On the structure of p-class groups of certain number fields II

By

Teruo TAKEUCHI*

(Received November 2, 1977)

1. Introduction

Let p be a rational odd prime and let k be an algebraic number field of finite degree, whose class number h_k is prime to p. Let K/k be a cyclic extension of degree p, let \mathfrak{p}_1 ,, \mathfrak{p}_t be the prime ideals of k, ramified in K, and assume $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ are prime to p. If $\#(I(\mathfrak{p}_i)/H(\mathfrak{p}_i) = p$ for $i=1, \dots, t$, then we can study the p-class group M_K of K analogously to the case $k=\mathbf{Q}$, where $I(\mathfrak{p}_i)$ denotes the ideal group of k, prime to \mathfrak{p}_i , the ray mod \mathfrak{p}_i and $H(\mathfrak{p}_i)=I(\mathfrak{p}_i)^p P\mathfrak{p}_i$. From Lemma 1 it follows that if k does not contain the primitive p-th roots of unity, then there are infinitely many such \mathfrak{p}_i 's which satisfy some conditions each other.

In the present paper we treat the existence of cyclic extensions K/k's of degree p and t-tuples of prime ideals p_1, \dots, p_t , which have some properties. Unless otherwise stated the notation of [4] will be taken over. In particular \mathfrak{o} denotes the maximal order of the cyclotomic field of p-th roots of unity and \mathfrak{p} denotes the prime divisor of p in \mathfrak{o} . Let K/k be a cyclic extension of degree p, in which only $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ are ramified. Then for $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ the structure of p-class group M_K , in general, is not determined uniquely. In fact we can prove the following theorem.

THEOREM 1. Let k be an algebraic number field of finite degree such that $p \not X h_k$ and $k \oplus \xi_p$, where ξ_p denotes a primitive p-th root of unity. Then for any given natural number $t \ (\geq 3)$, there exist infinitely many t-tuples of prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ of k, which satisfy the following conditions:

there are cyclic extensions K'/k and K''/k in which only $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ are ramified, such that rank $M_{K'} = t-1$ and rank $M_{K''} \ge 2t-3-u$, where u denotes the p-rank of unit group E_k of k.

Let $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ be prime ideals of k such that $\sharp(I(\mathfrak{p}_i)/H(\mathfrak{p}_i))=p$ for $i=1, \dots, t$, let K/kbe a cyclic extension of degree p, in which only $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ are ramified and let L be the p-genus field (i.e. p-part of the genus field) with respect to K/k. In the case k=Q,

* Niigata University

A. Fröhlich [1] determined conditions that $p \swarrow h_L$ for $t \leq 3$, and showed $p \mid h_L$ for $t \leq 4$. Next we shall state for $t \leq 3$, a condition that $p \swarrow h_L$ as conditions on cyclic extensions K/k's contained in L. If $p \swarrow h_L$, then for any cyclic extension K/k contained in L, we have $M_K \approx (\mathfrak{o}/\mathfrak{p})^{s-1}$, where s denotes the number of prime ideals of k, ramified in K. In the case $t \leq 3$, the inverse is also true. That is, we have following theorem.

THEOREM 2. Let k be an algebraic number field of finite degree such that $p \not X h_k$. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ prime ideals of k such that that $\sharp(I(\mathfrak{p}_i)/H(\mathfrak{p}_i))=p$ for $i=1, \dots, t$. Moreover let the notation be as above. Assume $t \leq 3$. Then a necessary and sufficient condition that $p \not X h_L$ is that for any cyclic extension K/k contained in L, $M_k \approx (\mathfrak{o}/\mathfrak{p})^{s-1}$, where s denotes the number of prime ideals of k, ramified in K.

From the above theorem and the proof of Lemma 1, it follows that for t=2, 3, there exits infinitely many t-tuples of prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ such that $p|h_L$ and for t=2 there exist infinitely many couples of prime ideals $\mathfrak{p}_1, \mathfrak{p}_2$ such that $p \not\upharpoonright h_L$. And moreover if $k \\ \oplus \xi_p$, then we see that for t=3 there exist infinitely many triples of prime ideals $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3$ such that $p \not\prec h_L$.

