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0. Introduction

In the previous paper, [1], we have given a list of Lie algebras of Lie groups of full
isometries acting transitively and effectively on 3-dimensional connected homogeneous
Riemannian manifolds. In this paper, we shall give a list of all 3-dimensional connected
homogeneous Riemannian manifolds. The arguments in this paper is the continuation of
the ones in [1]. To avoid repitition, we shall adopt the same notations and terminologies
as [1]. In our arguments, the following result plays an important role.

THEOREM A (J. A. Wolf [3]) Let M and M be Riemannian manifolds and let M=M
/T, where I' is a group of isometries of M acting freely and properly discountinously. Let
G be the centralizer of I in the group I(]TZ) of all isometries on M. Then, M is homogene-
ously if and only if G is transitive on M. And if M is homogeneous, then every element of
I’ is a Clifford translation.

Let M be a 3-dimensional connected homogeneous Riemannian manifold and M be
its Riemannian universal covering manifold.

1. Cases I, II, III

First, we consider the case I. In this case, M is isometric with a 3-dimensional
sphere with a Riemannian metric of a positive constant curvature. Then, according to
J. A. Wolf, [3], M is of the form, S3/I", where I' is any one of the following groups:

» 1, @ 2Zw @ Dy, @G T (B 0% (6 I

here D}, T*, O* and I* denote the binary dihedral, binary tetrahedral, binary octa-
hedral and binary icosahedral groups as usual, and m is any positive integer.

Secondary, we consider the case II. In this case, M is isometric with a 3-dimensional
Euclidean space E3. Then, according to J. A. Wolf, [3], M is of the form, E3/I", where
I' is any one of the following groups:

1 {1}, 2) Z B) ZxZ, 4) ZxZxZ.

Lastly, we consider the case III. In this case, M is isometric with a 3-dimensional
Hyperbolic space H3. Then, according to J. A. Wolf, [3], M is H? alone.
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2. Case

First, we consider the case IV-(i). Then, M is isometric with S2x E'. And Io(]% is
isomorphic with SO(3) x R!. In this case, by the result of H. Takagi (cf. [2]), M is of the
the form S2x E!/I'", where I’ is any one of the following group:

@ {1}, (2) Z;x{0}, 3 {1} x{8}
(4) a group which is semi-direct product of the infinite cyclic group

< (-1, B)> generated by (—1, B) and Z,x {0},

here, 8+0.
Secondary, we consider the case IV-(ii). Then, M is isometric with H2x El. And

IO(X/I) is isomorphic with SO(2, 1) x R.. In this case, by the result of H. Takagi, [2], M is
of the form H2x E'/I", where I' is any one of the following groups:

| O 1, @ 1Wx(8)
here f+0.

3. Cases V-(i)

In this case, M is isometric with a certain group space.
First, we consider the case (i)-(2) (or (1), or (i)-(3)). Then, we can easily see that
I(M) is isomorphic with

e« 0 v
O={(10 e* w|EGLE, R);u,v,w ER
0 0 1
or
ebwer/Dow /=1 0 ut+vy/ —1
6= 0 epwe—vDowv—=1 49 /—1|EGL (3, C); u, v, wER},
0 0 1

where 8=—(c+d)/2, (cf. [1]).
Thus, I(ﬂ ) and hence, Mis diffeomorphic with R3. In this case, M is isometric with the
group space [ (174) with the left-invariant Riemannian metric as in [1].

Secondary, we consider the cases, (i)-(4);, (i)-(4)2. Then, M is isometric with the
group space SU(2) (or Spin (3), or Sp(1)) with a certain left-invariant Riemannian metric

given by [1].

0 0 —1 —1
Weputei’:( 1), eg=< . v 1>, e%:(v 1 0_).
-1 0 v=1l 0 0 —y/—=1



3-dimensional homogeneous Riemannian manifolds II 73

Then, we have
@D  Adle))ed=elel ()t =—ef, Ad(e}) e§=—e8,
Ad(ed) &Y= —ef,
Ad(ed) ed=—e}, Ad(ed) ef=—e3, Ad(ed) ed=—e3,
Ad(ed) e)=—¢?, Ad(ed) ed=— e, Ad(e?) e}= €}

We see that the subgroup of SU(2) which is generated by the elements, {¢{, €3, €3}, is iso-
morphic with D§. From (3. 1), we see that

~ SU(2) x D¥
I( = "'"_—'Z—Z_—"‘ .

