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1. Introduction

Let $p$ be a rational odd prime and let $k$ be an algebraic number field of finite degree,
whose class number $hk$ is prime to $p$ . Let $K/k$ be a cyclic extension of degree $p$ , let $\mathfrak{p}_{1}$ ,
$\ldots\ldots$ , pt be the prime ideals of k, ramified in K, and assume $\mathfrak{p}_{1},$ $\cdots\cdots$ , $\mathfrak{p}_{t}$ are prime to p. If
$\#(I(p\iota)/H(pi)=p$ for $i=1,$ $t$, then we can study the $p$-class group MK of $K$ analogous-
ly to the case $k=Q$ , where $I(\mathfrak{p}i)$ denotes the ideal group of $k$, prime to $\mathfrak{p}_{i}P\mathfrak{p}_{i}$ , the ray mod

$\mathfrak{p}\iota$ and $H(\mathfrak{p}i)=I(\mathfrak{p};)PP\mathfrak{p}_{i}$ . From Lemma 1 it follows that if $k$ does not contain the primitive
p-th roots of unity, then there are infinitely many such $\mathfrak{p}_{t}’ s$ which satisfy some conditions
each other.

In the present paper we treat the existence of cyclic extensions $K/k’ s$ of degree $p$

and t-tuples of prime ideals $\mathfrak{p}_{1},$ $\cdots\cdots,$ $\mathfrak{p}_{t}$ , which have some properties. Unless otherwise
stated the notation of [4] will be taken over. In particular $\mathfrak{o}$ denotes the maximal order
of the cyclotomic field of p-th roots of unity and $\mathfrak{p}$ denotes the prime divisor of $p$ in $0$.
Let $K/k$ be a cyclic extension of degree $p$ , in which only $\mathfrak{p}_{1},$ $\cdots\cdots,$ $\mathfrak{p}_{t}$ are ramified. Then
for $\mathfrak{p}_{1},$ $\mathfrak{p}_{t}$ the structue of $p$-class group $MK$, in general, is not determined uniquely. In
fact we can prove the following theorem.

THEOREM 1. Let $k$ be an algebaic number field of finite degree such that $p\chi hk$ and $k\not\ni\xi_{p}$,
where $\xi_{p}$ denotes a primitive pth root of unity. Then for any given natural number $t(\geqq 3)$,
there exist infinitely many t-tuples of prime ideals $\mathfrak{p}_{1}$ , $\mathfrak{p}t$ of $k$, which satisfy the follow-
ing conditions:

there are cyclic extensions $K^{\prime}/k$ and $K^{\prime\prime}/k$ in which only $\mathfrak{p}_{1},$ $\cdots\cdots,$ $\mathfrak{p}t$ are ramified, such
that rank $M_{K^{\prime}}=t-1$ and rank $MK^{\prime\prime}\geqq 2t-3-u$ , where $u$ denotes the p-rank of unit group $Ek$

of $k$.
Let $\mathfrak{p}_{1},$ $\cdots\cdots,$

$\mathfrak{p}_{t}$ be prime ideals of $k$ such that $\#(I(\mathfrak{p}i)/H(\mathfrak{p}i))=p$ for $i=1,$ $t$, let $K/k$

be a cyclic extension of degree $p$ , in which only $\mathfrak{p}_{1},$ $\cdots\cdots$ , $\mathfrak{p}t$ are ramified and let $L$ be the
$p\cdot genus$ field (i.e. $p$-part of the genus field) with respect to $K/k$ . In the case $k=Q$,
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A. Fr\"ohlich [1] determined conditions that $p\chi h_{L}$ for $t\leqq 3$, and showed $p|h_{L}$ for $t\leqq 4$ .
Next we shall state for $t\leqq 3$, a condition that $pXhL$ as conditions on cyclic extensions
$K/k’ s$ contained in $L$. If $pXhL$, then for any cyclic extension $K/k$ contained in $L$, we
have $MK\approx(0/\mathfrak{p})^{s-1}$, where $s$ denotes the number of prime ideals of $k$, ramified in $K$. In
the case $t\leqq 3$, the inverse is also true. That is, we have following theorem.

