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1. Definitions and general results

In [1], Pippenger-Golumbic defined the inducibility of k-vertex graphs. Similarly to
[1], we will define the ‘quasi’-spannability of k-edge graphs.

In this paper, a graph is an undirected graph with no loops, no multiple edges and no
isolated vertices. For a graph G, let V(G) and E(G) denote the set of vertices and edges
of G, respectively.

Let G, H be graphs such that | E(G) |=k and | E(H) | =n where k<n. s(G, H) denote
the number of subgraphs of H, which are isomorphic to G. Since this number lies bet-
ween 0 and, (Z) , we normalize it by setting S(G, H) = f%& . Let s(G, H) denote the

, k
maximum, taken over all n-edge graphs H, of s(G, H). A subgraph of H which is iso-
morphic to G, if necessary by adding some isolated vertices, is a spanning graph of H.

Thus, we define the n-quasi-spannabifity of G tobe S(G, n)= —s—(ﬁ’;"—)

k
TuroreMm 1. For any k-edge graph G and any n™>k, S(G, n+1)=S(G, n).

Proor. Let H be a (n+1)-edge graph such that s(G, H) =s(G, n+1). Each sub-
graph of H which is isomorphic to G has & edges, and | E(H) |=n+1. Hence, there is
some edge e of H such that m(e) < k- i(—%"——H)—where m(e) denotes the number of sub-

+1
graphs of H which are isomorphic to G and contain e. If we delete this edge (and all

isolated vertices), the resulting graph H—e has #n edges, and we have:

- —p. 3G nt])
s(G,n);s(G,H e)=s(G nt+1)—k AT .

Hence,
s(G, n) - s(G, n+1) _ s(G, n+1 .
)~ Gra= (%)

This completes the proof of Theorem 1.

* Niigata Universify.
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By THeorReEM 1, it follows that the sequence S(G, ») is nonincreasing and bounded
below by 0. Thus, we define the gquasi-spannability of G to be S(G) =limy—, S(G, n).

For graphs G, G, GU G’ denotes the disjoint sum of G and G, and 2G=GUG etc. K,
and L, (=K;,») denote the complete n-vertex graph and the n-claw, respectively. P, and
C, denote the path and the cycle with » edges, respectively.

The following theorems are obtained easily:

THeorReM 2. (1) SP)=1.
@ SLi=L
In fact, it is clear that s(kPy, nPy) = (Z )and s(Ls, Ln)= (7 ).

THEOREM 3. (1) S(Pr, k+1)=1.

(2) SPUP;, 2h+2)=1.
In fact, it is clear that s(Pk, Cry1) =k and s(AP,UP;, (h+1) P,) =2h+2.

THeoREM 4. (1) s(Kk, Km)=(Z).
GEZHGZAX%T) f’*k“h

(1X"57)

For n>k, there is unique (m, 7) such that
(’3)+r=n, 0=r<m. KmnxL, denotes the .
graph which is shown in Fig. 1—— V(Km*L») ~
= V(Km)U (v}, E(Km*L,) = E(Km)UEL where )
EL={ey, ..., er}.

(2) s(LwYLr—p, LAULy—r)=

THEOREM 5. S$(Pr, Km*L,) = ——21—- mPryq \

+T'm—1Pk—1+(;)(k—1) *m—2Pr_3. “Km

Proor. The first term is equal to s(Pe, -~ Fig. 1

K,n) —the half of the number of permutations of (¢+1) elements in V'(K:»). The second
term is the number of Pr’s such that | E(Pr)nEL|=1: Let ei be the said edge. If v;, ...,
vir_, are (k—1) elements in V(Kn) — {v:}, then there is one required Pr——the path (v »,
viy--- Vir_1). The last term is the number of Pr’s such that | E(Pr)n EL|=2: Let e, ei. be
the said edges. If viy, -.., vix_, are (k—2) elements in V(K.»)—{v:, vi-}, then there are
(B—1) required P’s

the paths (vi, ... 0ij0i 0 Vi' Vijyy--- Vir_y) (5=0, 1, ..., k—2).

2. Results for small k’s

In this section, we consider the quasi-spannability of k-edge graphs for k=1, 2, 3 and
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Case of k=1. By Theorem 2, we have: S(P))=1.
Case of k=2. By Theorem 2, we have: S(@2P;)=1and S(P,)=1.

Case of k=3. There are five 3—edge graphs——3P;, L3, P; P;, P3 and Kj.

1) S@P;) =1 and S(L3) =1 by Theorem 2.

@) SPUP)= %. In fact, by Theorem 4 (2),

seaom, e =(3 )T ()13 )T

This number is maximum for 7r= [—g—] that is,
s(P;U Py, 2L,) =1 (n—2) for n=27,

8
s(PZUPl,LrUL,+1)=-%—(n+.1) (n—1)(n—2) for n=2r+1

Hence, we have:
3n

m for even »n
S(P,U P, ny= 3 1
——(%:;2- for odd n

(3) By Theorem 5,
s(Ps, Km*L,) =——§—m(m—1) (m—2) (m—3) +7(m—2) (m~+r—2).

