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1. Introduction

Let p be a rational odd prime and let % be an algebraic number field of finite degree,
whose class number 4 is prime to p. Let K/k be a cyclic extension of degree p, let p;,
------ , Pt be the prime ideals of %, ramified in K, and assume p,, -----+, P are prime to p. If
8T i)/H(p:) =p for i=1, ------ , t, then we can study the p-class group Mk of K analogous-
ly to the case k=Q, where I(p;) denotes the ideal group of %, prime to p; Pp;, the ray mod
pi and H(p:)=1I1(p;)?Pp,. From Lemma 1 it follows that if £ does not contain the primitive
p-th roots of unity, then there are infinitely many such p;’s which satisfy some conditions
each other.

In the present paper we treat the existence of cyclic extensions K/k’s of degree p
and ¢-tuples of prime ideals py, ------ » b, which have some properties. Unless otherwise
stated the notation of [4] will be taken over. In particular o denotes the maximal order
of the cyclotomic field of p-th roots of unity and p denotes the prime divisor of p in o.
Let K/k be a cyclic extension of degree p, in which only p;,---- , p¢ are ramified. Then
for py, «oee- » Pt the structuve of p-class group Mk, in general, is not determined uniquely. In
fact we can prove the following theorem.

THEOREM 1. Let k be an algebaic number field of finite degree such that p ¥ hr and k Py,
where §p denotes a primitive p-th root of unity. Then for any given natural number t (=3),
there exist infinitely many t-tuples of prime ideals py, -+ » ¢ of k, which satisfy the follow-
ing conditions:

there are cyclic extensions K'[k and K''|k in which only py, ------ , Pt are ramified, such
that rank Mk'=t—1 and rank M k"' =2t—3—u, where u denotes the p-rank of unit group Er
of k.

Let py, ceeee- , bt be prime ideals of % such that (I (p:)/H (p:))=p for i=1, --.--- , 6, let K/k
be a cyclic extension of degree p, in which only p;, -+ , Pt are ramified and let L be the
p-genus field (i.e. p-part of the genus field) with respect to K/k. In the case k=@,
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A. Frohlich [1] determined conditions that p{%; for £:<3, and showed p|k; for t<4.
Next we shall state for £<3, a condition that p 44, as conditions on cyclic extensions
K/Rk’s contained in L. If pXA;, then for any cyclic extension K/k contained in L, we
have Mg~ (o/p)s—1, where s denotes the number of prime ideals of %, ramified in K. In
the case #:<3, the inverse is also true. That is, we have following theorem.

THEOREM 2. Let k be an algebraic number field of finite degree such that p X he. Let
Ppy oeees » Pt prime ideals of k such that that $(I(pi))/H(pi))=p for i=1, ------ , t. Moreover let
the notation be as above. Assumet<3. Then a necessary and sufficient condition that p ¥ hr
is that for any cyclic extension K[k contained in L, Mr~(0/p)s—1, where s denotes the number
of prime ideals of k, ramified in K.

From the above theorem and the proof of Lemma 1, it follows that for =2, 3, there
exits infinitely many ¢-tuples of prime ideals p;, ------ , pr such that p |4, and for =2 there
exist infinitely many couples of prime ideals p,;, p» such that pf%;. And moreover if %
P&y, then we see that for =3 there exist infinitely many triples of prime ideals p;, s, D3
such that p.tA;.

For t=4 the condition Mk ~ (o/p)s~1 is a necessary condition that p %, but is not a
sufficient condition. Finally we shall show the following theorem.

THEOREM 3. Let k be an algebraic number field of finite degree such that p X he, §pEk
and p-rank Ex<1. Then there exist infinitely many 4-tuples of prime ideals p,, ------ » Py with
T pd)/Hpi)=p for i=1, ----- , 4, which satisfy the following conditions:

Let L be the class field corresponding to I(p,------ )/ H(pyeeee-- Ps)-

Then (i) for any cyclic extension K/k contained in L, Mk~(o/p)s™1, where s is the number

of prime ideals of k, ramified in K.

(i) plAL.
2. Preliminaries

Let p be an odd rational prime and let & be an algebraic number field of finite degree,
whose class number A is prime to p. For an ideal o of % let 7(a) denote the ideal group
of k, prime to a, Pa the ray mod a and H(a)=1I1(a)?Pa. Let p; be a prime ideal of 2. Then
the p-Sylow subgroup of I(p:)/Pp; is cyclic since pAhe. So I(p:)/ H(p:) is cyclic of degree
p or trivial.