THEOREM 2. Let $k$ be an algebraic number field of finite degree such that $p\chi hk$. Let
$\mathfrak{p}_{1},$ $\cdots\cdots,$ $\mathfrak{p}_{t}$ prime ideals of $k$ such that that $\#(I(\mathfrak{p}i)/H(\mathfrak{p}i))=p$ for $i=1,$ $\cdots\cdots,$

$t$. Moreover let
the notation be as above. Assume $t\leqq 3$. Then a necessary and sufficient condition that $p\chi h_{L}$

is that for any cyclic extension $K/k$ contained in $L,$ $Mk\approx(0/\mathfrak{p})^{s-1}$ , where $s$ denotes the number
ofprime ideals of $k$, ramified in $K$.

From the above theorem and the proof of Lemma 1, it follows that for $t=2,3$, there
exits infinitely many t-tuples of prime ideals $\mathfrak{p}_{1},$ $\cdots\cdots,$ $\mathfrak{p}t$ such that $p|h_{L}$ and for $t=2$ there
exist infinitely many couples of prime ideals $\mathfrak{p}_{1},$ $\mathfrak{p}_{2}$ such that $pXh_{L}$ . And moreover if $k$

$\#\xi_{p}$, then we see that for $t=3$ there exist infinitely many triples of prime ideals $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$ $\mathfrak{p}_{3}$

such that $pXh_{L}$ .
For $t=4$ the condition $MK\approx(0/\mathfrak{p})^{s-1}$ is a necessary condition that $p\chi h_{L}$ , but is not a

sufficient condition. Finally we shall show the following theorem.
THEOREM 3. Let $k$ be an algebraic number field of finite degree such that $p\chi hk,$ $\xi_{p}$ Gi $k$

and p-rank $Ek\leqq 1$ . Then there exist infinitely many 4-tuples ofprime ideals $\mathfrak{p}_{1},$ $p_{4}$ with
$\#(I(pi)/H(\mathfrak{p}i))=p$ for $i=1,$ $\cdots\cdots,$

$4$ , which satisfy the following conditions:
Let $L$ be the class field corresponding to $I(\mathfrak{p}_{1}\cdots\cdots \mathfrak{p}_{4})/H(p_{1}\cdots\cdots \mathfrak{p}_{4})$ .
Then (i) for any cyclic extension $K/k$ contained in $L,$ $MK\approx(0/\mathfrak{p})^{s-1}$ , where $s$ is the number

ofprime ideals of $k$, ramified in $K$

(ii) $p|h_{L}$ .

2. Preliminaries

Let $p$ be an odd rational prime and let $k$ be an algebraic number field of finite degree,
whose class number $hk$ is prime to $p$ . For an ideal $\mathfrak{o}$ of $k$ let $I(\mathfrak{a})$ denote the ideal group
of $k$, prime to $\mathfrak{a},$ $Pa$ the ray $mod \mathfrak{a}$ and $H(\mathfrak{a})=I(\mathfrak{a})PPa$ . Let $\mathfrak{p}$; be a prime ideal of $k$. Then
the p-Sylow subgroup of $I(\mathfrak{p}i)/P\mathfrak{p}_{i}$ is cyclic since $pXhk$ . So $I(\mathfrak{p};)/H(\mathfrak{p}i)$ is cyclic of degree
$p$ or trivial.

LEMMA 1. Let $k$ be as above and assume $k\#\xi_{p}$ , where $\xi_{p}$ denotes a primitive p-th root of
unity. Let $\mathfrak{p}_{1},\cdots\cdots,$ $\mathfrak{p}_{t}$ be prime ideals of $k$ such that $\#(I(\mathfrak{p}i)/H(\mathfrak{p}i))=p$ for $i=1,$ $\cdots\cdots,$

$t$. For
$i=1,$ $\cdots\cdots,$

$t$ let $a$; be an element of $I(\mathfrak{p}i)/H(p;)$ and ni be a natural number such that $1\leqq n;\leqq p$ .
Then there exist infinitely many prime ideals $\mathfrak{p}t+1^{S}$’ which satisfy the following conditions:

$\mathfrak{p}_{t+1}\equiv a$; mod $H(pi)$ for $i=1,$ $\cdots\cdots,$
$t$,

$\mathfrak{p}i\equiv\alpha^{n}j$ mod $H(\mathfrak{p}_{t+1})$ for $i=1,$ $\cdots\cdots,$
$t$,

