On the structure of p-class groups of certain number fields II

By

Teruo TAKEUCHI*

(Received November 2, 1977)

1. Introduction

Let \dot{p} be a rational odd prime and let k be an algebraic number field of finite degree, whose class number h_k is prime to ϕ . Let K/k be a cyclic extension of degree ϕ , let \mathfrak{p}_{1} , \ldots, \mathfrak{p}_{t} be the prime ideals of k, ramified in K, and assume $\mathfrak{p}_{1}, \ldots \ldots, \mathfrak{p}_{t}$ are prime to p . If # $\langle I(\mathfrak{p}_i)/H(\mathfrak{p}_i)=p \text{ for } i=1, \text{}, t$, then we can study the p-class group M_K of K analogously to the case $k = \mathbf{Q}$, where $I(\mathfrak{p}_{i})$ denotes the ideal group of k , prime to \mathfrak{p}_{i} $P_{\mathfrak{p}_{i}}$, the ray mod \mathfrak{p}_i and $H(\mathfrak{p}_i)=I(\mathfrak{p}_i)P\mathfrak{p}_{i}$. From Lemma 1 it follows that if k does not contain the primitive p-th roots of unity, then there are infinitely many such \mathfrak{p}_{t}' 's which satisfy some conditions each other.

In the present paper we treat the existence of cyclic extensions K/k 's of degree \dot{p} and *t*-tuples of prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$, which have some properties. Unless otherwise stated the notation of $[4]$ will be taken over. In particular \mathfrak{o} denotes the maximal order of the cyclotomic field of p -th roots of unity and p denotes the prime divisor of p in \mathfrak{o} . Let K/k be a cyclic extension of degree $\mathbf{\hat{p}}_{1}$, in which only $\mathbf{\hat{p}}_{1}, \dots, \mathbf{\hat{p}}_{t}$ are ramified. Then for $\mathfrak{p}_{1}, \dots, \mathfrak{p}_{t}$ the structue of p-class group M_K , in general, is not determined uniquely. In fact we can prove the following theorem.

THEOREM 1. Let k be an algebaic number field of finite degree such that $p\!\nless\!\nmid\!\! h_k$ and $k\!\triangle\!\xi_{p}$, where ξ_{p} denotes a primitive p-th root of unity. Then for any given natural number $t(\geq 3)$, there exist infinitely many t-tuples of prime ideals $\mathfrak{p}_{1},$, \mathfrak{p}_{t} of k , which satisfy the following conditions:

there are cyclic extensions K^{\prime}/k and $K^{\prime\prime}/k$ in which only $\mathfrak{p}_{1}, \cdots,\mathfrak{p}_{t}$ are ramified, such that rank $M_{K}^{\prime}=t-1$ and rank $M_{K}^{\prime\prime}\geq 2t-3-u$, where u denotes the p-rank of unit group E_k of k .

Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$ be prime ideals of k such that $\sharp(I(\mathfrak{p}_{i})/H(\mathfrak{p}_{i}))=p$ for $i=1, \ldots, t$, let K/k be a cyclic extension of degree p , in which only $\mathfrak{p}_{1}, \dots, \mathfrak{p}_{t}$ are ramified and let L be the b-genus field (i.e. \dot{p} -part of the genus field) with respect to K/k . In the case $k=Q$,

*Niigata University

A. Fröhlich [1] determined conditions that $p\chi h_{L}$ for $t \leq 3$, and showed $p|h_{L}$ for $t\leq 4$. Next we shall state for $t \leq 3$, a condition that $p \nmid h_L$ as conditions on cyclic extensions K/k's contained in L. If $p \nmid h_L$, then for any cyclic extension K/k contained in L, we have $M_K \approx (0/\mathfrak{p})^{s-1}$, where s denotes the number of prime ideals of k, ramified in K. In the case $t\leq 3$, the inverse is also true. That is, we have following theorem.

THEOREM 2. Let k be an algebraic number field of finite degree such that $\phi \chi h_k$. Let $\mathfrak{p}_{1}, \dots, \mathfrak{p}_{t}$ prime ideals of k such that that $\frac{*\}{\mathfrak{p}}(I(\mathfrak{p}_{i})/H(\mathfrak{p}_{i}))=p$ for $i=1, \dots, t$. Moreover let the notation be as above. Assume $t\leq 3$. Then a necessary and sufficient condition that $p\!\!\not|\!\!X h_{L}$ is that for any cyclic extension K/k contained in L, $M_k{\approx}($ 0 $/\mathfrak{p})^{\mathsf{s}-1}$, where s denotes the number of prime ideals of k, ramified in K.

