On the quasi-spannability of graphs

By

Chikō Yoshioka*

(Received November 8, 1976)

Definitions and general results

In [1], Pippenger-Golumbic defined the inducibility of k-vertex graphs. Similarly to [1], we will define the 'quasi'-spannability of k-edge graphs.

In this paper, a graph is an undirected graph with no loops, no multiple edges and no isolated vertices. For a graph G, let V(G) and E(G) denote the set of vertices and edges of G, respectively.

Let G, H be graphs such that |E(G)| = k and |E(H)| = n where k < n. s(G, H) denote the number of subgraphs of H, which are isomorphic to G. Since this number lies between 0 and, $\binom{n}{k}$, we normalize it by setting $S(G, H) = \frac{s(G, H)}{\binom{n}{k}}$. Let s(G, H) denote the

maximum, taken over all n-edge graphs H, of s(G, H). A subgraph of H which is isomorphic to G, if necessary by adding some isolated vertices, is a spanning graph of H. Thus, we define the *n*-quasi-spannability of G to be $S(G, n) = \frac{s(G, n)}{\binom{n}{k}}$. Theorem 1. For any k-edge graph G and any n > k, $S(G, n+1) \le S(G, n)$.

PROOF. Let H be a (n+1)-edge graph such that s(G, H) = s(G, n+1). graph of H which is isomorphic to G has k edges, and |E(H)| = n+1. Hence, there is some edge e of H such that $m(e) \le k \cdot \frac{s(G, n+1)}{n+1}$ where m(e) denotes the number of subgraphs of H which are isomorphic to G and contain e. If we delete this edge (and all isolated vertices), the resulting graph H-e has n edges, and we have:

$$s(G, n) \ge s(G, H-e) \ge s(G, n+1) - k \cdot \frac{s(G, n+1)}{n+1}$$
.

Hence,

$$\frac{s(G, n)}{\binom{n}{k}} \ge \frac{s(G, n+1)}{\binom{n}{k} \frac{n+1}{n+1-k}} = \frac{s(G, n+1)}{\binom{n+1}{k}}.$$

This completes the proof of Theorem 1.

^{*} Niigata Universify.

36 C. Yoshioka

By Theorem 1, it follows that the sequence S(G, n) is nonincreasing and bounded below by 0. Thus, we define the *quasi-spannability* of G to be $S(G) = \lim_{n \to \infty} S(G, n)$.

For graphs G, G', $G \cup G'$ denotes the disjoint sum of G and G', and $2G = G \cup G$ etc. K_n and $L_n(=K_{1,n})$ denote the complete n-vertex graph and the n-claw, respectively. P_n and C_n denote the path and the cycle with n edges, respectively.

The following theorems are obtained easily:

THEOREM 2. (1) $S(kP_1) = 1$.

(2)
$$S(L_k) = 1$$
.

In fact, it is clear that $s(kP_1, nP_1) = {n \choose k}$ and $s(L_k, L_n) = {n \choose k}$.

THEOREM 3. (1) $S(P_k, k+1) = 1$.

(2)
$$S(hP_2 \cup P_1, 2h+2) = 1$$
.

In fact, it is clear that $s(P_k, C_{k+1}) = k$ and $s(hP_2 \cup P_1, (h+1)P_2) = 2h+2$.

THEOREM 4. (1) $s(K_k, K_m) = \binom{n}{k}$.

$$(2) \quad s(L_h \cup L_{k-h}, L_r \cup L_{n-r}) = \begin{cases} \binom{r}{h} \binom{n-r}{k-h} + \binom{r}{k-h} \binom{n-r}{h}, & h \neq k-h \\ \binom{r}{h} \binom{n-r}{h}, & h = k-h \end{cases}$$

For n > k, there is unique (m, r) such that $\binom{m}{2} + r = n$, $0 \le r < m$. $K_m * L_r$ denotes the graph which is shown in Fig. 1— $V(K_m * L_r) = V(K_m) \cup \{v\}$, $E(K_m * L_r) = E(K_m) \cup EL$ where $EL = \{e_1, ..., e_r\}$.

