropy subgroups of the action G are all semi-simple, in other words, G/Ki=
G/Ki, G/Li = G/Lj and G/H=G/H, where Ki, Li and H are semi-simple part of Ki, Li and
H, respectively. In section 3 we shall prove that P(G/L;)=P(G/K:) P(Ki/L;). It follows
that 73 (G/L;) ® Q=7,(G/L;) ® Q=0. As noted in Remark 3, we see that G/L; = G/Lj;.
From the homotopy exact sequence of the fibre bundle: L;/ H—> G/ H— G/ L, it follows
that 7,(G/H) @ Q=r.(G/H) ® Q=0, which implies that G/H=G/H. From the following
commutative diagram, where the horizontal sequence is the canonical fibre bundle;

. Ki/Lj — G/L; — G/K:

Ki/L; — G/L; — G/K;,
it follows that K;/L;=K;/L;. Similarly we see that K;/H=K;/H and Lj/H= L;/H. Thus
we have proved our assertion.
We consider firstly the case in which U;=1. Put k—/;=2ri—1. We see that k=/,
+1,—2=2(r1+7y). It follows from Table 1 that K; =Ky X Ky, where K;;j acts on S?r;—1
transitively. It follows from Propositions 9 and 10 that G/K;=G;/Ky; X G,/Ky, in which

we may assume that rk G;=rk Kij;+1 and rk Gy=rk K;,. Possible type of K;jjis A», C»,
CrXx Cl, D,, B; or By,.

K1 ~ Ar: In this case we see that r=7,—1 and possible type of G, is Ari1, Brsy,
Cr+1, Dr+1, Er+1(?’=5, 6, 7), F4(7=3) or Gz(r= 1) If Gl=Ar+1, then we have P(E/I?]_)—_—l
+#2r+34 .. Since k—[;=2r,—1, we have k—1=[+2rn—2>2r+3, which implies that

_ N —
P(G/K)+ Z}oti<k—1). If Gy# Ar4q, then it follows from Table 2 that P(G/Ky)=1+15+...,
U N
which is not equal to Eoti(k—l).
[ Aand .
Ki1 ~ Dy: In this case we see that =7, and possible type of G; is Br4+1, Dry1, Erg1(7
- N

=5, 6, 7). If Giy=Br+1, then P(G/K)=1+#r"14+#r+3+ _ , which is not equal to goti(k—ﬁ.
It is easy to see that the cases of G;=D,41, Er+; do not occur.

Ki1 ~ B;: In this case we see that ;=4 and possible type of G; is By, Dyor F,. Itis
easy to see that the cases of G;=F, and D4 do not occur. Assume G,=B;. Then we have

. _ _ N
P(G/K)=1+#5+ ... Itis not difficult to see that P(G/Ky)= > #*~D if and only if r,=4

=0
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and Kj»=G,, By, B or A;. Since dim = G/K;=dim G,/Ky;+dim Gy/K;»=15 and k=16,
we see that n=31.

Ki1~ By: In this case we see that =8 and possible type of G, is Bsor Ds. If G,
=Ds, then we have P(G/Ky)=1+t%+.... Since k—1 >>15, this is impossible. Assume
G1=DBs. Then we have P(G/K)=1+#9+.... Since Ky, is transitive on S272:~1, Ky, is one
of Ar,, Dr,, Crasa, CraoXCy, Bsor By. By the same arguments as case of K;;~C», it can

_ _ N
be shown that P(G/K;)= _ZO t#*&—1D if and only if Go=K, and r,=2, which implies that G,
=

=K;3=C;or C;xC,. Clearly » is 39.

