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Introduction

In this note we shall consider the torus degree of symmetry of simple Lie groups
SU(3) and G,, where the torus degree of symmetry of a manifold M, denoted by T(M), is
by definition the maximal dimension of torus which can act on the manifold M effective-
ly (eee [3]).

We shall prove the following.

THEOREM A. T(SU(3))=4.
THEOREM B. T(Gy)=4.

This work is motivated by the following conjecture of W. Y. Hsiang ([31);
The torus degree of symmetry of compact semi-simple Lie group Gis equal to 2 rk G.
In the following we shall consider only differentiable actions and use the notations:

(1) X~Y means H¥(X : A)=H*(Y : A
A

as algebras, where A is a commutative ring.
(2) Q denotes the field of rational numbers and Z,, a cyclic group of order ».

1. Statement of results

In this section we shall prove Theorems A and B modulo some propositions, which
are proved in the subsequent sections.

In the first place we shall consider the case of SU(3) and put X=SU(3).

Suppose T(X)=5. Let a 5-dimensional torus 7%’ acton X by @: 7" X X—»X. Froma
result in [1], it follows that rk® <2, where rk@=min {dim T"'/Tx" : x=X}. If tk®
=0 (respectively 1.), some 5-dimensional (respectively 4-dimensional) subtorus of T’ has
a fixed point. Since X~ S3x S5, the fixed point set of any torus action has @-cohomology

Q
ring of product of two odd dimensional spheres ([2]), and hence it is connected and at
least 2-dimensional. It follows from the consideration of local representation at fixed
point that this is impossible. Thus rk @=2, and hence some 3-dimensional subtorus 7"’
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has a fixed point. It can be shown that there is a one-dimensional subtorus T of 7V which
has 6-dimensional fixed point set. Consider the subgroup Z; of 7. Since the restricted
action of Z, on X preserves orientation and T acts effectively on X, dim F(Z,, X) must be
6, which implies that F(T, X) is a component of F(Z,;, X). In section 2, we shall prove
the following

ProposITION 1. There is no orientation preserving involution on X with fixed point set
one of whose components has Q-cohomology ring of S3x S° or S1x S5.

It is clear that Proposition 1 implies Theorem A.

Remark. In the proof of Proposition 1 we use only the fact that X has Q-cohomogy
ring of S3x S% and Z,-cohomology ring of SU(3). Hence we have the following

THEOREM A’ Let M be a manifold such that M 583>< S5 and M ;SU (8). Then thereis

2
no one-dimensional torus action on M whose fixed point set is 6-dimensional.

Next we shall consider the case of G2. Put X=G,. Suppose a 5-dimensional torus
T acton Xby @ : T""x X—>X. As in the case of SU(3), we have rk 0 2.

Casel. rk @=0.
Case 2. rk 0<1.

In these cases there is a subtorus 7’ of dimension 4 whose fixed point set F(T’, X) is
not empty. It follows from the Borel formula that there is a corank one subtorus 7; of
T’ such that dim F(T;, X)>dim F(T’, X). Consider the action of T} obtained by the
restriction. Since the action of T’ is effective, the same argument as above shows that
there is a corank one subtorus T of T} such that dim F(T3, X)>dim F(T}, X). Thus we
obtain a sequence of fixed point sets:

FT', X)CF(T, X)CF(T3, X)C - C F(T», X)C X.

Cleary k=4. It is easy to see that there is a one dimensional subtorus T of T’ such that
F(T, X) is 6-dimensional or 10-dimensional.

Subcase 1. dim F(T, X)=6.

Take the subgroup Z; of T. Then F(Z,, X) is 6-dimensional, 8-dimensional or at least
10-dimensional. Let F, be a component of F(Z;, X) containing F(Z,, X). Assumedim
F,=8. Then in section 3, we shall prove the following

ProrosITION 2. FOZ SU(3) and Foaf S3x S8,

2
Thus T acts on F, with 6-dimensional fixed point set, which is impossible by Theorem

A’

The case in which F, is 6-dimensional or at least 10-dimensional does not occure by
the following

PrOPOSITION 3. In the above situation, there is no involution on X whose fixed point set
is 6-dimensional and has Q-cohomology ring of product of two odd dimensional spheres.
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ProPOSITION 4. In the above situation there is no involution on X whose fixed point set
is at least 10-dimensional.

Sucase 2. Dim F(T, X)==10.
This case is clearly impossible by Proposition 4.

Case2. rk@=2.