For t=4 the condition $M_K \approx (\mathfrak{o}/\mathfrak{p})^{s-1}$ is a necessary condition that $p \not\prec h_L$, but is not a sufficient condition. Finally we shall show the following theorem.

THEOREM 3. Let k be an algebraic number field of finite degree such that $p \not X h_k$, $\xi_p \oplus k$ and p-rank $E_k \leq 1$. Then there exist infinitely many 4-tuples of prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_4$ with $\#(I(\mathfrak{p}_i)/H(\mathfrak{p}_i)) = p$ for $i=1, \dots, 4$, which satisfy the following conditions:

Let L be the class field corresponding to $I(\mathfrak{p}_1 \cdots \mathfrak{p}_4)/H(\mathfrak{p}_1 \cdots \mathfrak{p}_4)$.

Then (i) for any cyclic extension K/k contained in L, $M_K \approx (\mathfrak{o}/\mathfrak{p})^{s-1}$, where s is the number of prime ideals of k, ramified in K.

(ii) $p|h_L$.

2. Preliminaries

Let p be an odd rational prime and let k be an algebraic number field of finite degree, whose class number h_k is prime to p. For an ideal \mathfrak{o} of k let $I(\mathfrak{a})$ denote the ideal group of k, prime to \mathfrak{a} , $P_\mathfrak{a}$ the ray mod \mathfrak{a} and $H(\mathfrak{a})=I(\mathfrak{a})^p P\mathfrak{a}$. Let \mathfrak{p}_i be a prime ideal of k. Then the p-Sylow subgroup of $I(\mathfrak{p}_i)/P\mathfrak{p}_i$ is cyclic since $p \not\prec h_k$. So $I(\mathfrak{p}_i)/H(\mathfrak{p}_i)$ is cyclic of degree p or trivial.

LEMMA 1. Let k be as above and assume $k \oplus \xi_p$, where ξ_p denotes a primitive p-th root of unity. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ be prime ideals of k such that $\sharp(I(\mathfrak{p}_i)/H(\mathfrak{p}_i))=p$ for $i=1, \dots, t$. For $i=1, \dots, t$ let α_i be an element of $I(\mathfrak{p}_i)/H(\mathfrak{p}_i)$ and n_i be a natural number such that $1 \leq n_i \leq p$. Then there exist infinitely many prime ideals \mathfrak{p}_{t+1} 's, which satisfy the following conditions:

$$p_{t+1} \equiv \alpha_i \mod H(p_i) \text{ for } i=1, \dots, t,$$

$$p_i \equiv \alpha^{n_i} \mod H(p_{t+1}) \quad \text{for } i=1, \dots, t,$$

$$\#(I(p_{t+1})/H(p_{t+1})) = p,$$

where α is a generator of $I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1})$.

PROOF. Let K_i be the class field corresponding to $I(\mathfrak{p}_i)/H(\mathfrak{p}_i)$. Then K_i/k is the unique cyclic extension of degree p, in which only \mathfrak{p}_i is ramified. Hence K_1, \dots, K_t are linearly disjoint over k, so $\overline{K} = K_1 \dots K_t$ is an abelian extension of degree p^t over k. Put

$$\sigma_{i} = \left(\frac{K_{i}/k}{\alpha_{i}}\right) : \text{Artin symbol,}$$
$$\sigma = \sigma_{1} \times \dots \times \sigma_{l} \in Gal(\overline{K}/k),$$
$$K_{0} = k_{0}(p_{1}\sqrt{E_{k}}),$$

where E_k is the unit group of k and k_0/k is the ray class field mod $p \cdot p_{\infty}$. As E_k is finite rank, K_0/k is finite extension. Moreover since $k_0 \ni \xi_p$, K_0/k_0 is an abelian extension and K_0/k is a Galois extension. First we consider the case $n_1 \neq p$. Let m be a natural number such that $n_1 \cdot m \equiv 1 \mod p$. Put

$$M_{1} = k(p\sqrt{p_{1}h}),$$

$$M_{i} = k(p\sqrt{(p_{1}mn_{i}p_{i}^{-1})h}) \quad \text{for } i=2,\dots,t, \text{ where } h=h_{k},$$