From the above theorem and the proof of Lemma 1, it follows that for $t=2,3$, there exits infinitely many *t*-tuples of prime ideals $\mathfrak{p}_{1}, \dots, \mathfrak{p}_{t}$ such that $p|h_{L}$ and for $t=2$ there exist infinitely many couples of prime ideals \mathfrak{p}_{1} , \mathfrak{p}_{2} such that $\mathfrak{p}_{2}K_{1}$. And moreover if k $\oplus \xi_{p}$, then we see that for $t=3$ there exist infinitely many triples of prime ideals \mathfrak{p}_{1} , \mathfrak{p}_{2} , \mathfrak{p}_{3} such that $p_{\textit{X}} h_{\textit{L}}$.

For $t=4$ the condition $M_K\approx(0/\mathfrak{p})^{s-1}$ is a necessary condition that $\mathfrak{p}\chi h_{L}$, but is not a sufficient condition. Finally we shall show the following theorem.

THEOREM 3. Let k be an algebraic number field of finite degree such that $\phi \chi h_{k} , \xi_{\phi} \oplus k$ and p-rank $E_k \leq 1$. Then there exist infinitely many 4-tuples of prime ideals $\mathfrak{p}_{1}, \, \, \cdots \cdots$, \mathfrak{p}_{4} with $\sharp(I(\mathfrak{p}_i)/H(\mathfrak{p}_i)) = p$ for $i=1, \, \, \ldots\ldots,$ 4, which satisfy the following conditions:

Let L be the class field corresponding to $I(\mathfrak{p}_{1}\cdots\cdots \mathfrak{p}_{4})/H(\mathfrak{p}_{1}\cdots\cdots \mathfrak{p}_{4}).$

Then (i) for any cyclic extension K/k contained in L, $M_K\approx(0/\mathfrak{p})^{s-1}$, where s is the number of prime ideals of k , ramified in K .

(ii) $p|h_{L}$.

2. Preliminaries

Let ϕ be an odd rational prime and let k be an algebraic number field of finite degree, whose class number h_k is prime to \mathcal{p} . For an ideal \mathfrak{g} of \mathcal{k} let $I(\mathfrak{a})$ denote the ideal group of k, prime to a, P_a the ray mod a and $H(\mathfrak{a})=I(\mathfrak{a})^pP_a$. Let \mathfrak{p}_i be a prime ideal of k. Then the p-Sylow subgroup of $I(\mathfrak{p}_i)/P_{\mathfrak{p}_i}$ is cyclic since $p\cancel{\perp}h_k$. So $I(\mathfrak{p}_i)/H(\mathfrak{p}_i)$ is cyclic of degree *or trivial.*

LEMMA 1. Let k be as above and assume $k\oplus \xi_{p}$, where ξ_{p} denotes a primitive p-th root of unity. Let $\mathfrak{p}_{1},\ldots,\mathfrak{p}_{t}$ be prime ideals of k such that $\#(I(\mathfrak{p}_{i})/H(\mathfrak{p}_{i}))=p$ for $i=1,\ldots\ldots,t$. For $i{=}1, \, \cdots\cdots$, t let α_i be an element of $I(\mathfrak{p}_i)/H(\mathfrak{p}_i)$ and n_i be a natural number such that $1{\leq}n{\leq}p.$ Then there exist infinitely many prime ideals \mathfrak{p}_{t+1}^{s} , which satisfy the following conditions:

$$
\begin{aligned}\n\mathfrak{p}_{t+1} &\equiv \alpha_i \qquad \text{mod } H(\mathfrak{p}_i) \text{ for } i = 1, \dots, t, \\
\mathfrak{p}_i &\equiv \alpha^n i \text{ mod } H(\mathfrak{p}_{t+1}) \qquad \text{for } i = 1, \dots, t, \\
\#\left(I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1})\right) &= p,\n\end{aligned}
$$

where α is a generator of $I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1}).$