Ki; ~ Cr: In this case we see that r,=2r. It is obvious that G; is Cry; or Fy (r=3).
It is easy to see that G, is not Fy. Then we see that P(G/K)=1+#+3)P(Gy/Ky,). Note
that k=4r+27, Possible type of K, is C;x Cy, As, Ds, Cs, CsX Cy, B3 or B4. Since rk G,
=rk K3, possible type of G, is C;x Cy (for K;~ C1xC,), As, E7, Eg, G; (for Kj5 ~ As),
Ds, Bs, Es, Fy (for K15 ~ Ds), Cs(for K12~ Cs), Csx C; (for Ky, ~ Csx Cy), B; (for Ky~ B3),
B4, Gy(for K, ~ B,). Itis not difficult to see that the cases of K3~ Ds, Cs, CsX C;. B3
and B4 do not occur. If K5p~C,XC, or As, then G, must be C,;x C; and As respectively
and 27,—1=3. Thus we have proved that if K;; ~ C,, then G;=Cr41, K1a=Gys=A; or C;
X C; and r,=2. .

K1 ~ C»xCy: In this case we see that r,=27. By the same arguments as above
we see that possible type of pair (G, K;) is (Cr41X Cyx Cy, Cr X C;x Cy) or (Cri1 X Cyx Cy
X Cp, CrxCixCy1xCy).

Now we shall determine G, K;, Lj, and H. We need the following

ProrosiTION 13. K and K, are not conjugate.

Let W; be the identity component of the ineffective kernel of the natural action of G
on G/Ki; G=GDx W; and Ki=K;’-W;. We have shown that G/Ki=G®/K;/=Cr1/Cr
and hence GP=C,4q, Crp1XTror Crp1 X Cj.

G® = Cpyq: In this case we see that K/;=C,, W1=C;, C; X T' or C;x C; and W, acts
transitively on S3. If W,=C,, then we have G=C,+;XC; and K;=C,x C;. In this case

we see that
me{([3 2] a):aca)

It follows from Proposition 13 that

ke{([§ 9. 4): ecci)

Since L, ~ C»—; X Cy, L, is assumed to be a subgroup of K; and is isomorphic to a sub-
group of K,, we see

|

Similarly we have

1

q

,q) ;9 E Cl}-
%k
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LZ:{([I *]1)}

oo{( )

This orbit structure coincides with that of example ¢, . If W;=C;x T1, then we have

and

G=Cr41XT1xCi;and K;=C,xT1x C;. In this case we see that

K1={(|:1 *}z, q);zETl,qEQ}.

It follows from Proposition 13 that possible embedding of K; is

([ JJosdeemesaa {([0 )5}

Since Ly~ Cr—1 X T1x Cy, L, is assumed to be a subgroup of K; and conjugate to a sub-
group of K,, possible embedding of L, is
)

T R ) R

Then we see that gL,g~1 C K, for some g=(A4, 2z, g). Hence there are 22&T'or ¢ & C;
such that z,2’=2z2, or 2yg = ¢'z, which implies z2’=1 or ¢'=1. This means that L; is not
type of C»r—; X T1x C,. Thus the case of W;=C;x T does not occur.
By the same arguments we can show that the case of W;=C;Xx C; does not occur.
GW=Cyy1x T1: In this case we see that K’;=C,x T1, W;=C,, C;x Tlor C;xCy. If
W1=C,, then we have G=Cr+1X T1X C; and K;=C,x T1x C;. In this case we see that

k={([* ] 249);2€T, qeCi}

It is not difficult to see that

K {([* J]edsremecal)

and
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This orbit structure coincides with that of example ¢, .

GV =C,41XC;: By the same arguments as case of G = C,4+; X T! we can show
that this case has the same orbit structure as example ¢, .

Next we consider the case in which Ui#1 for i=1,2. If K; N Ui=Ui=1 for at least
one i, then the same argument as in case U;=1 show that (G, K;) is one of (Cr4+1%C;, C»
X C), (Cra1X X T1, Cpx CyX T or (Crs1 X C1xCy, CrxCixCy). Assume U;+1 for i=1,
2. Put G=GWx W, and K=K;’-Wi=K;"'-U;. It follows from Remark 4 that we may
assume that there are simple factor K;; and G, of K;"’ and G respectively such that G,
/Kis a non-trivial direct summand of G/K,. Clearly K, is type of A (r=1), Cr(r=2),
D;(r=4), Bsor By.

The case rk K;;=rk G;.