$$L = M_{1}\dots M_{t} K_{0},$$

$$M = M_{2}\dots M_{t} K_{0}.$$

Then L/M is a cyclic extension of degree p. As $k \oplus \xi_p$, L and \overline{K} are liearly disjoint over k. Hence we can chose an element ρ from Gal(N/k) such that $\rho = \sigma \times \tau \in Gal(N/k)$, where τ is a generator of Gal(N/M) and $N = \overline{K}L$. Then from \widetilde{C} botarev Density Theorem we see that there exist infinitely many prime ideals \mathfrak{p}_{t+1} 's unramified in N, such that

$$\rho = \left(\frac{N/k}{\mathfrak{P}_{t+1}}\right)$$
: Frobenius symbol,

where \mathfrak{P}_{t+1} is a prime divisor of \mathfrak{p}_{t+1} in N, and \mathfrak{p}_{t+1} is prime to p. Then \mathfrak{p}_{t+1} is completely decomposed in M, in partcular, in k_0 . Hence $\mathfrak{p}_{t+1} \in P_{p \cdot p_{\infty}}$. And for any $\varepsilon \in E_k$, \mathfrak{p}_{t+1} is completely decomposed in $k(p\sqrt{\varepsilon})$. So the congruence equation $X^p \equiv \varepsilon \mod \mathfrak{p}_{t+1}$ has integer solution in k. Therefore we see $\#(E_k k_{\mathfrak{p}_{t+1}} k(\mathfrak{p}_{t+1})p/k_{\mathfrak{p}_{t+1}} k(\mathfrak{p}_{t+1})p)=1$, where $k(\mathfrak{p}_{t+1})$ denotes the subgroup of k^* , prime to \mathfrak{p}_{t+1} , and $k_{\mathfrak{p}_{t+1}} = \{\alpha \in k^* \mid \alpha \equiv 1 \mod \mathfrak{p}_{t+1}\}$. So using the isomorphism $I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1}) \approx k(\mathfrak{p}_{t+1})/E_k k_{\mathfrak{p}_{t+1}}k(\mathfrak{p}_{t+1})p$, we have $\#(I(\mathfrak{p}_{t+1}/H(\mathfrak{p}_{t+1})))=\#(k(\mathfrak{p}_{t+1})/k_{\mathfrak{p}_{t+1}}k(\mathfrak{p}_{t+1})p)=p$. Moreover, as \mathfrak{p}_{t+1} is completely decomposed in $M_2 \cdots M_t$, the congruence equations

$$X^{p} \equiv (\mathfrak{p}_{1}^{mn_{i}}\mathfrak{p}_{i}^{-1})^{h} \mod \mathfrak{p}_{t+1}$$

have integer solutions in k. Hence for $i=2,\dots,t$,

$$\mathfrak{p}_1^{mn_i} \equiv \mathfrak{p}_i \mod H(\mathfrak{p}_{t+1}).$$

Now \mathfrak{p}_1^m generates $I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1})$. In fact if $\mathfrak{p}_1^m \in H(\mathfrak{p}_{t+1})$, then the congruence equation

 $X^{p} \equiv \mathfrak{p}_{1}^{m_{h}} \mod \mathfrak{p}_{t+1}$ has integer solution in k. Thus \mathfrak{p}_{t+1} is completely decomposed in M_{1} , hence in L, which is a contradiction. So, if we put α_{1}^{m} , then

$$\mathfrak{p}_i \equiv \alpha^{n_i} \mod H(\mathfrak{p}_{t+1}) \text{ for } i=1, \dots t.$$

On the other hand, as the restriction of ρ to K_i is σ_i ,

$$\left(\frac{K_i/k}{\mathfrak{p}_{t+1}}\right) = \left(\frac{K_i/k}{\alpha_i}\right),\,$$

so we have $\mathfrak{p}_{t+1} \equiv \alpha_i \mod H(\mathfrak{p}_i)$ for $i=1,\dots,t$.

In the case $n_1 = \dots = n_t = p$ the proof is analogous to the above. Q.E.D.