Here SU(2) x D% acts on S3=SU(2) by the following way.
3.2 (g, k) (g =ggk™!,

Therefore, by making use of Theorem A, we can see that M is of the form S3/I", where
I’ is any one of the followings:

®» {1}y, @ 2z, @ Di.

Remark. More precisely, in this case, M is one of the followings:
D S§3/{1}=83%, (20 8%/Z,=S0@),
(3) S3/D¥=S03)/Zsx Z,.

Thirdly, we consider the cases, (i)-(4)s, (i)-(4)s, (1)-(4);. Then, M is isometric with the
group space X with certain left-invariant Riemanian metric (cf. [1]), where %' denotes
the universal covering group of SL(2, R). Then, for example, 2’ can be constructed as
follows. For any g& SL(2, R), let » be any continous curve in SL(2, R) such that #(0)=1,
u(1)=g, and [#] be the equivalence class of all continuous curves » such that » is homo-
topic with # and v(0)=u(0)=1, v(1)=u#(1)=g. For two continous curves, %, w: [0, 1]—>
SL(2, R), we put (u-w)(®)=u@)w(t), t [0,1]. Furthermore, we shall define a multi-
plication on X by [#][w]=[#u-w], for any [«], [w]=Z. Then, by this multiplication, 3
gives rise to a 3-dimensional Lie group wich is the universal covering group of SL(2, R)
with the covering projection p : [#]E3—>u (1) ESL(2, R). The Riemannian structure on
> corresponds to certain positive definite inner product on 8((2, R)(cf. [1]). Now, we put

0 -1 0 1 1 0
e)= , ed= , ed= .
1 0 1 0 0 -1
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Then, we have

3.3) Ad(e)) ed=¢?, Ad(ed) ed=—¢, Ad(e)) e}=—él.

The subgroup of SL(2, R) which is generated by {e?} is isomorphic with Z,. The center
of SL(2, R) is Z,={—1, 1} and hence, the center of 3 which is generated by {[#%;]} where

cost —sin nt

uo(t)=( ) , tefo, 11.

sin w¢ cos nt

Thus, the center of Y is isomorphic with Z. In this case, we can see that I (7\'4) is iso-
morphic with 3 x L, where L=p~YZ)=p"1({1, &) ,—1, —e'})(==Z). Here, 3 xL acts on
2 by the following way.

3.4 ¢(g kgo=ggok™!, forany (g k)EIXL, gg&2.

Therefore, by considering Theorem A, we can see that M is of the form 2 /I", where I’ is
any one of the following groups:

1 1, @ z

Lastly, consider the case (i)-(4)s. Then, M is isometric with the group space with certain
left-invariant Riemannian metric (cf. [1]). In this case, we can see that M is the above
group space alone by the sake of Theorem A.

4. Cases V-(ii)~(1);~V-(ii)-(1)s
First, consider the cases, (ii)-(1);, (ii)-(1);. Then, M is isometric with the group space
SU (2) with certain left-invariant Riemannian metric (cf. [1]). In this case, we may ap-
ply the similar arguments as the cases, (i)-(4);~(@)-(4)4 .

. SU@)x D
1(M)=

)m—, and furthermore,
Z,

M is of the form 83/I", where I' is any one of the following groups:
1@ {1} (2) 2, 3 Dg.

Secondary, consider the cases, (ii)-(1)3, (ii)-(1)¢. Then, M is isometric with the group
space with certain left-invariant Riemannin metric (cf. [1]). In this case, we may apply
the similar arguments as the cases, (i)-(4)s~(i)-(4);.

Thus, we see that M is of the form R3/I’, where I is any one of the following groups:

@ {1, @ Z

Lastly, consider the case (ii)-(1)s. Then, M is isometric with group space € with cer-
tain left-invariant Riemannian metric (cf. [1]). In this case, we may apply the similar
arguments as the case (i)-(4)s. Thus, we see that M is the above group space alone.
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5. Cases V-(ii)-(2);~V-(ii)-(2)s

First, consider the case (ii)-(2). Let G* be the connected, simply connected Lie group
with the Lie algebra i(]T/f) and K* be the subgroup of G* with the Lie algebra . Then,
we see that

G*=SUQ)xR;+=({(g, ef)ESU(2)XxR+;tER, for some B+ 0}

. e—tv=12 R
= ﬁl .
K ((O et\/-——1/2 ),e )’ te ’

and furthermore, M= G* /K*, which is diffeomorphic with 83 (cf. [1]).
Then, we can easily see that M=G*/K*=(G*/Z)/(K*|/Z)=G/K,
where G=SU(2) x U(1)

{ (s

e—uv/—1 0) (e—-w?f

and

e—uv/—1

f)) eSUQ)xUQ); u=t/2,tcR }
0 el

0 ew=)  \0 euv—i

and K= (( _()))ESU(Z)XU(l);uER .