In this case there is a 3-dimensional torus T’ of T’ such that F(T’, X)#®.
Consider a sequence of fixed point sets:

FT', X)CFCFCX

If dim F;=6, there is a one dimensional subtorus T of 7’ such that dim F(7, X)=6. The
same arguments as in subcase 1 of case 1 show that this is impossible. If dim F;>8.
then there is a one-dimensional subtorus T of T’ such that dim F(T, X)=10, which is
impossible by Proposition 4. Thus it is sufficient to consider only the case in which every
2-dimensional subtorus of 7' has at most 4-dimensional fixed point set and every one
dimensional subtorus of 7 has 8-dimensional fixed point set. Consider the action of a 2-
dimensional subtorus 72 obtained by restriction and apply the Borel formula at x & F(T%,
X). We have

dim X—dim F(T?, X)
=§{dim F(K, X)—dim (F(T? X))},

where K denotes subtorus of 72 of codimension 1, our assumptin shows that 10=q¢(8—4),
where ¢ is the number of K. This is clearly impossible. Thus we have proved Theorem B.

2. Proof of Proposition 1

In this section we shall consider an orientation preserving involution on X=SU(3)
with 6-dimensional fixed point set and prove Proposition 1 in section 1. Put G=Z, and
recall H¥(X : Zy)=2,[a] /(a)® 4z2,(S; a), deg a=3.

In this section we ccnsider only Z,-cohomology group unless otherwise stated.

LemMMA 1. X is totally non-homologous to zero in the fibre bundle X¢=X é E¢—Bg.

Proor. Consider the spectral sequence of the fibration Xe—>Bg. Since E}3=E}3,
every element of H¥ X) is transgressive and hence Sq%a is also transgressive. Since the
action of G on X has fixed point, the homomorphism H*(B)—>H*(X¢) is injective.
Then the transgression is trivial. In fact consider the following commutative diagram;

/] J*
H3(X)—H*(Xc, X) — H*(Xo)
T ‘\q* T ¥

H4(Bg, X) =~ H*‘(Bo).
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Let =(x)=y (= denotes the transgression). By definition of 7, we have d(x)=g¢*(y). Then
*(y)=5*q*(y)=7*3(x)=0. Since =* is injective, y=0. Since H*(X) is generated by a and
Sq? a, the homorphism * : H*(X¢)—>H*(X) is injective. This completes the proof of
lemma.

Find an element @« & H¥ X¢) such that i*(@)=a¢. From a result in [2] (Chap. VIL 1. 4)
it follows that H*(Xg) is a free H*(Bg)-module generated by «, S¢? @, and a S?«. Let F,
denote a 6-dimensional component of F (G X) and choose a point x © F,. Let 7, : (Fo, x)G
—> X¢ be the inclusion. Then we have

2.1 Jo* (@0)=1Q b3+t @ b+ X by ,

where H*(Bg)=2Z,[t] and b: & Hi(Fy).
LemMmA 2. b%=0.
Proor. Since ¢2=0, we have i*(a2)=0
and hence o2 = Ker i*=<H+(Bg)>>, i.e. (jo*(@)2=1Rb3+2R b2 < H*(Bg) >, which

implies $3=0. The completes the proof.
By the same arguments as in [2] (chap. VII), we can show that H*(F,) is multiplica-

tively generated by bs, by, b; and Sgbg. Note that dimZ H*(F(Z,, X))=dimZH*(X)=4.
2 2

It follows from this that H*(F,) is generated by b, and Fy~CP; or generated by bs.
Clearly both cases contradict to the structure of @-cohomology ring of F.
This completes the proof of Proposition 1 in section 1.

In the above arguments we use only the fact X 5 S3x S5 and X; SU(3). Hence we
have proved the Theorem A’. 2

3. Proof of Propositions 2, 3 and 4

In this section we shall prove Proposition 2, 3 and 4. Put G=2,, X=G, and recall
H*(X; Zy)= Zp[al [a*® 4z, (Sﬁa), deg a=3. In this section all cohomology groups are on
Z, unless otherwise stated. By the same argument as in section 2, we can prove the
following

LemMA 1. X is totally non-homologous to zero in the fibration X¢— Bg.