Let K/k be a cyclic extension of degree p, let p_1, \dots, p_t be the prime ideals of k, ramified in K, and assume p_1, \dots, p_t are prime to p. Then $Np_i \equiv 1 \mod p$ for $i=1, \dots, t$. From the proof of Lemma 1, we see that the natural homorphism:

(1)
$$I(\mathfrak{p}_1 \cdots \mathfrak{p}_t)/H(\mathfrak{p}_1 \cdots \mathfrak{p}_t) \to (I(\mathfrak{p}_1)/H(\mathfrak{p}_1)) \times \cdots \times (I(\mathfrak{p}_t)/H(\mathfrak{p}_t))$$

is surjective. On the other hand $\#(I(\mathfrak{p}_1 \cdots \mathfrak{p}_t)/H(\mathfrak{p}_1 \cdots \mathfrak{p}_t)) \leq p^t$. Assume $\#(I(\mathfrak{p}_i)/H(\mathfrak{p}_i)) = p$ for $i=1,\cdots, t$, then the natural homorphism (1) is an isomorphism. Hence in this case we have $[E_k : E_k \cap N_{K/k}K^*] = 1$ since the *p*-genus field with respect to K/k corresponds to $I(\mathfrak{p}_1 \cdots \mathfrak{p}_t)/H(\mathfrak{p}_1 \cdots \mathfrak{p}_t)$. Thus with the notation of [4 & 2] we have r=t-1 and $\widehat{X}=G^t$. Let H be the congruence ideal group corresponding to K/k and let H' be the subgroup of $(I(\mathfrak{p}_1)/H(\mathfrak{p}_1)) \times \cdots \times (I(\mathfrak{p}_t)/H(\mathfrak{p}_t))$, corresponding to H by the isomorphism (1). Then for $i \neq j$,

(2)
$$\left(\frac{\alpha_i:K/k}{\mathfrak{p}_j}\right) = 1$$
 if and only if $\mathfrak{p}_i \in H(\mathfrak{p}_j)$

and

(3)
$$\left(\frac{\alpha_i:K/k}{\mathfrak{p}_i}\right)=1$$
 if and only if $(\mathfrak{p}_i,\dots,\mathfrak{p}_i,\check{1},\mathfrak{p}_i,\dots,\mathfrak{p}_i)\in H'$,

where $(\alpha_i) = \mathfrak{p}_i h$. Let $p^w = [E_k \cap N_{K/k} K^* : N_{K/k} E_K]$, then $w \leq p$ -rank E_k and $cl_p(\mathfrak{p}_1), \dots, cl_p(\mathfrak{p}_l)$ generate the subgroup of $M_{K(\sigma-1)}$, of rank t-1-w, where \mathfrak{p}_i is the prime divisor of \mathfrak{p}_i , in K and σ is a generator of Gal(K/k). Put

$$\left(\left(\frac{\alpha_i:K/k}{\mathfrak{p}_j}\right)_{i,j=1,\cdots,t}=(\sigma^{aij})a_{ij}\in \mathbb{Z}/\mathfrak{p}\mathbb{Z},\right)$$

then

(4) $t-1 \ge rank(a_{ij}) + w \ge v \ge rank(a_{ij}),$

where $\#(\chi_{K/k}(M_{K(\sigma-1)})) = p^{v}$. Hence, if rank $(a_{ij}) = t-1$, then w = 0 and v = t-1. So M_K is an elementary abelian group of rank t-1 by [4 Theorem 2].

3. Proof of Theorem 1

PROOF OF THEOREM 1. From Lemma 1 we see that there exist infinitely many *t*-tuples of prime ideals p_1, \dots, p_t which satisfy the following conditions:

$$\begin{array}{ll} \#(I(\mathfrak{p}_i)/H(\mathfrak{p}_i)) = p & \text{for } i = 1, \dots, t, \\ \mathfrak{p}_1 \in H(\mathfrak{p}_2 \dots \mathfrak{p}_t), \\ \mathfrak{p}_2 \in H(\mathfrak{p}_1), \ \mathfrak{p}_2 \in H(\mathfrak{p}_3 \dots \mathfrak{p}_t), \\ \mathfrak{p}_3 \in H(\mathfrak{p}_1), \ \mathfrak{p}_3 \in H(\mathfrak{p}_2), \ \mathfrak{p}_3 \in H(\mathfrak{p}_3 \dots \mathfrak{p}_t), \\ \mathfrak{p}_i \ \mathfrak{p}_3^{-1} \in H(\mathfrak{p}_1 \ \mathfrak{p}_2), \ \mathfrak{p}_i \in H(\mathfrak{p}_3 \dots \mathfrak{p}_{i-1} \mathfrak{p}_{i+1} \dots \mathfrak{p}_t) & \text{for } i = 4, \dots, t. \end{array}$$