$\#(I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1}))=p$,
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where $a$ is a generator of $I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1})$ .
PROOF. Let $K_{i}$ be the class field corresponding to $I(\mathfrak{p}i)/H(\mathfrak{p};)$ . Then $Ki/k$ is the uni-

que cyclic extension of degree $p$ , in which only $\mathfrak{p}$; is ramified. Hence $K_{1},$ $\cdots\cdots$ , $K_{t}$ are
linearly disjoint over $k$, so $\overline{K}=K_{1}\cdots\cdots K_{t}$ is an abelian extension of degree $p^{t}$ over $k$. Put

$\sigma;=(\frac{K_{i}/k}{\alpha i})$ : Artin symbol,

$\sigma=\sigma_{1}\times\cdots\cdots\times\sigma!\in Gal(\overline{K}/k)$,

$K_{0}=k_{0}(p\sqrt{E_{k}})$ ,

$whereEkistheunitgroupofkandk_{0}/kistherayclass$ field modp. $p_{\infty}$ . $AsEkis$ finite
rank, $K_{0}/k$ is finite extension. Moreover since $k_{0}\ni\xi_{p},$ $K_{0}/k_{0}$ is an abelian extension and
$K_{0}/k$ is a Galois extension. First we consider the case $n_{1}\neq p$ . Let $m$ be a natural number
such that $n_{1}\cdot m\equiv 1$ mod $p$ . Put

$M_{1}=k(P\sqrt{\mathfrak{p}_{1^{h}}})$ ,

$Mi=k(p\sqrt{(\mathfrak{p}_{1^{mn_{i}}}\mathfrak{p}_{i^{-1}})h})$ for $i=2,\cdots\cdots,$ $t$, where $h=hk$,

$L=M_{1}\cdots\cdots M_{t}K_{0}$ ,

$M=M_{2}\cdots\cdots M_{t}K_{0}$ .
Then $L/M$ is a cyclic extension of degree $p$ . As $kD\xi_{p},$ $L$ and $\overline{K}$ are liearly disjoint

over $k$. Hence we can chose an element $\rho$ from $Gal(N/k)$ such that $\rho=\sigma\times\tau\in Gal(N/k)$,

where $\tau$ is a generator of $Gal(N/M)$ and $N=\overline{K}L$. Then from \v{C}\v{e}botarev Density Theorem
we see that there exist infinitely many prime ideals $\mathfrak{p}_{t+1}’ s$ unramified in $N$, such that

$\rho=(\frac{N/k}{\mathfrak{P}t+1})$ : Frobenius symbol,

where $\mathfrak{P}t+1$ is a prime divisor of $\mathfrak{p}_{t+1}$ in $N$, and $\mathfrak{p}_{t+1}$ is prime to $p$ . Then $\mathfrak{p}_{t+1}$ is completely
decomposed in $M$, in partcular, in $k_{0}$ . Hence $\mathfrak{p}_{t+1}\in Pp\cdot p_{\infty}$ . And for any $\epsilon\in Ek,$ $\mathfrak{p}_{!+1}$ is com-
pletely decomposed in $k(P\sqrt{\epsilon})$ . So the congruence equation $x^{p}\equiv\epsilon mod \mathfrak{p}l+1$ has integer

solution in $k$. Therefore we see $\#(Ekk\mathfrak{p}_{l+1}k(\mathfrak{p}_{t+1})P/k\mathfrak{p}_{r+1}k(\mathfrak{p}_{t+1})P)=1$ , where $h(\mathfrak{p}_{t+1})$ denotes
the subgroup of $k^{*}$ , prime to $\mathfrak{p}_{t+l}$ , and $kp_{t}.1=$ { $a\in k^{*}|a\equiv 1$ mod $\mathfrak{p}_{t+1}$ }. So using the iso-
morphism $I(\mathfrak{p}_{t+1})/H(p_{t+1})\approx k(\mathfrak{p}_{t+1})/E_{k}k\mathfrak{p}_{t+1}k(p_{t+1})^{p}$, we have $\#(I(p_{t+1}/H(\mathfrak{p}_{t+1}))=\#(k(p_{t+1})$