Find an element a=H3(X¢) such that i*(e)=a, where { : X— X¢ inclusion. Denote
,8=S§ a and F, the component of F (G X) which contains F(7T, X). Choose a point x & F,
and denote j, : (Fy, x)¢ —> (Xg, x¢) inclusion. We have

(1) Jo*(@)=1Q b3+t R b+ 2R b,
and
(2) Jo*(B) =4o*(S2a)=1Q S2b3+t Q@ b3+t @ b, .
Note H*(Fy) is generated as algebra by b,, b, b3 and S2b; and dimZ H*(Fy):£8. By the

3 3 2
same argument as in section 2 we can prove
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Lemma 2. b5=0, (S§b3)2=0, and S}Ib3=0.
Moreover we prove

LemMmA 3. Assume b3#0. Then we have

a) if by=0, then by=0.

b) if by#0, then by=0 or by=b3+0.

c) if by#0 and by=0, then b3=053.
Proor. Since jy* is surjective in high degrees (see [2]. chap. VII), we have

(3) 17 @ by =jo*(Astra+ Agtr—3a2+ Astr—~6a3+ Bytr =2+ B, tr—5
ap+Bytr=a2 f+ Bytr=1ia3 ),

where A; and Bj are in Z,, Clearly A;=1.
We have

(4) r @ bs—jo*(tra)=1r+2@Q by +t7+t1(Q b, .

The left hand side of (4) is

tr @ by— jo*(tra)

=1r+2Q Bob; + 171 @ (Abi+BibD)+ @

(Agb3+B; b, by +Byb3)+------

Compairing coefficients of #*, we have

b,=Byb,

b; =(Az+B;) b}

and b3=A3b3+ B, b, b+ Bjb3 .

It is now easy to show that lemma holds. This completes the proof.
Now we shall prove the Propositions 3 and 4 in section 1.

Case 1. dim F,=6.

Note that possible generator of H®(Fo) is b$, b} by, b3 bs, b3b3, b;S%bs, b3 and b3.

Subcase 1. 5§ is a generator of H8(Fy).

Clearly dim H*(Fy)=7. Suppose dim H*(F)=7.

47

Then there exsits a component F; of F(G, X) such that dim H*(Fy)=1. Since F; is an
orientable closed manifold, Fy= {p¢}. Moreover since F(G, X) is T-invariant, F(T, X)
=F(T, F(G X))=F,UF,, which cortradcts to the connectedness of F(7, X). Thus we
have dim H*(F,)=8 and F, is connected and Fy=F(T, X). It is known that Fofé Stx S5

or Foa $3x S3. Clearly dim H¥Fy)=2. and b} and b3 are generators of H3(Fy).

LeEMMA 4. b, b3=0.
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Proor. It follows from lemma 3 that b,#0. We have
tr+1& b,=the right hand side of (3).
Since by=0%, A;+B,+Az=1 and we have
(4) 11 @ by— o*(Artra-+ Agtr—3a?+ Bitr—5aB)
=jo*(Astr~8a3+ By tr 2+ Bytr~8a? B+ By tr~11a3 B).
Case of A;=1 and B,;=A;=0.
Clearly we have
the left hand side of (4)=#+2Q b+ bs.
and hence b3=053, which contradicts to our situation.
Case of A,=1and A,;=B,=0.
we have
the left hand side of (4)=t""1@b}+1t7—3Q b%.

and hence B,=0 and A;+B3z=0. Comparing the coefficients of ##—1, we have a contradic-

tion.
Case of A;=A;,=0 and B,=1

We have
the left hand side of (4)

=tr @ bi+1r~1@by by +17~2 @ bf + 13 (B +by S2 b3+ -+

and hence By=0 and Asz+B,=1. Moreover, by compairing of coefficients of # in (4) we
have

(1) biba=Asbi+Bsb]

(ii)  bi=Ax(b3+ bibs)+ B2 b+ Bsb3

(iii) b‘f+bIS§b3=A3b‘f+szf+Bs(b‘f+b?ba).

Suppose A;=1 and B,=0. If b,635=0, then B3=1. From (iii), it follows that b$=b,
Shbs.  Since SZ(b,b3)=b, S2bs, we have b,S? b3=0 and hence b§=0, which is a contradiction.
If b,b3+0, then B;=0 and b,b3=>0%, which implies b?b3=53. It follows from (ii) that bb3=
0. This is a contradiction. Suppose A;=0 and B,=0. It follows from (ii) that B;=0 and
hence bybs=0 |

Case of B,=A,=A,=1.

We have
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tr+2Qb; + 17 Q (B3 + b3)+tr~1RQ(b1 b3+ bY)
=1r+2Q Byb, +tr @ (Asb}+ Bob})+-- -+

Since b3+ b;, we have A3 b3+ Byb3=b3+ b3, which is clearly impossible. These arguments
complete the proof.

The following proposition shows that subcase 1 does not hold.

PROPOSITION 5. Fy~ S1x S5 and Fy~ S3x S3.