N
In this case it is easy to see that there are no K;; and G, satisfying P(G/K;)= }"__.o tiG—1D,
&

The case rk Ky;=rk Gi—1.

It follows from Table 1 that Ki’’= Ki, x Ki,, Kij acts transitively on S%i~1,

K1 ~ A,: In this case we see that r=7r,—1. Possible type of G, is Ar+1, Br+1, Cra1,
Dyyq, Evs1(r=5,6,7), F(r=3) or Gy(r=1). If G;=Ar+,, then we have P(G/K;)=1+r+3

N
+ ..., which is not equal to 20 t%k—D, because k—1=2(n+r)—1>2r+3. If G, is exep-

tional, then we have P(G/K;)1+¢%+ ..., which is impossible. Assume G;=Br4+;. Then
we have P(G/K)=1+t¢+...(r=22) or 1+ + ... (r=1). Thus r=1 and hence r,=2.
Since K, acts transitively on S3, K, is type of C,or C;xC;. Put G/K,= G/K,=G,/Ky
X G’ [|Ki2X Gy’ /U,. Since rk G,=rk Ky;+1, we see that rk G’=rk K;, and rk G/'=rk U,,
which implies G/’= Ky,. If G/’’/U,=pt, then we have n=15. Since r=1 and =2, we
see that Ky ~ C;x C;x Uy or C;x C;x Cyx Us,. Since it follows from Propositions 11 and 12
that UN Gy’ =1,, we have G/Ko=G1/U,X(G'1X G'" | K12 X Kg). If Tk (G{ X Go'")=r1k (Kp
X K3), then have G,’ X G,"’=K 3, X Ky, and hence G/K ;= G,/U,, which leads a contradic-
tion, because of Propositions 11 and 12. Thus we have rk G,=rk U,, which means G,
=U,, because G,= B, contains no proper simple subgroup of rank 2. This is a contradic-
tion. It is easy to see that G;=Cr+1, Dr+1 is inadequate.

K1~ D,: Itis easy to see that this case does not occur.

K1~ Cy: In this case we see that r,=27. Possible type of G, is B3(r=2), Cr4; or
Fy(r=3). If Gi;=B;or F,;, then we have P(G/Ky)=1+¢+ ..., which is impossible, be-
cause k1—1>7. Assume G,=C,+;. Then we have P(G/K))=1+#r+34 ... and hence
r,=2. Hence Ky, is type of C;or C;xC,. Thus we have G=C,+;X G, xXG"";, Ki=C»
K2xU,and G/Ki=Cr41/Crx G,"[U,, where rk G;/’=rk U;. We may assume K y~ C
X KpoX Us, K9~ Cy0or C;xC;. Since U;NG,'=1, we have G/Ky=Cr41/Us X (G X Gy'’)
[(KyyX Kp3) or (Cry1X GY)/Usx G [(KnX Kpp). If tk (Ko X Kpp)=r1k (G X Gy’) or rk
G,’’, then we see that the second summand of G/K, is a point, which leads a contradic-
tion, because of Propositions 11 and 12. Thus we have rk U,=rk Cr4+,, which means U,
=Cr4+1. This is a contradiction.
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K1 ~ B, By: By the same arguments as case of K;;~C, it can be shown that this
case does not occur.

Thus we have shown that U;=1 for at least one i and hence G/Ki=G/Ki=Cr4,/C».
Assume U;=1. Thus U, is a torus. But this is impossible, because U;<4K; and G
acts on G/K,=S413 almost effectively. Thus we have proved that U;=U,=1 and hence
the action of G has the same orbit structure as one of examples ¢¢Q,, ¢¢2; and ¢¢%, .

Case 4-1). [;=3, l,=3; odd.

At first we shall consider the case in which U; or U, is trivial. We see that k=/;
+1/,—2 and K; ~ SO (2) X Ky;, where K;; acts transitively on S¢. Assume ¢g=1 and hence
k=4. We have K;=1. Thus we see that G/K;=G/K;=S3, which means #=7. Thus
we may assume ¢=3. Since Kj; is transitive on S¢, possible type of Ky, is A», Cr, Cr X Cy,
D,, Byor B,. Note that K;=K;;. ‘

K1~ Ar: In this case we see that k=27+44. It is easy to see that G;=A,4,.