Let K/k be a cyclic extension of degree p, in which only p_1, \dots, p_t are ramified. Then by (2) and (3) we have

where $(\alpha_i) = p_i{}^h$ and * denotes non-identity. First let K = K' be such that $(p_3, p_3 1, p_3, \dots, p_3) \oplus H'$ (such an extension certainly exists). Then, as $(p_3, p_3, 1, p_3, \dots, p_3) \equiv (p_i, \dots, p_i, 1, p_i, \dots, p_i) \mod H(p) \times \dots \times H(p_i)$ for $i = 4, \dots, t$, we have $rank\left(\left(\frac{\alpha_i : K'/k}{p_j}\right)\right) = t-1$ by (3). Thus we obtain $M_{K'} \approx (\mathfrak{o}/\mathfrak{p})^{t-1}$ from [4 Theorem 2]. Next let K = K'' be such that $(p_3, p_3, 1, p_3, \dots, p_3) \oplus H'$ (such an extension also exist). Then we have similarly rank $\left(\left(\frac{\alpha_i : K''/k}{p_j}\right)\right) = 1$. So from [4 Theorem 2] and (4), we see rank $M_{K''} \ge 2t-3-u$. Q.E.D.

4. Proof of Theorem 2

LEMMA 2. Let A be an abelian group of type (p, p, p) and let N be a cyclic group of order p. Let $1 \rightarrow N \rightarrow G \rightarrow A \rightarrow 1$ be a non abel central extension of N by A. Then the order of the center of G is p^2 .

PROOF. Easy.

PROOF OF THEOREM 2. We prove only the sufficiency in the case t=3. Assume that for any cyclic extension K/k contained in L, $M_K \approx (\mathfrak{o}/\mathfrak{p})^{s-1}$. Furthermore suppose that $p|h_L$. Then $p|z_{L/K}$ since by [2 Satz 2] we have $h_L \equiv z_{L/K} \mod p$, where $z_{L/K}$ denotes the central class number with respect to L/K. So there exists an unramified cyclic extension L_1/L of degree p such that L_1/k is a Galois extension and $Gal(L_1/L)$ is contained in the

center of Gal (L_1/L) . Put A = Gal (L/K), $N = Gal (L_1/L)$ and $G = Gal (L_1/k)$. Let Z be the center of G and let E be the intermediate field corresponding to Z. Then $E \subset L$ and E/kis of degree p^2 by Lemma 2. And at least two prime ideals are ramified. We first consider the case that only p_1 and p_2 are ramified in E. Then $E = K_1 K_2$ and the inertia group of a prime divisor of p_3 in L_1 is cyclic of oder p and contained in Z, where K_i denotes the class field corresponding to $I(\mathfrak{p}_i)/H(\mathfrak{p}_i)$. So the inertia groups of all prime divisors of \mathfrak{p}_3 in L_1 coincide. Let F be the inertia field of the prime divisors of \mathfrak{p}_3 in L_1 . Then F/E is an unramified cyclic extension of degree p. Hence $p \mid h_E$, so for any cyclic extension K/kcontained in E, $\#(M_K) \ge p^2 > p^{s-1}$, which cotradicts the assumption. Next we consider the case that p_1 , p_2 and p_3 are ramified in E. Let K be a cyclic extension contained in E, in which p_1 , p_2 and p_3 are ramified. Since E/k is an abelian extension of type (p, p) and p+1>3, such an extension certainly exists. Then L_1/K is an unramified Galois extension of degree p^3 . Moreover, since E/K is cyclic of degree p and z is the center of G we see that L_1/K is abelian. Hence we have $\#(M_K) \ge p^3$, which contradicts the assumption that $M_K \approx (\mathfrak{p}/\mathfrak{p})^{s-1} = (\mathfrak{o}/\mathfrak{p})^2$. Thus we have $p \not > h_L$. Q.E.D.