Proor. We suppose Foa S1x S5 We may assume that b; is mod 2 reduction of an

element of H(F,: Z). Hence we have b%zSé b, =0, which is a contradiction. Next we
suppose Fy~S3x S3. Then we may assume that b} and b; are mod 2 reductions of ele-
ments of H3(Fy, Z), b3=r(r,) and bs3=1r(r3), where r : H¥F, : Z)—H¥Fy: Z,) is mod 2 reduc-
tion. We can choose 7; and 7, such that 7,7, is a generator of H5(F, : Z) and hence 7(7:72)
#0, which contradicts to the fact #(7;) 7(72)=05b3b3=0. This completes the proof.

Subcase 2. b{b, is a generator of H®(Fy).

Since dim H*(F,) >9 this case does not occur.

Subcase 3. b3b; is a generator of H¢(F)).

By the same argument as in subcase 1, we can prove Proposition 5 for this case.
Hence this case does not hold.

Subcase 4. b%b% is a generator of H®(F).

It is easy to see that dim H*(Fy)>9.

Subcase 5. b,S2b; is a generator of HS(Fy).

If b3=>b}, then S2b3=03 and hence this case is reduced to subcase 1. Since 5,SZb3
=S%(b, bs), we have b, by#0. If b, bs=b{, then S%(b;b3)=0. Hence we have b bs=b}. If

b1+0, then dim H*(F,)>8. Thus we have b{=0. By the same argument as in the proof
of Lemma 4, we can prove that b,63=0, which is clearly impossible.

Subcase 6. b3 is a generator of HS(Fy).

It follows from lemma 3 that b3=0. Assume b;#0. It is easy to see that b,=5%,

which is a contradiction. Hence we have 6;=0, and FOECPg, which contradicts to the
2
structure of cohomology ring of Fp.

Subcase 7. b%is a generator of H®(F).

Since b§=83b3=S}S§b3#:0, we have S2b3=0 and hence b;#0. It is easy to see that
dim H*(Fy)=5, 7 or 8. Assume dim ‘H*(Fy)=5 or 7. Then there is a component F; of
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KZ,, X) such that dim H*(F; : Z;)=1 or 2. Clearly in both cases the Euler characteristic
of F, is not zero. Hence F(T, F,) #¢, which is a contradiction. Thus dim H*(F,) must

be 8. Assume b,S2b3#0. This case reduces to the subcase 5. If b, S2b3=0, Fo must have
the same Q-cohomology ring of S3x S3 and hence b3b3+0, which reduces to the subcase 3.
Case 2. dim Fy=10.

Assume b3=0. Note if b;#0, then b,=5b%2+#0 or b,=0. Thus a generator of H°(F) is
one of the following: b1° and b3. In the case of b} dim H*(F,) is clearly greater than 8,

which is impossible. In the case of b3, Fo;CPs and hence yx(Fy)#0. Since F(T, X)=

2
K(T, F,), we have y(F(T, X))+0, which contradicts to the fact F(T, X) has Q-cohomology
ring of product of odd dimensional spheres. Assume b3;#0. b, must be non-zero. We
may assume b, #0, since b3=0b3 if b,=0. It is easy to see that dim H*(Fy)>9.

Case 3. dim Fy=12.

By the same argument as case 2, it can be shown that this case does not occur,
Summing up the above arguments, we have proved Propesitions 3 and 4 in section 1.

Case 4. dim F,=8.

In case in which #;=0, the same argument as in case 2 shows that this case does not
occur. Now assume b3+0 and b3+b;. Note that b,=0 or b,=5b3. Then possible gene-
rators of H8(F,) are b}bs, b%bz, b}SZbs and b3Szbs. In cases except the case of b3S2bs, it is

easy to see that dim H*(F,)>8. Consider the case of b3 Sgba. Then we way assume b;=0;
in other words FOESU (3). We shall prove F0Q~SU (3). Suppose H3(Fy:Z) is torsion

2
group. Then, by Poincare duality, Hs(Fy : Z) =~ H3F, : Z) is also torsion group. Since
H5Fy: Z)=Hom (Hy(F,:2), Z)+‘+Ext (H((Fy:2Z), Z), Hs;(F, : Z) is torsion group. More-
over, since H4Fy)=Hb%F,)=0, the mod 2 reductions: Hi(F, : Z)— Hi(F,) are surjective for
i=3,5. We put bs=7(B;) and S§b3=r(ﬂ2). Since B; and B, are torsion elements, we have
B183=0, which implies b383b3=r(191)r(,82)= 7(B182)=0. Thus we have proved Foasl*x Se.

This proves Proposition 3 in section 1.
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