LeMMA 1. Let k be as above and assume kDEp, where §p denotes a primitive p-th root of
unity. Let pyy------ , Pt be prime ideals of k such that $(I1(p:)/H(p:i))=p for i=1, ------ ,t. For

Then there exist infinitely many prime ideals pti,’s, which satisfy the following conditions:
Pry1=a; mod H(p:) for i=1, ----- y Ly
pi=a™ mod H(pt+,) fori=1, - A
$ I (pe+1)/ Hpr+1))=0,
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where a is a generator of I(Pr+1)/H t41)-

Proor. Let K; be the class field corresponding to I(p:)/H(p:). Then Ki/k is the uni-
que cyclic extension of degree p, in which only p; is ramified. Hence Kj, «-+--- , K: are
linearly disjoint over &, so K=Kj -+ K: is an abelian extension of degree p¢ over k. Put

gi= (—I—{%k—) : Artin symbol,
=gy X reeee xar € Gal (K/k),

Ko=ky(*VEr)

where E is the unit group of % and ky/k is the ray class field mod p « p,. As Er is finite
rank, Ky/k is finite extension. Moreover since ky > &5, Ko/ko is an abelian extension and
Ky/k is a Galois extension. First we consider the case n;#p. Let m be a natural number
such that n,em=1 mod p. Put

M, =k(#y/p,1),

Mi=k(p+/(p mnip;—Tyk) for i=2,------ , t, where h=h,

Then L/M is a cyclic extension of degree p. As kDép, L and K are liearly disjoint
over k.. Hence we can chose an element p from Gal (N/k) such that p=0 x & Gal (N/k),

where r is a generator of Gal (N/M) and N=KL. Then from Cébotarev Density Theorem
we see that there exist infinitely many prime ideals p¢+,’s unramified in N, such that

_(N/EY. :
o= ( By ) : Frobenius symbol,

where B¢+, is a prime divisor of ps+; in N, and pr4 is prime to p. Then pr4, is completely
decomposed in M, in partcular, in k.. Hence pr+1E Pp.po.. And for any € & Eg, P4, is com-
pletely decomposed in £(#1/¢). So the congruence equation X?=e mod p¢+; has integer

solution in k. Therefore we see $(Erky,4, B(Pt+1)?/ ko, 41 B(Pt+1)?)=1, where k(p:+,) denotes
the subgroup of k*, prime to ps4q, and kp:,,= {@ EE*| a=1 mod pt+,}. So using the iso-

morphism T (pe41)/H(Pe41) = k(Dr+1)/ Ex kprk(pe+1)?, we have $(I(pr41/H (pre1))=# & Pr41)
[kpiys B(pes)2)=p. Moreover, as pr4+; is completely decomposed in Mj ------ M., the con-
gruence equations

X p=(pymnipi~1)h mod Pty
have integer solutions in .. Hence for i=2,:----- A
prni=pi  mod H(Pr+y).

Now p,” generates I(pr+1)/H(Pe+1)- In fact if p,”*& H(pe+1), then the congruence equation
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X?=p,"" mod pr+, has integer solution in k& Thus p4, is completely decomposed in M,,
hence in L, which is a contradiction. So, if we put ;”, then

pi=a”i mod H (pr4+y) for i=1, ------ Lt

On the other hand, as the restriction of p to Ki is ai,

Kilk K,/k
Pty ) (
so we have pry=a; mod H(p:) for i=1,----- , L

In the case #;="---- =n:=p the proof is analogous to the above. Q.E.D.

Let K/k be a cyclic extension of degree p, let p;, ----- p¢ be the prime ideals of %,
ramified in K, and assume p;, +----- p: are prime to p. Then Np;=1 mod p for i=1, :----- y L.
From the proof of Lemma 1, we see that the natural homorphism:
¢Y) Ipy--pe)[H(py - p)=>T(p) H(py)) X --- x (L (pe) H (1))
is surjective. On the other hand $(Z(p,----- O/H(py pe))Zpt. Assume $(I(pi)/H(pi))=p
for i=1,------ , I, then the natural homorphism (1) is an isomorphism. Hence in this case

we have [E: : ExNNk,:K*]1=1 since the p-genus field with respect to K/k corresponds to
I(py---+-£)/ H(py-----pe). Thus with the notation of [4 §2] we have r=f—1and X=G. Let
H be the congruence ideal group corresponding to K/k and let H’ be the subgroup of
M)/ Hp))x eee--- X (I(pe)/H(ps)), corresponding to H by the isomorphism (1). Then for
i#],