REMARK. If t=1, then $L=K_1$ and $p \not\prec h_L$. If t=2, then there exist infinitely many L's with $p|h_L$ and L's with $p \not\mid h_L$. In fact, noting the proof of Lemma 1, we see that there are infinitely many \mathfrak{p}_i 's such that $\#(I(\mathfrak{p}_i)/H(\mathfrak{p}_i)) = p$. Let \mathfrak{p}_1 be a prime ideal of k such that $\#(I(\mathfrak{p}_1)/H(\mathfrak{p}_1)) = p$ and let K_1/k be the cyclic extension of degree p, in which only \mathfrak{p}_1 is ramified. Let \mathfrak{p}_2 be a prime ideal of k such that $\#(I(\mathfrak{p}_2)/H(\mathfrak{p}_2)) = p$ and \mathfrak{p}_2 is not decomposed in K_1 . Then for L corresponding to these p_1 and p_2 , we have $p \not\prec h_L$. Next put $N = k_0 K_1 (p_{\sqrt{E_{K_1}}})$, where k_0 is the ray class field of $k \mod p \cdot p_{\infty}$, and let \mathfrak{P}_2' be a prime ideal of k such that \mathfrak{p}_{2}' is completely decomposed in N. Then $\#(I(\mathfrak{p}_{2}')/H(\mathfrak{p}_{2}')) = p$ and $\#(I(\mathfrak{P}_{2}'))$ $(H(\mathfrak{P}_{2'i}))=p$ for $i=1, \dots, p$, where $\mathfrak{P}_{2'1}, \dots, \mathfrak{P}_{2'p}$ are the prime divisors of $\mathfrak{P}_{2'}$ in K_1 . Let $K_{2'}/k$ be the cyclic extension of degree p, in which only $p_{2'}$ is ramified. Put $L' = K_1 K_{2'}$. Then L'/K_1 is a cyclic extension of degree p, in which $\mathfrak{P}_{2'1}, \dots, \mathfrak{P}_{2'p}$ are ramified. So rank $M_L \ge p-1$. Thus for t=2 there exist infinitely many L's such that $p|h_L$. Therefore for t=3, there also exist infinitely many L's such that $p|h_L$. Moreover if $k \oplus \xi_p$, then for t=3 there exist infinitely many L's such that $p \not\mid h_L$. In fact, in this case we see from Lemma 1 that there exist infinitely many triples of prime ideals \mathfrak{p}_1 , \mathfrak{p}_2 , \mathfrak{p}_3 of k, which satisfy the following conditions:

$$#(I(\mathfrak{p}_i)/H(\mathfrak{p}_i)) = p \quad \text{for } i = 1, 2, 3,$$

$$\mathfrak{p}_1 \oplus H(\mathfrak{p}_2), \, \mathfrak{p}_1 \oplus H(\mathfrak{p}_3),$$

$$\mathfrak{p}_2 \oplus H(\mathfrak{p}_1),$$

$$\mathfrak{p}_3 \oplus H(\mathfrak{p}_1), \, \mathfrak{p}_3 \oplus H(\mathfrak{p}_2).$$

Then for L corresponding to these \mathfrak{p}_1 , \mathfrak{p}_2 , \mathfrak{p}_3 , we have $p \not\prec h_L$ by Theorem 2.

5. Proof of Theorem 3

LEMMA 3. Let a, b, c, d be non-zero elements of Z/pZ and let n be a natural number. If

$$rank \begin{pmatrix} -a-b, & 0, & a, & b \\ c, & -nb-c, & 0, & nb \\ c, & d, & -c-d, & 0 \\ 0, & d, & a, & -d-a \end{pmatrix} = 2,$$

then 1+4n is quadratic residue mod p.

PROOF. Easy.

PROOF OF THEOREM 3. Let *n* be a natural number such that 1+4n is non quadratic reisdue mod *p*. By Lemma 1 there exist infinitely many 4-tuples of prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_4$ of *k*, which satisfy the following conditions: $\#(I(\mathfrak{p}_i)/H(\mathfrak{p}_i)) = p$ for $i=1,\dots, 4$,