THEOREM 5.
$$s(P_k, K_m*L_r) = \frac{1}{2} {}_{m}P_{k+1} + r {}_{m-1}P_{k-1} + {r \choose 2}(k-1) {}_{m-2}P_{k-2}.$$

PROOF. The first term is equal to $s(P_k)$,

 K_m) — the half of the number of permutations of (k+1) elements in $V(K_m)$. The second term is the number of P_k 's such that $|E(P_k) \cap EL| = 1$: Let e_i be the said edge. If $v_{i_1}, ..., v_{i_{k-1}}$ are (k-1) elements in $V(K_m) - \{v_i\}$, then there is one required P_k — the path $(v \ v_1 \ v_{i_1} ... \ v_{i_{k-1}})$. The last term is the number of P_k 's such that $|E(P_k) \cap EL| = 2$: Let e_i , $e_{i'}$ be the said edges. If $v_{i_1}, ..., v_{i_{k-2}}$ are (k-2) elements in $V(K_m) - \{v_i, v_{i'}\}$, then there are (k-1) required P_k 's — the paths $(v_{i_1} ... \ v_{i_j} v_i \ v_{i'} \ v_{i_{j+1}} ... \ v_{i_{k-2}})$ (j=0, 1, ..., k-2).

2. Results for small k's

In this section, we consider the quasi-spannability of k-edge graphs for k=1, 2, 3 and 4.

Case of k=1. By Theorem 2, we have: $S(P_1)=1$.

Case of k=2. By Theorem 2, we have: $S(2P_1)=1$ and $S(P_2)=1$.

Case of k=3. There are five 3-edge graphs— $3P_1$, L_3 , P_2P_1 , P_3 and K_3 .

- (1) $S(3P_1) = 1$ and $S(L_3) = 1$ by Theorem 2.
- (2) $S(P_2 \cup P_1) \ge \frac{3}{4}$. In fact, by Theorem 4 (2),

$$s(P_2 \cup P_1, L_r \cup L_{n-r}) = {r \choose 2} {n-r \choose 1} + {r \choose 1} {n-r \choose 2} = \frac{r(n-r)(n-2)}{2}.$$

This number is maximum for $r = \left[\frac{n}{2} \right]$: that is,

$$s(P_2 \cup P_1, 2L_r) = \frac{1}{8} n^2(n-2)$$
 for $n=2r$

$$s(P_2 \cup P_1, L_r \cup L_{r+1}) = \frac{1}{8} (n+1) (n-1) (n-2)$$
 for $n=2r+1$

Hence, we have:

$$S(P_2 \cup P_1, n) \ge \begin{cases} \frac{3n}{4(n-1)} & \text{for even } n \\ \frac{3(n+1)}{4n} & \text{for odd } n \end{cases}$$

(3) By Theorem 5,

$$s(P_3, K_m*L_r) = \frac{1}{2} m(m-1) (m-2) (m-3) + r(m-2) (m+r-2).$$

Hence, we have: $\lim_{m\to\infty} S(P_3, K_m*L_r) = 0$

(4) $s(K_3, K_m*L_r) = {m \choose 3} + {r \choose 2}$. In fact, the first term is equal to $s(K_3, K_m)$. The second term is the number of K_3 's such that $|E(K_3) \cap EL| = 2$: Let e_i , $e_{i'}$ be the said edges. Then there is one required K_3 —the cycle $(v \ v_i \ v_{i'} \ v)$. Hence, we have: $\lim_{n\to\infty} S(K_3, K_m*L_r) = 0$.

Case of k=4. There are eleven 4-edge graphs— $4P_1$, L_4 , $2P_2$, $L_3 \cup P_1$, P_4 , C_4 , K_3* P_1 , P_4 (See Fig. 2), $P_3 \cup P_1$, $K_3 \cup P_1$ and $P_2 \cup 2P_1$.

- (1) $S(4P_1)=1$ and $S(L_4)=1$ by Theorem 2.
- (2) $S(2P_2) \ge \frac{3}{8}$. In fact, by Theorem 4 (2),

$$s(2P_2, L_r \cup L_{n-r}) = {r \choose 2} {n-r \choose 2} = \frac{1}{4} r(r-1) (n-r)$$

$$(n-r-1).$$

This number is maximum for $r = \left[\frac{n}{2} \right]$: that is,

$$s(2P_2, 2L_r) = \frac{1}{64} n^2 (n-2)^2$$
 for $n=2r$,

$$s(2P_2, L_r \cup L_{r+1}) = \frac{1}{64} (n+1) (n-1)^2 (n-3)$$
 for $n=2r+1$.