@ (%iElE)=1  if and only if pEH®)
b
and
3) ( K/k ) 1 if and only if (Biy--r, i L Piyerseer POEH,

where (a;)=pi*. Let pw=[ErNNk,e K* : Nk,kEx], then w=<p-rank Er and clp(p;), -
clp(pt) generate the subgroup of Mk (,—1), of rank /—1—w, where p; is the prime divisor of
pi, in K and o is a generator of Gal(K/k). Put

( (“:_pff/i) ):,,--1, .. =(oei)) ai; € Z/pZ,
then |

4) t—1=rank(a:i;)+w=v=rank (a:j),

where #ax/k(MK(,,_l)))=pv. Hence, if rank (aij)=t—1, then w=0 and v=¢—1. So Mk
is an elementary abelian group of rank £—1 by [4 Theorem 2].
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3. Proof of Theorem 1

Proor oF THEOREM 1. From Lemma 1 we see that there exist infinitely many #-tuples

of prime ideals p;, «++-+ , b+ which satisfy the following conditions:
¥ M)/ HpiN=p  fori=1, -t
i} & H (pz ...... Pt),

P2 EH(py), p2 EH (p----- pe),
Ps EH (py), ps EH (P2), pa € H (p3---+++p1),
Pips IS H(py po), pi SH(pg -+ PicyPigy-opr)  fori=4,eooeo, £

Let K/k be a cyclic extension of degree p, in which only py, «---+- , p¢ are ramified. Then

by (2) and (3) we have
1,1, 1,1, 1, 1)
L R TR RPN 1

((_M_/ﬁ)) LR T TS TR 1],
p] i,j-l,""tz b ? ’ ’ ’

L T T oo 1
5, % 1,1, 1,2

where (a;)=pi* and * denotes non-identity. First let K=K’ be such that (ps, ps 1, b3, sty

p3) EH’ (such an extension certainly exists). Then, as (ps, b3, 1, P3,e-+- P)=(Pic+-+ Pi,\l/, i,
------ , 9i) mod H(p) -+ x H(pe) for i=4,+---, £, we have mnk( ﬁmpﬁﬂ?) )= i—1 by (3).

J
Thus we obtain Mx’~(o/p)t~! from [4 Theorem 2]. Next let K=K’ be such that (ps,

P31, Payeeeeee , )EH’ (such an extension also exist). Then we have similarly rank
( ‘ﬁ—-ﬁwe) ) =1. So from [4 Theorem 2] and (4), we see rank Mx"'=2t—3—u.
7
Q.E.D.

4. Proof of Theorem 2

LeEmMA 2. Let A be an abelian group of type (P, p, p,) and let N be a cyclic group of
order p. Let 1->N—>G—>A—1 be a non abel central extension of N by A. Then the order of
the center of G is p2.

Proor. Easy.

Proor or THEOREM 2. We prove only the sufficiency in the case #=3. Assume that
for any cyclic extension K/k contained in L, Mk ~ (0/p)s—1. Furthermore suppose that
plhr. Then p|zr,k since by [2 Satz 2] we have AL =2z1,x mod p, where 21,k denotes the
central class number with respect to L/K. So there exists an unramified cyclic extension
L,/L of degree p such that L,/k is a Galois extension and Ga! (L,/L) is contained in the
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center of Gal (L;/L). Put A=Gal (L/K), N=Gal (L,/L) and G=Gal (L;/k). Let Z be the
center of Gand let E be the intermediate field corresponding to Z. Then ECL and E/k
is of degree »2 by Lemma 2. And at least two prime ideals are ramified. We first con-
sider the case that only p, and p, are ramified in E. Then E=K; K, and the inertia group
of a prime divisor of ps in L, is cyclic of oder p and contained in Z, where K; denotes the
class field corresponding to I(p:)/H(pi). So the inertia groups of all prime divisors of ps
in L; coincide. Let F be the inertia field of the prime divisors of p; in L;. Then F/E is
an unramified cyclic extension of degree p. Hence p|AE, so for any cyclic extension K/k
contained in E, #(Mk)=p2>ps—1, which cotradicts the assumption. Next we consider
the case that p,, b, and s are ramified in E. Let K be a cyclic extension contained in E,
in which p;, p, and p3 are ramified. Since E/k is an abelian extension of type (», p) and
»+1>3, such an extension certainly exists. Then L,/K is an unramified Galois exten-
sion of degree p3. Moreover, since E/K is cyclic of degree p and z is the center of G we
see that L;/K is abelian. Hence we have #(Mk)=p3, which contradicts the assumption
that Mx~(p/p)s—1=(o/p)2%. Thus we have p.tA;. Q.E.D.