$/k\mathfrak{p}_{t+1}k(\mathfrak{p}_{t+1})P)=p$ . Moreover, as $\mathfrak{p}_{t+1}$ is completely decomposed in $M_{2}\cdots\cdots M_{t}$ , the con-
gruence equations

$x^{p}\equiv(\mathfrak{p}_{1^{mn}};\mathfrak{p};^{-1})^{h}$ mod $p_{t+1}$

have integer solutions in $k$. Hence for $i=2,\cdots\cdots,$ $t$,

$\mathfrak{p}_{1^{mn}}i\equiv \mathfrak{p}$; mod $H(\mathfrak{p}_{t+1})$ .
Now $\mathfrak{p}_{1}^{m}$ generates $I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1})$ . In fact if $\mathfrak{p}_{1}^{m}\in H(\mathfrak{p}_{t+1})$ , then the congruence equation
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$x^{p}\equiv \mathfrak{p}_{1}^{m_{h}}$ mod $\mathfrak{p}_{t+1}$ has integer solution in $k$. Thus $\mathfrak{p}_{t+1}$ is completely decomposed in $M_{1}$ ,

hence in $L$, which is a contradiction. So, if we put $\alpha_{1}^{m}$, then

$\mathfrak{p}i\equiv\alpha^{n_{j}}$ mod $H(\mathfrak{p}_{t+1})$ for $i=1,$ $\cdots\cdots t$.
On the other hand, as the restriction of $\rho$ to $Ki$ is $\sigma;$ ,

$(\frac{K_{i}/k}{\mathfrak{p}_{t+1}})=(\frac{K_{i}/k}{a_{i}})$ ,

so we have $\mathfrak{p}_{t+1}\equiv\alpha$; mod $H(\mathfrak{p}i)$ for $i=1,\cdots\cdots,$ $t$.
In the case $n_{1}=\cdots\cdots=n_{t}=p$ the proof is analogous to the above. Q.E.D.
Let $K/k$ be a cyclic extension of degree $p$, let $\mathfrak{p}_{1},$ $\cdots\cdots \mathfrak{p}_{t}$ be the prime ideals of $k$,

ramified in $K$, and assume $\mathfrak{p}_{1},$ $\cdots\cdots \mathfrak{p}_{t}$ are prime to $p$. Then $N\mathfrak{p}i\equiv 1$ mod $p$ for $i=1,$ $\cdots\cdots,$
$t$.

From the proof of Lemma 1, we see that the natural homorphism:

(1) $I(\mathfrak{p}_{1}\cdots\cdots \mathfrak{p}_{t})/H(\mathfrak{p}_{1}\cdots\cdots \mathfrak{p}_{t})\rightarrow(I(h)/H(\mathfrak{p}_{1}))\times\cdots\times(I(p_{t})/H(\mathfrak{p}_{t}))$

is surjective. On the other hand $\#(I(\mathfrak{p}_{1}\cdots\cdots t)/H(\mathfrak{p}_{1}\cdots\cdots \mathfrak{p}_{t}))^{\prime}\underline{=}pt$ . Assume $\#(I(\mathfrak{p}i)/H(\mathfrak{p}i))=p$

for $i=1,\cdots\cdots,$ $t$, then the natural homorphism (1) is an isomorphism. Hence in this case
we have $[E_{k} : E_{k}\cap NK/kK^{*}]=1$ since the $p$-genus field with respect to $K/k$ corresponds to
$I(\mathfrak{p}_{1}\cdots\cdots t)/H(\mathfrak{p}_{1}\cdots\cdots \mathfrak{p}_{!})$ . Thus with the notation of [4 \S 2] we have $r=t-1$ and $ X=G!\wedge$ . Let
$H$ be the congruence ideal group corresponding to $K/k$ and let $H^{\prime}$ be the subgroup of

$i\neq j(I(h)/H(h))\times\cdots\cdots\times(I(\mathfrak{p}_{t})/H(\mathfrak{p}_{t}))$