Hence, we have:

$$s(2P_2, n) \ge \begin{cases} \frac{3n(n-2)}{8(n-1)(n-3)} & \text{for even } n, \\ \frac{3(n+1)(n-1)}{8n(n-2)} & \text{for odd } n. \end{cases}$$

(3) $S(L_3 \cup P_1) \ge \frac{1}{2}$. In fact, by Theorem 4 (2),

$$s(L_3 \cup P_1, L_r \cup L_{n-r}) = {r \choose 3} {n-r \choose 1} + {r \choose 1} {n-r \choose 3} = \frac{1}{6} r(n-r) ((r-1) (r-2) + (n-r-1) (n-r-2)).$$

This number is maximum for $r = \left[\frac{n+1+\sqrt{3n-4}}{2}\right]$ and $n-r = \left[\frac{n+1-\sqrt{3n-4}}{2}\right]$. For these r and n-r, the coefficient of n^4 in $s(L_3 \cup P_1, L_r \cup L_{n-r})$ is equal to $\frac{1}{48}$. On the other hand, the coefficient of n^4 in $\binom{n}{4}$ is equal to $\frac{1}{24}$. Hence, we have: $S(L_3 \cup P_1) \ge \frac{1}{2}$.

(4) By Theorem 5,

$$s(P_4, K_m*L_r) = \frac{1}{2}m(m-1)(m-2)(m-3)(m-4) + \frac{1}{2}r(m-2)(m-3)$$

(2m+3r-5).

Hence, we have: $\lim_{m\to\infty} S(P_4, K_m * K_r) = 0$.

- (5) $s(C_4, K_m*L_r) = 3\binom{m}{4} + \binom{r}{2}(n-2)$. In fact, the first term is equal to $s(C_4, K_m)$: Let v_1, \ldots, v_4 be four vertices of K_m . Then there are three required C_4 's—the cycles $(v_1v_2v_3v_4v_1)$, $(v_1v_2v_4v_3v_1)$ and $(v_1v_3v_2v_4v_1)$. The second term is the number of C_4 's such that $|E(C_4) \cap EL| = 2$: Let e_i , $e_{i'}$ be the said edges. If v_j is an element in $V(K_m) \{v_i, v_{i'}\}$, then there is one required C_4 —the cycle $(vv_iv_jv_{i'}v)$. Hence, we have: $\lim_{n\to\infty} S(C_4, K_m*L_r) = 0$.
- (6) $s(K_3*P_1, K_m*L_r) = 3\binom{m}{3}(m-3) + r\binom{m-1}{2} + 2\binom{r}{2}(m-2) + 3\binom{r}{3}$. In fact, the first term is equal to $s(K_3*P_1, K_m)$: Let v_1, v_2, v_3 be three vertices of K_m , and v_j be an element in $V(K_m) \{v_1, v_2, v_3\}$. Then there are three required K_3*P_1 's—the graphs $(v_1v_2v_3v_1)*(v_iv_j)$ (i=1, 2, 3). The second term is the number of K_3*P_1 's such that $|E(K_3*P_1) \cap EL| = 1$: Let e_i be the said edge, and v_j, v_j be two elements in $V(K_m) \{v_i\}$. Then there is one required K_3*P_1 —the graph $(v_iv_jv_j,v_i)*(v_i)$. The third term is the number of K_3*P_1 's such that $|E(K_3*P_1) \cap EL| = 2$: Let e_i , e_i be the said edges, and v_j be an element in $V(K_m) \{v_i, v_i\}$. Then there are two required K_3*P_1 's—the graphs $(v_iv_i,v_j)*(v_iv_j)$ and $(v_iv_i,v_j)*(v_i,v_j)*(v_i,v_j)$. The last term is the number of K_3*P_1 's such that $|E(K_3*P_1) \cap EL| = 3$: Let e_i , e_i , e_i , e_i be the said edges. Then there are three required K_3*P_1 's—the graphs $(v_i,v_i,v_j)*(v$
- (7) Let $L_r ** L_{n-r-1}$ denote the graph which is shown in Fig. 3.

Since $T_4 = L_1 ** L_2$, we have:

$$s(T_4, L_r ** L_{n-r-1}) = {r \choose 2} {n-r-1 \choose 1} + {r \choose 1}$$
$${n-r-1 \choose 2} = \frac{1}{2} r(n-r-1) (n-3).$$

This number is maximum for $r = \left[\frac{n-1}{2}\right]$: that is,

$$s(T_4, L_r ** L_{r-1}) = \frac{1}{8} n(n-2) (n-3)$$

for $n=2r$,

$$s(T_4, L_r ** L_r) = \frac{1}{8} (n-1)^2 (n-3)$$
 for $n=2r+1$.