Proof. Let K_{i} be the class field corresponding to $I(\mathfrak{p}_i)/H(\mathfrak{p}_i)$. Then K_{i}/k is the unique cyclic extension of degree p , in which only \mathfrak{p}_{i} is ramified. Hence $K_{1}, \cdots\cdots, K_{t}$ are linearly disjoint over k , so $\overline{K}{=}\,K_{1}\cdots\cdots K_{t}$ is an abelian extension of degree p^{t} over k . Put

$$
\sigma_i = \left(\frac{K_i/k}{\alpha_i}\right) : \text{Artin symbol,}
$$
\n
$$
\sigma = \sigma_1 \times \cdots \times \sigma_t \in Gal\left(\overline{K}/k\right),
$$
\n
$$
K_0 = k_0 \left(\nu \sqrt{F_k}\right),
$$

where E_k is the unit group of k and k_0/k is the ray class field mod $p \cdot p_{\infty}$. As E_k is finite rank, K_{0}/k is finite extension. Moreover since $k_{0}\rightarrow\zeta_{p}$, K_{0}/k_{0} is an abelian extension and K_{0}/k is a Galois extension. First we consider the case $n_{1}\neq p$. Let m be a natural number such that $n_{1}\cdot m=1$ mod p. Put

$$
M_1 = k(\nu \sqrt{p_1 h}),
$$

\n
$$
M_i = k(\nu \sqrt{(p_1 m n_i p_i - 1) h})
$$
 for $i = 2, \dots, t$, where $h = h_k$,
\n
$$
L = M_1 \cdot \dots \cdot M_t K_0,
$$

\n
$$
M = M_2 \cdot \dots \cdot M_t K_0.
$$

Then L/M is a cyclic extension of degree p. As $k\oplus{\xi_{p}}$, L and \overline{K} are liearly disjoint over k. Hence we can chose an element ρ from $Gal\left(N/k\right)$ such that $\rho\!=\!\sigma\!\times\!\tau\!\!\in$ Gal(N/k), where τ is a generator of $\it{Gal}\left(N/M\right)$ and $N\!\!=\!\! \bar{K}L.$ Then from Čěbotarev Density Theorem we see that there exist infinitely many prime ideals \mathfrak{p}_{t+1} 's unramified in N, such that

$$
\rho = \left(\frac{N/k}{\mathfrak{P}_{t+1}}\right):
$$
 Frobenius symbol,

where \mathfrak{B}_{t+1} is a prime divisor of \mathfrak{p}_{t+1} in N, and \mathfrak{p}_{t+1} is prime to \mathfrak{p}_t . Then \mathfrak{p}_{t+1} is completely decomposed in M, in partcular, in k_{0} . Hence $\mathfrak{p}_{t+1} \in P_{\mathcal{P} \cdot \mathcal{P}_{\infty}}$. And for any $\epsilon \in E_{k}$, \mathfrak{p}_{t+1} is completely decomposed in $k(P\sqrt{\varepsilon})$. So the congruence equation $X^{p} \equiv \varepsilon \mod p_{t+1}$ has integer solution in k. Therefore we see $\sharp(E_k k\mathfrak{p}_{t+1}k(\mathfrak{p}_{t+1})p/k\mathfrak{p}_{t+1}k(\mathfrak{p}_{t+1})p)=1$, where $k(\mathfrak{p}_{t+1})$ denotes the subgroup of k^{*} , prime to \mathfrak{p}_{t+1} , and $k\mathfrak{p}_{t+1} = \{ \alpha \in k^{*} | \alpha \equiv 1 \mod \mathfrak{p}_{t+1} \}$. So using the isomorphism $I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1})\approx k(\mathfrak{p}_{t+1})/E_{k}k\mathfrak{p}_{t+1}k(\mathfrak{p}_{t+1})^{p}$, we have $\sharp(I(\mathfrak{p}_{t+1}/H(\mathfrak{p}_{t+1}))=\sharp(k(\mathfrak{p}_{t+1})$ $(k\mathfrak{p}_{t+1}k(\mathfrak{p}_{t+1})p)=p$. Moreover, as \mathfrak{p}_{t+1} is completely decomposed in $M_{2}\cdots\cdots M_{t}$, the congruence equations

$$
X^{p} \equiv (\mathfrak{p}_1 m n_i \mathfrak{p}_i^{-1})^h \quad mod \mathfrak{p}_{t+1}
$$

have integer solutions in k . Hence for $i=2,\cdots, t$,

$$
\mathfrak{p}_1^{mn} \equiv \mathfrak{p}_i \quad mod H(\mathfrak{p}_{t+1}).
$$

Now \mathfrak{p}_{1}^{m} generates $I(\mathfrak{p}_{t+1})/H(\mathfrak{p}_{t+1})$. In fact if $\mathfrak{p}_{1}^{m}\in H(\mathfrak{p}_{t+1})$, then the congruence equation