, corresponding to $H$ by the isomorphism (1). Then for

(2) $(\frac{a_{i}:K/k}{\mathfrak{p}_{j}})=1$ if and only if $\mathfrak{p}j\in H(\mathfrak{p}J)$

and

(3) $(\frac{\alpha_{i}:K/k}{\mathfrak{p}_{i}})=1$ if and only if
$(\mathfrak{p}\iota,\cdots\cdots, \mathfrak{p}^{\vee}t,1, \mathfrak{p}i,\cdots\cdots, \mathfrak{p};)\in H^{\prime}i$

where $(\alpha;)=\mathfrak{p}i^{h}$ Let $pw=[ENK^{*} : NK/kEK]$ , then $w\leqq p\cdot rankEk$ and $ cl_{p}(\mathfrak{p}_{1}),\cdots\cdots$ ,
$cl_{p}(\mathfrak{p}_{t})$ generate the subgroup of $MK(\sigma-1)$ , of rank $t-1-w$, where $\mathfrak{p}i$ is the prime divisor of
$\mathfrak{p};$, in $K$ and $\sigma$ is a generator of $Gal(K/k)$. Put

$((\frac{\alpha_{i}:K/k}{\mathfrak{p}_{j}}))_{i,jt}-1,\cdots,=(\sigma aij)a;_{j}\in Z/pz$,

then

(4) $t-1\geqq rank(atj)+w\geqq v\geqq rank(atj)$,

where $\#(\chi K/k(M\wedge K(\sigma-1)))=pv$ . Hence, if rank $(atj)=t-1$ , then $w=0$ and $v=t-1$ . So MK
is an elementary abelian group of rank $t-1$ by [4 Theorem 2].
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3. Proof of Theorem 1

PROOF OF THEOREM 1. From Lemma 1 we see that there exist infinitely many t-tuples
of prime ideals $\mathfrak{p}_{1},$ $\cdots\cdots,$ $\mathfrak{p}_{t}$ which satisfy the following conditions:

$\#(I(\mathfrak{p};)/H(pi))=p$ for $i=1,$ $\cdots\cdots,$
$t$,

$\mathfrak{p}_{1}\in H(\mathfrak{p}_{2}\cdots\cdots \mathfrak{p}_{t})$,

$p_{2}\not\in H(\mathfrak{p}_{1}),$ $\mathfrak{p}_{2}\in H(\mathfrak{p}_{3}\cdots\cdots \mathfrak{p}_{t})$,

$\mathfrak{p}_{3}\not\in H(\mathfrak{p}_{1}),$ $\mathfrak{p}_{3}\not\in H(\mathfrak{p}.),$ $\mathfrak{p}_{3}\in H(\mathfrak{p}_{3}\cdots\cdots \mathfrak{p}_{t})$ ,

$\mathfrak{p};p_{3}^{-1}\in H(\mathfrak{p}_{1}\mathfrak{p}_{2}),$ $\mathfrak{p};\in H(\mathfrak{p}_{3}\cdots\cdots \mathfrak{p}_{i-1}\mathfrak{p};+1 \mathfrak{p}_{!})$ for $i=4,\cdots\cdots,$ $t$.
Let $K/k$ be a cyclic extension of degree $p$, in which only $\mathfrak{p}_{1},$ $\cdots\ldots,$ $\mathfrak{p}_{t}$ are ramified. Then
by (2) and (3) we have

$((\frac{a_{i}\cdot.K/k}{\mathfrak{p}_{j}}))_{ij_{-1},\cdots\cdot t}=\left(\begin{array}{lllll}1,11,, & l, & 1, & \cdots & 1\\**1, & 1, & 1, & \cdots & 1\\**\prime? & 1, & 1, & \cdots & 1\\**1, & ?, & 1, & \cdots & 1\\**i, & \cdots i, & i, & \cdots\cdots & \cdots ?\end{array}\right)$ ,

where $(aj)=\mathfrak{p}i^{h}$ and * denotes non.identity. First let $K=K^{\prime}$ be such that $(h,$ $\mathfrak{p}_{3}1,$ $\mathfrak{p}_{3},$ $\cdots\cdots$ ,

$\mathfrak{p}_{3})\not\in H^{\prime}$ (such an extension certainly exists). Then, as $(\mathfrak{p}_{3}, \mathfrak{p}_{3},1, \mathfrak{p}_{3},\cdots\cdots \mathfrak{p}_{a})\equiv(\mathfrak{p};,\cdots\cdots \mathfrak{p};,1,$

$\mathfrak{p};\vee\dot{l}$

... , $\mathfrak{p};$) mod $H(\mathfrak{p})\times\cdots\cdots\times H(\mathfrak{p}_{t})$ for $i=4,\cdots\cdots,$ $t$, we have rank $((\frac{a_{i}:K^{\prime}/k}{\mathfrak{p}_{j}}))=t-1$ by (3).