Hence, we have: $\lim_{n\to\infty} S(T_4, L_r **L) = 0$ were $L=L_{r-1}$ or L_r .

(8) Since $P_3=L_1**L_1$, we have:

$$s(P_3 \cup P_1, L_r **L_{r'} \cup L_t **L_{t'}) = rr'(t+t'+1) + (r+r'+1)tt'.$$

Hence, for example, we have:

$$s(P_3 \cup P_1, 2(L_r **L_{r-1})) = \frac{1}{16} n^2 (n-4) \qquad \text{for } n = 4r.$$

$$s(P_3 \cup P_1, L_r **L_{r-1} \cup L_r **L_r) = \frac{1}{16} (n-1) (n^2 - 3n - 3) \qquad \text{for } n = 4r + 1,$$

$$s(P_3 \cup P_1, 2(L_r **L_r)) = \frac{1}{16} n(n-2)^2 \qquad \text{for } n = 4r + 2,$$

$$s(P_3 \cup P_1, L_r **L_r \cup L_r **L_{r+1}) = \frac{1}{16} (n+1) (n-2) (n-3) \qquad \text{for } n = 4r + 3.$$

In these cases, $\lim_{n\to\infty} S(P_3 \cup P_1, ---) = 0$.

(9) For n, there is unique (n, r) such that (i) $n = (m-1)m + r(0 \le r < m)$, or (ii) $n = m^2 + r$ $(0 \le r < m)$.

(i)
$$s(K_3 \cup P_1, K_m \cup K_m * L_r) = {m \choose 3} {m \choose 2} + r + {m \choose 3} {m-3 \choose 2} + {m \choose 3} + {r \choose 2} {m \choose 2} + {m \choose 3} + {m \choose 3}$$

In fact, the first three terms are equal to $s(K_3, K_m) \cdot s(P_1, K_m * L_r)$, $s(K_3 \cup P_1, K_m)$ and $s(K_3, K_m * L_r) \cdot s(P_1, K_m)$, respectively. Also, the sum of the other terms is equal to $s(K_3 \cup P_1, K_m * L_r)$ —The fourth term is equal to $s(K_3 \cup P_1, K_m)$. The fifth term is the number of $K_3 \cup P_1$'s such that K_3 is a subgraph of K_m and P_1 is some e_i . The last term is the number of $K_3 \cup P_1$'s such that $|E(K_3 \cup P_1) \cap EL| = 2$: Let e_i , $e_{i'}$ be the said edges, and v_j , $v_{j'}$ be two elements of $V(K_m) - \{v_i, v_{i'}\}$, then there is one required $K_3 \cup P_1$ —the graph $(vv_i v_i v_j) \cup (v_j v_{j'})$.

(ii) Similarly to (i), we have:

$$s(K_3 \cup P_1, K_{m+1} \cup K_m * L_r) = {m+1 \choose 3} ({m \choose 2} + r) + {m+1 \choose 3} {m-2 \choose 2} + ({m \choose 3} + {r \choose 2}) ({m+1 \choose 2} + {m \choose 3} ({m-3 \choose 2} + r) + {r \choose 3} + {r \choose 2} ({m-2 \choose 2}).$$

Hence, in these cases, $\lim_{n\to\infty} S(K_3 \cup P_1, ---) = 0$.

(10) $s(P_2 \cup 2P_1, C_n) = n\left(\binom{n-4}{2} - (n-5)\right) = \frac{1}{2}n(n-5)(n-6)$. In fact, let $C_n = (v_1v_2...v_nv_1)$ and $P_2 = (v_1v_2v_3)$. Then the number of subgraphe of $P_{n-4} = (v_4v_5...v_n)$ which are isomorphic to $2P_1$ is equal to $\binom{n-4}{2} - (n-5)$. Hence, we have: $\lim_{n\to\infty} S(P_2 \cup 2P_1, C_n) = 0$

Reference

[1] PIPPENGER, N. and GOLUMBIC, M. C.: The inducibility of graphs. J. Comb. Th. (B) 19 (1975) 189-203.