 $X^{p} \equiv \mathfrak{p}_{1}^{m_{h}} \mod \mathfrak{p}_{t+1}$ has integer solution in k. Thus \mathfrak{p}_{t+1} is completely decomposed in M_{1} , hence in L, which is a contradiction. So, if we put α_{1}^{m} , then

$$
\mathfrak{p}_i \equiv \alpha^n i \quad \mod H \ (\mathfrak{p}_{t+1}) \ \text{for} \ i = 1, \ \cdots \cdots t.
$$

On the other hand, as the restriction of ρ to K_i is σ_i ,

$$
\left(\frac{K_i/k}{\mathfrak{p}_{t+1}}\right)=\left(\frac{K_i/k}{\alpha_i}\right),
$$

so we have $\mathfrak{p}_{t+1}\equiv\alpha_i \mod H(\mathfrak{p}_i)$ for $i=1,\cdots,t$.

In the case $n_{1}=\cdots\cdots=n_{t}=p$ the proof is analogous to the above. Q.E.D.

Let K/k be a cyclic extension of degree p, let $\mathfrak{p}_{1}, \dots, \mathfrak{p}_{t}$ be the prime ideals of k, ramified in K, and assume $\mathfrak{p}_{1}, \dots, \mathfrak{p}_{t}$ are prime to \mathfrak{p} . Then $N\mathfrak{p}_{i}\equiv 1$ *mod* \mathfrak{p} for $i=1, \dots, t$. From the proof of Lemma 1, we see that the natural homorphism:

(1)
$$
I(\mathfrak{p}_1 \cdots \mathfrak{p}_t) / H(\mathfrak{p}_1 \cdots \mathfrak{p}_t) \rightarrow (I(\mathfrak{p}_1) / H(\mathfrak{p}_1)) \times \cdots \times (I(\mathfrak{p}_t) / H(\mathfrak{p}_t))
$$

is surjective. On the other hand $\#(I(\mathfrak{p}_{1}\cdots\cdots\mathfrak{p}_{t})) \leq p^{t}$. Assume $\#(I(\mathfrak{p}_{i})/H(\mathfrak{p}_{i}))=p$ for $i=1, \ldots, t$, then the natural homorphism (1) is an isomorphism. Hence in this case we have $[E_{k} : E_{k}\cap N_{K/k}K^{*}]=1$ since the p-genus field with respect to K/k corresponds to $I(\mathfrak{p}_{1}\cdots\cdots\mathfrak{p}_{l})$ and $\widehat{X} = G$. Let $I(\mathfrak{p}_{1}\cdots\cdots\mathfrak{p}_{l})$. Thus with the notation of [4 $\S2$] we have $r = t-1$ and $\widehat{X} = G$. H be the congruence ideal group corresponding to K/k and let H^{\prime} be the subgroup of $\left(I(\mathfrak{p}_{1})/H(\mathfrak{p}_{1})\right)\times\cdots\cdots\times\left(I(\mathfrak{p}_{t})/H(\mathfrak{p}_{t})\right)$, corresponding to H by the isomorphism (1). Then for