Thus we obtain $MK^{\prime}\approx(0/\mathfrak{p})^{t-1}$ from [4 Theorem 2]. Next let $K=K^{\prime\prime}$ be such that $(h$ ,
$\mathfrak{p}_{3},1,$ $\mathfrak{p}_{3},\cdots\cdots,$ $\mathfrak{p}_{3}$) $\in H^{\prime}$ (such an extension also exist). Then we have similarly rank

$((\frac{\alpha_{i}:K^{\prime\prime}/k}{\mathfrak{p}_{j}}))=1$ . So from [4 Theorem 2] and (4), we see rank $MK^{\prime\prime}\geqq 2t-3-u$ .
Q.E.D.

4. Proof of Theorem 2

LEMMA 2. Let $A$ be an abelian group of type $(p, p, p,)$ and let $N$ be a cychc group of
order $p$ . Let $1\rightarrow N\rightarrow G\rightarrow A\rightarrow 1$ be a non abel central extension of $N$ by A. Then the order of
the center of $G$ is $p^{2}$ .

PROOF. Easy.
PROOF OF THEOREM 2. We prove only the sufficiency in the case $t=3$. Assume that

for any cyclic extension $K/k$ contained in $L,$ $MK\approx(0/\mathfrak{p})^{s-1}$ . Furthermore suppose that
$p|h_{L}$ . Then $p|z_{L/K}$ since by [2 Satz 2] we have $h_{L}\equiv z_{L/K}$ mod $p$, where $z_{L/K}$ denotes the
central class number with respect to $L/K$. So there exists an unramified cyclic extension
$L_{1}/L$ of degree $p$ such that $L_{1}/k$ is a Galois extension and $Gal(L_{1}/L)$ is contained in the
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center of $Gal(L_{1}/L)$. Put $A=Gal(L/K),$ $N=Gal(L_{1}/L)$ and $G=Gal(L_{1}/k)$. Let $Z$ be the
center of $G$ and let $E$ be the intermediate field corresponding to $Z$. Then $E\subset L$ and $E/k$

is of degree $p^{2}$ by Lemma 2. And at least two prime ideals are ramified. We first con-
sider the case that only $\mathfrak{p}_{1}$ and $\mathfrak{p}_{2}$ are ramified in $E$. Then $E=K_{1}K_{2}$ and the inertia group
of a prime divisor of $\mathfrak{p}_{3}$ in $L_{1}$ is cyclic of oder $p$ and contained in $Z$, where $Ki$ denotes the
class field corresponding to $I(\mathfrak{p}i)/H(\mathfrak{p};)$ . So the inertia groups of all prime divisors of $\mathfrak{p}_{3}$

in $L_{1}$ coincide. Let $F$ be the inertia field of the prime divisors of $h$ in $L_{1}$ . Then $F/E$ is
an unramified cyclic extension of degree $p$ . Hence $p|hE$, so for any cyclic extension $K/k$

contained in $E,$ $\#(MK)\geqq p2>ps-1$ which cotradicts the assumption. Next we consider
the case that $\mathfrak{p}_{1},$ $\mathfrak{p}_{2}$ and $\mathfrak{p}_{3}$ are ramified in $E$. Let $K$ be a cyclic extension contained in $E$,
in which $\mathfrak{p}_{1},$ $\mathfrak{p}_{2}$ and be are ramified. Since $E/k$ is an abelian extension of type $(p, p)$ and
$p+1>3$, such an extension certainly $eTists$. Then $L_{1}/K$ is an unramified Galois exten-
sion of degree $p^{3}$. Moreover, since $E/K$ is cyclic of degree $p$ and $z$ is the center of $G$, we
see that $L_{1}/K$ is abelian. Hence we have $\#(MK)\geqq p3$ which contradicts the assumption
that $MK\approx(\mathfrak{p}/\mathfrak{p})^{s^{\leftrightarrow 1}}=(0/\mathfrak{p})^{2}$ . Thus we have $pXh_{L}$ . Q.E.D.