$$\begin{array}{cccc} & \mathfrak{p}_1 \oplus H(\mathfrak{p}_2), & \mathfrak{p}_1 \oplus H(\mathfrak{p}_3), & \mathfrak{p}_1 \oplus H(\mathfrak{p}_4), \\ \\ \mathfrak{p}_2 \oplus H(\mathfrak{p}_1), & \mathfrak{p}_2 \oplus H(\mathfrak{p}_3), & \mathfrak{p}_1^n \mathfrak{p}_2^{-1} \oplus H(\mathfrak{p}_4), \\ \\ \mathfrak{p}_2 \mathfrak{p}_3^{-1} \oplus H(\mathfrak{p}_1), & \mathfrak{p}_3 \oplus H(\mathfrak{p}_2), & \mathfrak{p}_3 \oplus H(\mathfrak{p}_4) \\ \\ \mathfrak{p}_4 \oplus H(\mathfrak{p}_1), & \mathfrak{p}_3 \mathfrak{p}_4^{-1} \oplus H(\mathfrak{p}_2), & \mathfrak{p}_1 \mathfrak{p}_4^{-1} \oplus H(\mathfrak{p}_3). \end{array}$$

Now we shall show that these $\mathfrak{p}_1, \dots, \mathfrak{p}_4$ satisfy the conditions of our theorem. (i) If $s \leq 3$, it is easy to see that $M_K \approx (\mathfrak{o}/\mathfrak{p})^{s-1}$. Let s=4 and let

$$\left(\left(\frac{\alpha_i:K/k}{\mathfrak{p}_j}\right)_{i,j,-1,\cdots,4}=(\sigma^{aij}), a_{ij}\in \mathbb{Z}/p\mathbb{Z},\right)$$

where σ is a generator of Gal (K/k). Then the matrix (a_{ij}) is of the type of Lemma 3 As 1+4n is non quadratic residue mod p, we have rank $(a_{ij})=3$ by Lemma 3. Thus $M_K \approx (\mathfrak{o}/\mathfrak{p})^3$. (ii) We first note that for an arbitrary Galois extension L/k,

$$\begin{aligned} Gal(L_{1}/L_{0}) &\approx \frac{(k^{*} \cap N_{L/k}J_{L})/N_{L/k}L^{*}}{(k^{*} \cap (N_{L/k}L^{*} \cdot N_{L/k}U_{L}))/N_{L/k}L^{*}} , \\ (k^{*} \cap N_{L/k}J_{L})/N_{L/k}L^{*} &\approx H^{-3}(Gal(L/k), Z)/F(L/K), \\ (k^{*} \cap (N_{L/k}L^{*} \cdot N_{L/k}U_{L}))/N_{L/k}L^{*} &\approx (E_{k} \cap N_{L/k}U_{L})/(E_{k} \cap N_{L/k}L^{*}). \end{aligned}$$

where L_0 : the genus field with respect to L/k, L_1 : the central class field with respect to L/k, J_L : the idele group of L, U_L : the unit idele group of L, F(L/K): the subgroup of $H^{-3}(Gal(L/k), Z)$ generated by the canonical injection of $H^{-3}(Gp_i(L/k), Z)$ to $H^{-3}(Gal(L/k), Z)$, where $Gp_i(L/k)$ is a decomposition group of any one of the prime divisors in L of a prime p_i of k and p_i runs over all primes of k ramified in L (cf. [3]). Now let L/k be as in our theorem. Then from

 $\begin{aligned} &\#(H^{-3}(Gal(L/k), Z) = p^{4(4-1)/2} = p^{6}, \\ &\#(F(L/k)) \leq p^{4}, \\ &\#((E_{k} \cap N_{L/k}U_{L})/(E_{k} \cap N_{L/k}L^{*})) \leq p, \end{aligned}$

we see $p|h_{L_0}$. Thus we have $p|h_L$.

Q.E.D.

References

- [1] A. FRÖHLICH. On the absolute class-group of abelian field. J. London Math. Soc., 29 (1954), 211-217.
- [2] Y. FURUTA. Über das Geschlecht und die Klassenzahl eines Relativ-Galoisschen Zahlkorpers von Primzahlpotenzgrade. Nagoya Math. J., 37 (1970), 197–200.
- [3] Y. FURUTA. On class field towers and the rank of ideal class groups. Nagoya Math. J., 48 (1972), 147-157.
- [4] T. TAKEUCHI. On the structure of p-class groups of certain number field. Sci. Rep. Niigata Univ. Series A, 14 (1977), 25-33.