It is not difficult to see that the cases of K;;~C», Crx Cy, D, B3 and B4 don’t occur.

Now we shall determine G, Ki, L; and H. As before we put G=GWO X W;, Ki=K;’
oWi. As shown above, possible pair of (G®, K")) is (Ar+1, Ar), or (Ars1 X T1, A, X TY).
Since Wi is transitive on S1, we see that W;=T1. Thus possible type of (G, K:) is (Ar+
XTL A X TYor (Arp 1 X TIX T Ap X TIX TY),

Case of (G, Ki)=(Ar41x T, Ay xTY),

In this case we see that

ke={([1 ]9}

It follows from Proposition 13 that we see

ke {([* J])ieem).

If we choose L, such that L;C Kj, then we have

we{ (o)) eer]
Lzz{([l *:’1)}

o[}

This orbit structure coincides with that of example ¢{%, .
Case of (G, Ki)=(A 4 1 X T1XT1, A, x T1X TY),
By the same arguments as above it can be shown that

k= {([* JJwm)encr)

and
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K2={([z *],zl,z);z,zleTl}

2
Ll={<[ 22 ],21,Zz>;ziET1}
*

L2={([z *],z,z);zETl}

a={([+)owe) ]

This coincides with the orbit structure of example ¢(%, .
By the same arguments as case 1 we can show that the case in which U;#1 for i=1,
2 does not occur. Thus we have shown that in the case 4-1) the orbit structure of the

action has the same orbit structure as one of the examples ¢{?,, and ¢{%, .

and

3. Proof of Propositions 1, 2, 3, 4 and 5

In this section we shall prove Proposition 1, 2, 3, 4 and 5 in section 2. Recall the
notations; G is a compact connected Lie group which acts on S” almost effectively with
codimension two principal orbit G/H, two isolated singular orbits G/K,, G/K, and two
non-isolated singular orbits G/L,, G/L,. ki and /; denote codim G/K; and codim G/L;
respectively.

It is well known that the orbit space is 2-dimensional disk and dim G/K; is strictly
smaller than dim G/L; ([1], chap. IV, section 8). It is easy to see that S” is equivariantly
diffeomorphic to a G-manifold M; U M,, where M; is a G-equivariant k- disk bundle over

G/K; and f:bM,—>bM, is an equ{variant diffeomorphism (bM; is the boundary of M;).
Since 3<ki, we see that the simply connectedness of S” implies that G/K; is simply con-
nected for i=1. 2. Thus we have proved prbposition 1.

We identify bM; and bM, by f and put My=bM;=bM,. From Mayer-Vietoris exact
sequence, it follows that Hi(M,; Q) is isomorphic to Hi(G/K;; Q) ® H(G/K,; Q) for 0<i
<n—1. In particular, the projection p;: My—> G/K; induces isomorphism p:*: Hi(G/K;:Q)
—Hi(M,: Q). Hence we have M, 56/ K;x Ski—1 where XEY means that spaces X and

Y have the same graded cohomology modules.

We have already noted that
(1) Hi(My; Q) = Hi(M;; Q) @ Hi(Mz; Q) for 0<i<n—1
@) My~ G/KixSki—1,

Thus we have
(3) P(Myp=P(G/K)+P(G/Kp)+t—1-1
=P(G/Ki) A+tkiY) for i=1, 2
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and hence we have

4) P(G/K;) (1—tkrtke=2)=(1+thz1) (1—#"1)
and

(5) P(G/Kp) (1—thrtke=2=(1+tha=1) (1— "),

N
Multiply both hand sides of (4) by _Z,Oti(kﬁkz—”. Then we have n —1 =0 or k,—1 mod