(2)
$$
\left(\frac{\alpha_i: K/k}{\mathfrak{p}_j}\right) = 1
$$
 if and only if $\mathfrak{p}_i \in H(\mathfrak{p}_j)$

and

(3)
$$
\left(\frac{\alpha_i: K/k}{\mathfrak{p}_i}\right) = 1
$$
 if and only if $(\mathfrak{p}_i, \dots, \mathfrak{p}_i, \tilde{1}, \mathfrak{p}_i, \dots, \mathfrak{p}_i) \in H',$

where $(\alpha_{i})=\mathfrak{p}_{i}$ ^h. Let $p^{w}=[E_{k}\cap N_{K/k}K^{*} : N_{K/k}E_{K}]$, then $w \leq p\text{-}rank}\ E_{k}$ and $cl_{p}(\mathfrak{p}_{1}),\cdots\cdots$, $cl_{p}(\mathfrak{p}_{t})$ generate the subgroup of $M_{K(\sigma-1)}$, of rank $t-1-w$, where \mathfrak{p}_{i} is the prime divisor of \mathfrak{p}_i , in K and σ is a generator of $Gal(K/k)$. Put

$$
\left(\left(\frac{\alpha_i: K/k}{p_j}\right)\right)_{i,j=1,\cdots,t} = (\sigma^{aij}) a_{ij} \in Z/pZ,
$$

then

(4) $t-1\geq rank(a_{ij})+w\geq v\geq rank(a_{ij}),$

where $\#(\chi_{K/k}(M_{K(\sigma-1)}))=p^v$. Hence, if rank $(a_{ij})=t-1$, then $w=0$ and $v=t-1$. So M_K is an elementary abelian group of rank $t-1$ by [4 Theorem 2].

3. Proof of Theorem ¹

PROOF OF THEOREM 1. From Lemma 1 we see that there exist infinitely many *t*-tuples of prime ideals $\mathfrak{p}_{1}, \dots, \mathfrak{p}_{t}$ which satisfy the following conditions:

$$
\begin{aligned}\n\sharp(I(\mathfrak{p}_i)/H(\mathfrak{p}_i)) &= p \qquad \text{for } i = 1, \dots, t, \\
\mathfrak{p}_1 &\in H(\mathfrak{p}_2 \dots \dots \mathfrak{p}_t), \\
\mathfrak{p}_2 &\in H(\mathfrak{p}_1), \mathfrak{p}_2 \in H(\mathfrak{p}_3 \dots \dots \mathfrak{p}_t), \\
\mathfrak{p}_3 &\in H(\mathfrak{p}_1), \mathfrak{p}_3 \in H(\mathfrak{p}_2), \mathfrak{p}_3 \in H(\mathfrak{p}_3 \dots \dots \mathfrak{p}_t), \\
\mathfrak{p}_i \mathfrak{p}_3^{-1} &\in H(\mathfrak{p}_1 \mathfrak{p}_2), \mathfrak{p}_i \in H(\mathfrak{p}_3 \dots \dots \mathfrak{p}_{i-1} \mathfrak{p}_{i+1} \dots \dots \mathfrak{p}_t) \qquad \text{for } i = 4, \dots, t.\n\end{aligned}
$$

Let K/k be a cyclic extension of degree $\mathbf{\hat{p}}_{1}$, in which only \mathfrak{p}_{1} ,, \mathfrak{p}_{t} are ramified. Then by (2) and (3) we have

$$
\left(\left(\frac{\alpha_i: K/k}{p_j}\right)_{i,j=1,\dots,t} = \begin{pmatrix} 1, 1, 1, 1, 1, \dots 1 \\ *, *, 1, 1, 1, \dots 1 \\ *, *, ?, 1, 1, \dots 1 \\ *, *, 1, ?, 1, \dots 1 \\ \vdots, \vdots, \vdots, \vdots, \vdots, \dots \vdots \\ *, *, 1, 1, 1, \dots 2 \end{pmatrix}, \right)
$$

where $(\alpha_{i}) = \mathfrak{p}_{i}h$ and * denotes non-identity. First let $K = K^{\prime}$ be such that $(\mathfrak{p}_{3}, \mathfrak{p}_{3}, 1, \mathfrak{p}_{3}, \ldots)$ $(p_3) \oplus H'$ (such an extension certainly exists). Then, as $(p_3, p_3, 1, p_3, \ldots, p_3) \equiv (p_i, \ldots, p_i, 1, p_i, p_3, \ldots, p_i)$ \ldots, \mathfrak{p}_{i}) mod $H(\mathfrak{p})\times\ldots\cdots\times H(\mathfrak{p}_{t})$ for $i=4,\ldots, t$, we have rank $\left(\begin{array}{c} \left(\frac{\alpha_{i}:K^{\prime}/R}{n_{i}}\right) \\ \vdots \\ 0 \end{array}\right)=t-1$ by (3). Thus we obtain $M_K^{\prime}\approx(0/\mathfrak{p})^{t-1}$ from [4 Theorem 2]. Next let $K=K^{\prime\prime}$ be such that (h₃, $\mathfrak{p}_{3}, 1, \mathfrak{p}_{3}, \ldots, \mathfrak{p}_{3} \in H^{\prime}$ (such an extension also exist). Then we have similarly rank $\left(\left(\frac{\alpha_{i}:K^{-}/R}{p}\right)\right)=1$. So from [4 Theorem 2] and (4), we see rank $M_{K}^{\prime\prime}\geq 2t-3-u$. Q.E.D.