Then, by making use of (3. 1), we can easily see that

~ SU@2)xDxUQ1)
I(M)= - , and the group SU(2) x D¥U(1) acts on SU(2)
2

by the following way;

6.1 #(& Rgo=ggok™,  for any (g k) ESUQ)x DU 1), g&SUQ2).

Thus, considering Theorem A, we can show that M is of the form SU(2)/I"=83/I", where
I’ is any one of the following groups:

O 1), @ Zwm, (3 D3,

for any positive interger m.

Secondary, consider the case (ii)-(2),. Let G* be the connected, simply connected Lie
group with the Lie algebra t(M ) and K* be the subgroup of G* with the Lie algebra f.
Then, we see that G¥*=3 X L,

where L=p"1(SO(2))=p*1{ ( (cosu —em u); uER) }

sin % CcoSs #

cos tu —sin tu

sin tu cos tu

={[ﬁ]ez;ﬁ<t) = ( )”E[O' 11}'
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and K*={([41, [#1)E3 XL; uE R}.

And M=G* /K*. In this case, 2 XL acts on X' by the following way.
(5.2) $(g Hgo=gmk™', forany (g HEIXL, 3.

Therefore, by considering Theorem A, we can see that M is of the form R3/I", where I"
is any one of the following groups:

@» 1, @ Zz

Lastly, consider the case (ii)-(2);. Then, M is isometric with the group of upper tri-
angular matrices of degree 3, ¥

1 # v _ ‘
={ ( 0 1 w)eGL(& R); u, v, wER} , with certain left-invariant Riemannian metric

0 0 1
(cf. [11). In this case, from the arguments in [1], we see that

G=IM)
1 bcost—asint bsinttacost c
0 cost sin ¢ —a

= EGL(4,R);t,a,b,C€R ’
0 —sint cost b
0 0 0 1

and

K (the subgroup of G=I(M) with the Lie algebra ¥)
0 0 0

cost sint

1

0 0

0 —sin¢ cost 0

0 0 0 1

Then, G=I(M ) acts on M by the following way.
5.3 P(&)(%1, %2, %3)

=(x; cos t—x; sin t+a, x, sin t+ x5 cos t+a,

&GL (4, R); tERI.

—x1(b cos t—a sin )+ x5(b sin t+a cos )+ x3+¢),
where
1 bcost—asint bsint+acost ¢
0 cos ¢ sin ¢ —a
0 —sint cost b

0 0 0 1



3-dimensional homogeneous Riemannian manifolds II 77

Let I' be a discrete subgroup of G which acts freely and properly discontinuously on M
=G/K. Then, by (5. 3), we see that

1 0 0 =nc
0 1 O
I = EG, neZ|, for some fixed ¢#0.
0O 0 1 O
0O 0 0 1

Therefore, by Theorem A, we can see that M is of the form R3/I", where I' is any one of
the following groups:
o {13, 2 z
Remark. Let /7 be the product set of & and SO(2), say, II=% xSO(2). Now, we
define a multiplication on /7 by the following way.

1 a b 1 & b
cost! sint cost sint?
0 1 ¢/, . . 0o 1 ¢|, . )
—sinf cont —sint cost
0 0 1 0 0
1 & cost—b’ sini+ta a’ sin t+b’ cos t+b
=] 0 1 c+c’—a’(bcost—asin t)+b’(bsin t+acos t)f,
0 0 1

( cos (t+t) sin (t+t’))
—sin (¢+¢) cos (¢+1t)

Then, 7 is a connected 4-dimensinoal Lie group, and furthermore, isomorphic with G by

1 bcost—asint bsint+acost c

1 a b
cost sint 0 cost sin ¢ —a
01 ci, ) >
—sint cost 0 —sin ¢ cost b
0 01
0 0 0

As a group of isometries of M=, Il acts on M=¥ by the following way.

(|1 a b . 1 # v
cost sint
110 1 ¢ . 0 1 w
—sint cost
W0 0 1 0 0 1
1 w#ucost—vsint+a usin t+v cos t+b
=0 1 w—+c—u(b cos t—asin t)+v(bsin t+acost)
0 0 1
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