(b1+ky—2) and n+k;—2 = 0 or ky—1 mod (k,+Ek,—2), because every term of the left hand
side has positive coefficient mod #N+D(k:+k,~2),  Sjmilarly we have n—1=0 or k;—1 mod
(Bi+ky—2) and n+ky—2=0o0r k—1 mod (k;+ks—2). Assume k #k,., We may assume
ki <ky. If n—1=k,—1 and n+k,—2=0 mod (k;+k,—2), then we have 2(k,—1)=m(k,+ %,
—2), which is a contradiction, because ky#ky. If #—1=0 and #n+k,—2=0 mod (& +k,—
2), then we have ky;—1=m(k,+k;—2), which is a contradiction. By the same arguments
we can conclude that #—1=(N-+1)(k+k,—2) for some N. Multiply both hand side of (4)

N
by E tiCk, +k2"‘2), we have

=0
N
P(G/K)=(1+th:™}) 33 tilka kD,
Similarly we have
N
P(G/Ep)=(1+th=1) 3 titks+hs=D,

Next assume k=k;=%k,. In this case it is easy to see that #—1=0 mod (¢.—1) and P(G/K3)
N
= 3¢k~ where n—1=(N+1) (k—1).

i=0
Thus we have proved the Proposition 2.
Next we shall prove the Proposition 3. Consider the fibering: Ki/L;j——>G/L;——G

/K;. Since 7(G/Ki)=1, we have
E$=H#G/K)) ® HuKi[Lj)

for the spectral sequence of the fibering, where the coefficient of cohomology is Q. In
the following the coefficient of cohomology is assumed to be rational numbes, unless it is
stated to the contrary. We shall show that P(G/L;)=P(G/K;) P(K:/L ;). We have the
following '

LEMMA. Let F—>E—>Bbe a fibre bundle with =(B)=1. Assume Hi(B)=0 for 0<i
<k(k=3) and Hi(F)=0 for i>>I and I+2<k. Then we have P(E)=P(B)P(F).

This lemma is proved by the standard argument of spectral sequence and our aser-
tion is proved as follows. It follows from Proposition 1 that Hi(G/K;)=0, 0< i<lks—;—1.
Since dim K;/Lj=Fk; —1j, we have H!(K;/L;)=0 for ¢t >>k;—I;j. Since /; is greater than 3
and & >/;, the hypotheses of Lemma hold for the fibre bundle K;/L;—>G/L; —> G/K;.
Thus we have proved that P(G/L;)=P(G/K;) P(Ki/Lj).

Now we shall prove that k,=%k,. Assume the contrary; k;<k,. From the equality
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N
P(G/Lj)=P(G/K:) P(Ki/Lj), it follows that (l-l-tkl‘l).Eoti(kl'*kz‘Z) P(Ki/L ;)= (1+tk"1)

N
iz(}) titki k=D P (K, [L;), in other words, (14 tk1~1)P(K,/L;)=(1+tk2"1)P(K,/L;). Since dim

K,/Lj=Fky;—[; the coefficient of 7411 on the left hand side is at least 1. But it is clear that
the coeffient of #1—1 on the right hand side is zero. This proves that 2;=%,. Now Pro-
position 4 and 5 follows immeadiately from Proposition 3.

4. Proof of Proposition 7, 8, 9, 10, 11, 12 and 13

In this section we shall prove the Proposition 7, 8, 9, 10, 11, 12 and 13. We shall omit
the proof of Proposition 7, since it is proved in [3].

Proof of Proposition 8.

If & is odd, then the Euler characteristic X (G/K;) is non-zero and hence we have that
rk G=rk K;. Assume k is even. Then we see that X(G/K;)=0 and hence rk K;i<rk G.
Let T be a maximal torus of G and consider the action of 7 on S” obtained by the restric-
tion. Since rk Ki<rk G, the fixed point set F'(7, S”) is empty. But it follows from the
Borel formula that there is a codimension 1 subtorus S of 7 such that F(S, S*) is not
empty, which implies that rk Ki=rk G—1. This proves the Proposition 8.

Proof of Proposition 9.

Consider the homotopy exact sequence;

74(G) ® @—>74(G/ Ki) ® Q—>73(K i) ® Q—73(G) ® Q—>73(G/ Ki) ® Q—0.