REMARK. If $t=1$ , then $L=K_{1}$ and $p\chi h_{L}$ . If $t=2$ , then there exist infinitely many
$L’ s$ with $p|h_{L}$ and $L’ s$ with $p\chi h_{L}$ . In fact, noting the proof of Lemma 1, we see that
there are infinitely many $\mathfrak{p};s$ such that $\#(I(\mathfrak{p}i)/H(\mathfrak{p}\iota))=p$. Let $\mathfrak{p}_{1}$ be a prime ideal of $k$

such that $\#(I(\mathfrak{p}_{1})/H(\mathfrak{p}_{1}))=p$ and let $K_{1}/k$ be the cyclic extension of degree $p$, in which only
$\mathfrak{p}_{1}$ is ramified. Let $p_{2}$ be a prime ideal of $k$ such that $\#(I(p_{2})/H(\mathfrak{p}_{2}))=p$ and $\mathfrak{p}_{2}$ is not de-
composed in $K_{1}$ . Then for $L$ corresponding to these $\mathfrak{p}_{1}$ and $\mathfrak{p}_{2}$, we have $p\chi h_{L}$. Next put
$N=k_{0}K_{1}(P\sqrt{E_{K_{1}}})$, where $k_{0}$ is the ray class field of $kmod p\cdot p_{\infty}$ , and let $\mathfrak{P}_{2^{\prime}}$ be a prime ideal
of $k$ such that $\mathfrak{p}_{2^{J}}$ is completely decomposed in $N$. Then $\#(I(\mathfrak{p}_{2^{\prime}})/H(\mathfrak{p}_{2^{\prime}}))=p$ and $\#(I(\mathfrak{P}_{2^{l}};)$

$/H(\mathfrak{P}_{2^{\prime}};))=p$ for $i=1,$ $p$, where $\mathfrak{P}_{2^{\prime}1}\cdots\cdots \mathfrak{P}_{2^{\prime}p}$ are the prime divisors of $\mathfrak{p}_{2^{\prime}}$ in $K_{1}$ . Let
$K_{2}^{\prime}/k$ be the cyclic extension of degree $p$, in which only $\mathfrak{p}_{2^{\prime}}$ is ramified. Put $L^{\prime}=K_{1}K_{2^{\prime}}$ .
Then $L^{\prime}/K_{1}$ is a cyclic extension of degree $p$, in which $\&_{1}^{\prime},\cdots\cdots,$ $\mathfrak{P}_{2^{\prime}p}$ are ramified. So
rank $M_{L^{\prime}}\geq A-1$ . Thus for $t=2$ there exist infinitely many $L’ s$ such that $p|h_{L}$ . There-
fore for $t=3$, there also exist infinitely many $L’ s$ such that $p|h_{L}$ . Moreover if $k\yen\xi_{p}$,
then for $t=3$ there exist infinitely many $L’ s$ such that $p\chi h_{L}$ . In fact, in this case we see
from Lemma 1 that there exist infinitely many triples of prime ideals $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$ $\mathfrak{p}_{3}$ of $k$, which
satisfy the following conditions:

$\#(I(\mathfrak{p}i)/H(\mathfrak{p};))=p$ for $i=1,2,3$,

$\mathfrak{p}_{1}\not\in H(\mathfrak{p}_{2}),$ $\mathfrak{p}_{1}\not\in H(\mathfrak{p}_{a})$,

$\mathfrak{p}_{2}\not\in H(\mathfrak{p}_{1})$,

$\mathfrak{p}_{3}\in H(h),$ $h\not\in H(h)$ .
Then for $L$ corresponding to these $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$ $\mathfrak{p}_{3}$, we have $pXh_{L}$ byTheorem 2.
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5. Proof of Theorem 3

LEMMA 3. Let $a,$ $b,$ $c,$ $d$ be non-zero elements of $Z/pz$ and let $nbea$ natural number.