4. Proof of Theorem 2

LEMMA 2. Let A be an abelian group of type (p, p, p) and let N be a cyclic group of order \dot{p} . Let $1\rightarrow N\rightarrow G\rightarrow A\rightarrow 1$ be a non abel central extension of N by A. Then the order of the center of G is p^{2} .

PROOF. Easy.

PROOF OF THEOREM 2. We prove only the sufficiency in the case $t=3$. Assume that for any cyclic extension K/k contained in L, $M_K\approx(0/\mathfrak{p})^{s-1}$. Furthermore suppose that $p|h_{L}$. Then $p|z_{L/K}$ since by [2 Satz 2] we have $h_{L}\equiv z_{L/K}$ mod p , where $z_{L/K}$ denotes the central class number with respect to L/K . So there exists an unramified cyclic extension L_{1}/L of degree p such that L_{1}/k is a Galois extension and $Gal(L_{1}/L)$ is contained in the

center of $Gal(L_{1}/L)$. Put $A=Gal(L/K)$, $N=Gal(L_{1}/L)$ and $G=Gal(L_{1}/k)$. Let Z be the center of G and let E be the intermediate field corresponding to Z . Then $E\subset L$ and E/k is of degree p^{2} by Lemma 2. And at least two prime ideals are ramified. We first consider the case that only \mathfrak{p}_{1} and \mathfrak{p}_{2} are ramified in E . Then $E=K_{1}K_{2}$ and the inertia group of a prime divisor of \mathfrak{p}_{3} in L_{1} is cyclic of oder \mathfrak{p}_{3} and contained in Z , where K_{i} denotes the class field corresponding to $I(\mathfrak{p}_i)/H(\mathfrak{p}_i)$. So the inertia groups of all prime divisors of \mathfrak{p}_{3} in L_{1} coincide. Let F be the inertia field of the prime divisors of \mathfrak{p}_3 in L_{1} . Then F/E is an unramified cyclic extension of degree \dot{p} . Hence \dot{p}/h_E , so for any cyclic extension K/k contained in E, $\sharp(M_K) \geq p^2 > p^{s-1}$, which cotradicts the assumption. Next we consider the case that \mathfrak{p}_{1} , \mathfrak{p}_{2} and \mathfrak{p}_{3} are ramified in E. Let K be a cyclic extension contained in E, in which \mathfrak{p}_{1} , \mathfrak{p}_{2} and \mathfrak{p}_{3} are ramified. Since E/k is an abelian extension of type (p, p) and $p+1>3$, such an extension certainly exists. Then L_{1}/K is an unramified Galois extension of degree p^{3} . Moreover, since E/K is cyclic of degree p and z is the center of G , we see that L_{1}/K is abelian. Hence we have $\#(M_K)\geq p^3$, which contradicts the assumption that $M_K\approx(\mathfrak{p}/\mathfrak{p})^{s-1}=(\mathfrak{0}/\mathfrak{p})^{2}$. Thus we have $\mathfrak{p}\times h_{L}$. Q.E.D.