If =6, then we have that 73(Ki) ® Q = 73(G) ® Q, which implies that s; =¢ If &
=5, then we have the exact sequence;

00— Q— 13 (Ki) ® Q—m3(G) ® Q——0, which implies that si=¢+1. Assume k=4.
Consider the spectral sequence of the fibre bundle; Ki—>G—>G/K:. We have H3(G)
=1Q, HXKi)=siQ and H3(G/K:))=Q. It follows that E}?=E%%= Q and E$3=E%° = sQ.
It follows that H3(G)=(s+1)Q and hence ¢=s;+1. This completes the proof of Proposition
9.

Proof of Proposition 10.

If £=5, then rk G=rk K; and hence we have G/Ki=G,/Ki;x G3/KizX ... X Gt/ Ki,
where rk Gj=rk Ki;;.

Assume £>6. Let G=G;X ... X Gt be the decomposition into product of simple Lie
groups. It follows from Proposition 7 that Ki=Ki; X ... X Kit or Ki=(Ki; X . .. X Kiit)> Kiy,
where K;;CGj and Kj,is of rank 1. From Proposition 9 it follows that K;; is simple for
the first case and some of K;; is trivial for the second case. In the first case, it is clear
that G/Ki=G1/Ki; X ... X G¢/Ki:. Consider the second case. We may assume p,(Ki¢)#1
and p,(Kig)#1 and p; (Kio) =1 for j =3, where p; denotes the projection G— G;j. . Then
we have

G/ Ki=(Gy X Gp)[((Kiy % Kig)o Kig) X G/ KizX ... X Gt/ Kit,
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where rk Gj=rk K;; for j=3. Since the number of simple factors of (Ki;X Kig)-Kig is 2,
we may assume Ki;=1 and hence rk G;=1. It is easy to see that the natural action of
G, on (G X Gy)/(Kige Kis) induced by the left translation is transitive and hence (G X Gy)
[(Kige Kiz)=G3/Ki,. This completes the proof of Proposition 10.

Proof of Proposition 12.

Assume the contrary. Then it is well known that S”= G/H Iz< F(H, S™), where
H
I'y=N(H, G)/H(N(H, G)=the normalizer of H in G). Since rk H=rk G—1, Iy is finite

group or Lie group of rank 1. If I’y is finite, we have S”=G/HX F, where F is a com-
ponent of F(H, S*), because S” is simply connected. Since dim G/H<n, dim F<ln, this is

clearly a contradiction. Assume rk I'g=1. Then we have S"=G/H >;0 F, where F is
H

a component of F(H, S*) and I'Y is the identity component of I'y. It is clear that the
Euler class of the fibre bundle; I"},—— G/Hx F—>S" is zero and hence we see that G/H
X Fa S”x I'Y,, which implies Hi(G/HX F)=0 for 4 <i<mn—1. Since dim G/H<n—2, we

have dim G/H <3 and dim F <3, which implies n=dim (G/HXF)-dim I'y < 6—1=5.
This proves the Proposition 12.

Proof of Proposition 11. )

Recall the notations; W; = the identity component of ineffective kernel of the action
of Gon G/K;, Ui=the identity component of ineffective kernel of the action of K; on Sk—!
and Uy/=U;NK..

We see that G;NKi=G,NK;CU;C H and hence we have GV HC GiNL;CGNKiC G
MH, which implies that GiNH=G,CL;j=G,;N Ki. For any point x&S”, we have
Gx=gKig™, gLijg~tor gHg! for some g&=G. If G,=gKig™!, then we have that G;C Gy
=gGiog I NgKig 1= g(GiN K\ g l=g(GiNH)g~1. By the same arguments we have
that for every x & S”, G, Gy is conjugate to GiH. This proves the Proposition 11.

Proof of Proposition 13.

Assume the contrary. Then we may assume K;=K,. Let T be a maximal torus of
K,. Then F(T, G/K,) (=the fixed point set of T)#¢. It is clear that F(T, S")=F(T, G
/| Ky))UF(T, G/K5) (disjoint union), which contradicts the connectedness of F(T, S*). This
completes the proof of Proposition 13.
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