ReEMaArk. If t=1, then L=K,; and pthr. If t=2, then there exist infinitely many
L’s with p|hr and L’s with p{ k.. In fact, noting the proof of Lemma 1, we see that
there are infinitely many pi’s such that $(Z(p:;)/H(pi))=p. Let p, be a prime ideal of %
such that $(Z/(p;,)/H(p))=2 and let K, /k be the cyclic extension of degree p, in which only
p; is ramified. Let p, be a prime ideal of % such that $(J(p2)/H (p2))=p and p; is not de-
composed in K;. Then for L corresponding to these p;, and p,, we have pfkr. Next put
N=kyK\(2/Ek, ) Where k; is the ray class field of £ mod p-p.., and let $,’ be a prime ideal
of k£ such that p,’ is completely decomposed in N. Then $(Z(p2")/H (p2'))=p and $(I(B":)
JH®R'))=p fori=1, ------ » D, where PBy'y,--- B.’» are the prime divisors of p,’ in K;. Let
K,' |k be the cyclic extension of degree p, in which only p,’ is ramified. Put L'=K;Ky'.
Then L’/K, is a cyclic extension of degree p, in which P,'y,----- ,» Po’'p are ramified. So
rank M;'=p—1. Thus for {=2 there exist infinitely many L’s such that p|kz. There-
fore for ¢=3, there also exist infinitely many L’s such that p|k;. Moreover if 2Dy,
then for t=3 there exist infinitely many L’s such that p.¥%;. In fact, in this case we see
from Lemma 1 that there exist infinitely many triples of prime ideals p,, ps, ps of &, which
satisfy the following conditions:

#(I(p’)/H(p‘)) =p for i=1; 2’ 3’
P €EH (p2), 1 €EH (pa),
p2 EEH (py),

ps EH(p1), ps EH(po)-
Then for L corresponding to these p;, p2, b3, we have p 4tk byTheorem 2.
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5. Proof of Theorem 3

LemMMmA 3. Let a, b, ¢, d be non-zero elements of Z|pZ and let n be a natural number.

If
—d—‘b, 6 ’ a H b

c , —nb—c, 0o , nb

rank =2,
c ’ d ’ _C_d; 0
O » d ’ a ’ —d—’a

then 1+4n is quadratic residue mod p.

Proor. Easy. , _

Proor orF THEOREM 3. Let # be a natural number such that 1+4# is non quadratic
reisdue mod p. By Lemma 1 there exist infinitely many 4-tuples of prime ideals p,-:---- P4
of k, which satisfy the following conditions: $(Z(p:)/H(p:))=p for i=1,------ , 4,

p EH(py), 1 £ H (p3), P EEH (o),
p2€E H(py), P2 €EH (p3), PPz 1E Hpy),
pps ' EH(p), s Hpo), ps& Hlpa)
P& H (py), P IEH (),  pipT'EH (p).
Now we shall show that these p,------ 4 satisfy the conditions of our theorem. (i) If s <3,

it is easy to see that Mx~(o/p)s—l. Let s=4 and let

( (ﬁ—pf{i) )i, j,_l,...’4=(aaij)’ aii€Z/[pZ,

where ¢ is a generator of Gal (K/k). Then the matrix (a:;) is of the type of Lemma 3
As 144n is non quadratic residue mod p, we have rank (aij)=3 by Lemma 3. Thus Mk
~(o/p)3. (ii) We first note that for an arbitrary Galois extension L/,

~ (B*NNpwJr)/Np/eL*
Gal (Ly/Ly) ~ F (N #L* N1 #UL) N #LF ’

(R*NNp/kJL)/NLkL*~H=XGal (L/k), Z)/ F(L/ K),

(R*M(NL/eL*«Np/kUL))/NL/eL*~(Er\ N, #UL)[(Ex NL/eL*),

where L, : the genus field with respect to L/k, L,: the central class field with respect to
L/k, Jr: the idele group of L, Uy : the unit idele group of L, F(L/K): the subgroup of H—3
(Gal(L/k), Z) generated by the canonical injection of H=3Gy;(L/k), Z) to H=¥ Gal(L/k), Z),
where Gy;(L/k) is a decomposition group of any one of the prime divisors in L of a prime
pi of k and pi runs over all primes of £ ramified in L (cf. [3]). Now let L/k be as in our
theorem. Then from
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$(H Gal (L/k), Z)=p**~=D72=p?,
¥(F(L/R)=p"
$((ExNNL&UL)/EkNNLkL*)) <D,

we see p|hr,. Thus we have p|A;. Q.E.D.
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