If

rank $\{-a_{C}-bc0$

,

$-nb-co_{d}d$

,
$-c-daa0$

,
$-d-an_{0}bb)=2$,

then $1+4n$ is quadratic residue mod $p$ .
PROOF. Easy.
PROOF OF THEOREM 3. Let $n$ be a natural number such that $1+4n$ is non quadratic

reisdue $mod p$ . By Lemma 1 there exist infinitely many 4-tuples of prime ideals $\mathfrak{p}_{1},\cdots\cdots \mathfrak{p}_{4}$

of $k$, which satisfy the following conditions: $\#(I(\mathfrak{p};)/H(\mathfrak{p};))=p$ for $i=1,\cdots\cdots,$ $4$,

$\mathfrak{p}_{1}\in H(\mathfrak{p}_{2})$ ,

$\mathfrak{p}_{2}\not\in H(\mathfrak{p}_{1})$ ,

$\mathfrak{p}_{2}\mathfrak{p}_{3^{-1}}\in H(p_{1})$ , $\mathfrak{p}_{3}\not\in H(\mathfrak{p}_{2})$ ,

$p_{1}\not\in H(\mathfrak{p}_{3})$ , $\mathfrak{p}_{1}\not\in H(\mathfrak{p}_{4})$ ,

$\mathfrak{p}_{2}\not\in H(\mathfrak{p}_{3})$ , $\mathfrak{p}_{1}^{n}\mathfrak{p}_{2^{-1}}\in H(\mathfrak{p}_{4})$,

$p_{3}\in H(\mathfrak{p}_{4})$

$\mathfrak{p}_{4}\in H(\mathfrak{p}_{1})$, $\mathfrak{p}_{3}\mathfrak{p}_{4}^{-1}\in H(\mathfrak{p}_{2})$ , $\mathfrak{p}_{1}\mathfrak{p}_{4}^{-1}\in H(\mathfrak{p}_{3})$ .

Now we shall show that these $\mathfrak{p}_{1},\cdots\cdots \mathfrak{p}_{4}$ satisfy the conditions of our theorem. (i) If $s\leqq 3$,
$ititoseethatM\approx(0/\mathfrak{p})^{s^{-1}}$ . Let s $=4andlet$

$((\frac{\alpha_{i}:K/k}{p_{j}}))_{i,j,-1,\cdots}$

, $=atj$ ,

where $\sigma$ is a generator of $Gal(K/k)$ . Then the matrix $(a;_{j})$ is of the type of Lemma 3
As $1+4n$ is non quadratic residue $mod p$ , we have rank $(aij)=3$ by Lemma 3. Thus MK
$\approx(0/\mathfrak{p})^{3}$. (ii) We first note that for an arbitrary Galois extension $L/k$,

$Gal(L_{1}/L_{0})\approx\frac{(k^{*}\cap N_{L/k}J_{L})/N_{L/k}L^{*}}{(k^{*}\cap(N_{L’ k}L^{*}\cdot N_{L’ k}U_{L}))/N_{L/k}L^{*}}$ ,

$(k^{*}\cap N_{L/k}J_{L})/N_{L/k}L^{*}\approx H^{-3}(Gal(L/k), Z)/F(L/K)$ ,

$(k^{*}\cap(N_{L/k}L^{*}\cdot N_{L/k}U_{L}))/N_{L/k}L^{*}\approx(Ek\cap N_{L/k}U_{L})/(Ek\cap N_{L/k}L^{*})$ ,

where $L_{0}$ : the genus field with respect to $L/k,$ $L_{1}$ : the central class field with respect to
$L/k,$ $J_{L}$ ; the idele group of $L,$ $U_{L}$ : the unit idele group of $L,$ $F(L/K)$ : the subgroup of $H^{-3}$

$(Gal(L/k), Z)$ generated by the canonical injection of $H^{\leftrightarrow 3}(G\mathfrak{p}_{i}(L/k),$ $\partial$ to $H^{-3}(Gal(L/k), Z)$ ,

where $Gp_{i}(L/k)$ is a decomposition group of any one of the prime divisors in $L$ of a prime
$\mathfrak{p}i$ of $k$ and $\mathfrak{p}$; runs over all primes of $k$ ramified in $L$ (cf. [3]). Now let $L/k$ be as in our
theorem. Then from
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$\#(H^{-}KGal(L/k), Z)=p4(4-\iota)/2=p^{6}$ ,

$\#(F(L/k))\leqq p4$

$\#((Ek\cap N_{L/k}U_{L})/(Ek\cap N_{L/k}L^{*}))\leqq p$,

we see $p|h_{L_{0}}$ . Thus we have $p|h_{L}$ . Q.E.D.
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