REMARK. If $t=1$, then $L=K_{1}$ and $p\chi h_{L}$. If $t=2$, then there exist infinitely many L's with $p|h_{L}$ and L's with $p\llbracket h_{L}$. In fact, noting the proof of Lemma 1, we see that there are infinitely many \mathfrak{p}_i 's such that $\sharp(I(\mathfrak{p}_i)/H(\mathfrak{p}_i))=p$. Let \mathfrak{p}_{1} be a prime ideal of k such that $\#(I(\mathfrak{p}_{1})/H(\mathfrak{p}_{1}))=p$ and let K_{1}/k be the cyclic extension of degree p, in which only \mathfrak{p}_{1} is ramified. Let \mathfrak{p}_{2} be a prime ideal of k such that $\#(I(\mathfrak{p}_{2})/H(\mathfrak{p}_{2}))=p$ and \mathfrak{p}_{2} is not decomposed in K_{1} . Then for L corresponding to these \mathfrak{p}_{1} and \mathfrak{p}_{2} , we have $\mathfrak{p}\times\hbar L$. Next put $N=k_{0}K_{1}(P\sqrt{Ex_{1}})$, where k_{0} is the ray class field of $k \mod p\cdot p_{\infty}$, and let $\mathfrak{B}_{2}^{\prime}$ be a prime ideal of k such that \mathfrak{p}_{2} is completely decomposed in N. Then $\sharp(I(\mathfrak{p}_{2}^{\prime})/H(\mathfrak{p}_{2}^{\prime}))=p$ and $\sharp(I(\mathfrak{P}_{2}^{\prime}i))$ $/H(\mathfrak{B}_{2}^{\prime})=p$ for $i=1, \dots, p$, where $\mathfrak{B}_{2^{\prime}1}, \dots, \mathfrak{B}_{2^{\prime}p}$ are the prime divisors of $\mathfrak{p}_{2}^{\prime}$ in K_{1} . Let K_{2}^{\prime}/k be the cyclic extension of degree p , in which only p_{2}^{\prime} is ramified. Put $L^{\prime}=K_{1}K_{2}^{\prime}$. Then L^{\prime}/K_{1} is a cyclic extension of degree \cancel{p} , in which $\mathfrak{P}_{2^{\prime}}_{1},\ldots,\mathfrak{P}_{2^{\prime}}_{p}$ are ramified. So rank $M_{L}^{\prime} \geq p-1$. Thus for $t=2$ there exist infinitely many L's such that $p|h_{L}$. Therefore for $t=3$, there also exist infinitely many L's such that $p|h_{L}$. Moreover if $k\oplus\xi_{p}$, then for $t=3$ there exist infinitely many L's such that $p\llap{/}rh_{L}$. In fact, in this case we see from Lemma 1 that there exist infinitely many triples of prime ideals \mathfrak{p}_{1} , \mathfrak{p}_{2} , \mathfrak{p}_{3} of k , which satisfy the following conditions:

$$
\begin{aligned}\n\sharp(I(\mathfrak{p}_i)/H(\mathfrak{p}_i)) &= p & \text{for } i = 1, 2, 3, \\
\mathfrak{p}_1 &\in H(\mathfrak{p}_2), \mathfrak{p}_1 \notin H(\mathfrak{p}_3), \\
\mathfrak{p}_2 &\in H(\mathfrak{p}_1), \\
\mathfrak{p}_3 &\in H(\mathfrak{p}_1), \mathfrak{p}_3 \notin H(\mathfrak{p}_2).\n\end{aligned}
$$

Then for L corresponding to these \mathfrak{p}_{1} , \mathfrak{p}_{2} , \mathfrak{p}_{3} , we have $\mathfrak{p}_{2} \mathcal{N}h_{L}$ by Theorem 2.

5. Proof of Theorem 3

LEMMA 3. Let a, b, c, d be non-zero elements of $\mathbb{Z}/p\mathbb{Z}$ and let n be a natural number. If

$$
rank \begin{pmatrix} -a-b, & 0, & a, & b \\ c, & -nb-c, & 0, & nb \\ c, & d, & -c-d, & 0 \\ 0, & d, & a, & -d-a \end{pmatrix} = 2,
$$

then $1+4n$ is quadratic residue mod p .

PROOF. Easy.

PROOF OF THEOREM 3. Let n be a natural number such that $1+4n$ is non quadratic reisdue mod p. By Lemma 1 there exist infinitely many 4-tuples of prime ideals $\mathfrak{p}_{1},\ldots\ldots\mathfrak{p}_{4}$ of k, which satisfy the following conditions: $\sharp(I(\mathfrak{p}_i)/H(\mathfrak{p}_i))=p$ for $i=1,\ldots, 4$,

$$
\begin{aligned}\n &\text{p}_1 \in H(\mathfrak{p}_2), &\text{p}_1 \in H(\mathfrak{p}_3), &\text{p}_1 \in H(\mathfrak{p}_4), \\
 &\text{p}_2 \in H(\mathfrak{p}_1), &\text{p}_2 \in H(\mathfrak{p}_3), &\text{p}_1 \mathfrak{n}_2 \mathfrak{p}_2^{-1} \in H(\mathfrak{p}_4), \\
 &\text{p}_2 \mathfrak{p}_3^{-1} \in H(\mathfrak{p}_1), &\text{p}_3 \in H(\mathfrak{p}_2), &\text{p}_1 \mathfrak{p}_4^{-1} \in H(\mathfrak{p}_3). \\
 &\text{p}_4 \in H(\mathfrak{p}_1), &\text{p}_3 \mathfrak{p}_4^{-1} \in H(\mathfrak{p}_2), &\text{p}_1 \mathfrak{p}_4^{-1} \in H(\mathfrak{p}_3).\n \end{aligned}
$$

Now we shall show that these $\mathfrak{p}_{1},\ldots,\mathfrak{p}_{4}$ satisfy the conditions of our theorem. (i) If $s\leq 3$, it is easy to see that $M_K \approx (0/\mathfrak{p})^{s-1}$. Let $s = 4$ and let

$$
\left(\left(\frac{\alpha_i:K/k}{\mathfrak{p}_j}\right)\right)_{i,j,1,\ldots,4}=(\sigma^{aij}),\ a_{ij}\in\mathbb{Z}/p\mathbb{Z},
$$

where σ is a generator of $Gal(K/k)$. Then the matrix (a_{ij}) is of the type of Lemma 3 As $1+4n$ is non quadratic residue mod p, we have rank $(a_{ij})=3$ by Lemma 3. Thus M_K \approx (0/p)³. (ii) We first note that for an arbitrary Galois extension L/k ,

$$
Gal (L_1/L_0) \approx \frac{(k^* \cap N_{L/k}L)/N_{L/k}L^*}{(k^* \cap (N_{L/k}L^* \cdot N_{L/k}U_L))/N_{L/k}L^*},
$$

\n
$$
(k^* \cap N_{L/k}J_L)/N_{L/k}L^* \approx H^{-3}(Gal (L/k), Z)/F(L/K),
$$

\n
$$
(k^* \cap (N_{L/k}L^* \cdot N_{L/k}U_L))/N_{L/k}L^* \approx (E_k \cap N_{L/k}U_L)/(E_k \cap N_{L/k}L^*),
$$

where L_{0} : the genus field with respect to L/k , L_{1} : the central class field with respect to L/k , J_{L} : the idele group of L, U_{L} : the unit idele group of $L, F(L/K)$: the subgroup of H^{-3} $(Gal(L/k), Z)$ generated by the canonical injection of $H^{-3}(G_{\mathcal{P}_{i}}(L/k), Z)$ to $H^{-3}(Gal(L/k), Z)$, where $G_{p_{i}}(L/k)$ is a decomposition group of any one of the prime divisors in L of a prime \mathfrak{p}_i of k and \mathfrak{p}_i runs over all primes of k ramified in L (cf. [3]). Now let L/k be as in our theorem. Then from

 $\sharp (H^{-3}(Gal(L/k), Z)=p^{4(4-1)/2}=p^{6},$ $\sharp(F(L/k))\leq p^4$, $\#((E_k\cap N_{L/k}U_{L})/(E_k\cap N_{L/k}L^{*}))\leq p,$

we see $p|h_{Lo}$. Thus we have $p|h_{Lo}$. \Box

References

- [1] A. FRÖHLICH. On the absolute class-group of abelian field. J. London Math. Soc., 29 (1954), 211-217.
- [2] Y. FURUTA. Über das Geschlecht und die Klassenzahl eines Relativ-Galoisschen Zahlkorpers von Primzahlpotenzgrade. Nagoya Math. J., 37 (1970), 197-200.
- [3] Y. FURUTA. On class field towers and the rank of ideal class groups. Nagoya Math. J., 48 (1972), 147-157.
- [4] T. TAKEUCHI. On the structure of p-class groups of certain number field. Sci. Rep. Niigata Univ. Series A, 14 (1977), 25-33.