Hence, we have: limm_eS(Ps, Km*L;) =0
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4) s(K3, Km*Ly) = ( 'g)+( ; ) In fact, the first term is equal to s(K3, Km). The second
term is the number of Kj’s such that | E(K3)NEL|=2: Let e, eir be the said edges. Then

there is one required K;——the cycle (v vi vi- v). Hence, we have:
limn—nx,S(Ks ’ Km*Lr) =0,

Case of k=4. There are eleven 4-edge graphs———4P1, Ly, 2P;, L3UP;, Py, Cy, Ka%

P1, T4 (See F1g 2), P3UP1, KaU.Pl and P2U2P1.
1) SA4Py)=1 and S(Ly) =1 by Theorem 2.
() S@P)=-3_. In fact, by Theorem 4 (2),

8
S(2P2, LrULn—r)=(£)(n_2_r =%—T(1’-1) (n—r) -0
(n—r—1).
This number is maximum for r=|:—’2'—]: that is, Fig. 2
s(2Py, 2Ly) =—61Tn2(n—2)2 for n=2r,

S(2P3, LyULyyy) = —-61-4—(n+1) (n—1)2(n—3) for n=2r+1.
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Hence, we have:

3n(n—2)

8(i—1) (n—3) for even #,
SCPMZ) 5041y (n—1)
n n—
8n(n—2) for odd ».

(3) SILsUPH= .__:12_ In fact, by Theorem 4 (2),
s@eU P, LVLa) = )T (I N3 )7 =) (=1 (r—2)

+m—r—1)(n—r—2)).

n+14+v3n—4 _rn+l—y/3p—1
5 ]and n—r—[ —3 :, For
these r and n—7, the coefficient of #4 in s(L3UP;, L,ULy—,) is equal t°‘41T' On the other

hand, the coefficient of #¢ in (Z) is equal to 'ZIT Hence, we have: S(L3UP)=> —é——

This number is maximum for r=[

(4) By Theorem 5,

s(Py, KmxLy) =—%——m(m——1) (m—2) (m—3) (m—4) +~—é—r(m—2) (m—3)

(2m+3r—5).
Hence, we have: limm—oS(Py, Km* Ky) =0.

(5) s(Cy Km*Ly) =3( 'Z)+( ; )(n—2). In fact, the first term is equal to s(Cs, Km): Let
vy, ---, 04 be four vertices of K». Then there are three required C,’'s——the cycles (0503
v401), (1v040301) and (v1v30.040;). The second term is the number of Cg’s such that
|E(C)NEL|=2: Let ei, eir be the said edges. If v; is an element in V(Kn) —{vi, vi'},
then there is one required C,——the cycle (vvivjvi-v). Hence, we have: limun_S(C;,
KmxLy)=0.

®) s(Ksx Py, KmiL) =3("3 )m=3)+ ("5 1 )+ 2( 5 )m—2+3(} ). In fact, the first
term is equal to s(K3*P;, Kim): Let vy, v, v3 be three vertices of K, and v; be an element
in V(Km) —{v1, v2, v3}. Then there are three required K;xP;’s the graphs (v;v;v301)*
(wivj) (i=1, 2, 3). The second term is the number of Kz* P;’s such that | E(K3* P;)n EL |
=1: Let e be the said edge, and vj, v;» be two elements in V(K») —{»i}. Then there is
one required Kzx P, the graph (vivjvj v))*(vv;). The third term is the number of
K3% Py’s such that | E(K3x P)nEL|=2: Let e, eir be the said edges, and v; be an element
in V(Km) —{vi, vi-}. Then there are two required Kz*P;’s the graphs (vvivi-v)*(viv;)
and (vvivi-v)%*(vi-v;). The last term is the number of K3* P;’s such that | E(K3* P;)nEL |
=3: Let e, e, ei» be the said edges. Then there are three required K;*P;’s——the
graphs (vovivi-v)%@vi), (Wvi-vi-v)%(vvi) and (Vvi-viv)*(vvi). Hence, we have: lim=,.,.
S(K3x Py, Km*Ly)=0.

(7) Let Ly%kLyn_r_; denote the graph which is shown in Fig. 3.
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Since Ty=L.*xL,, we have:

$(Ty LoetLn-r-0=( 3 )(*7771)+(])

(n_g_-l):% r(n—r—1) (n—3).

This number is maximum for r=[ ”;1 ]:that
is,
s(Ty, Ly#kLy—y) =_§_ n(n—2) (n—3)

for n=27,

s(Ty, Ly#xLy) =_£13_ (n—1)2(n—3)  for n=2r+1.

Hence, we have: limn,S(Ty, Lr#kL)=0 were L=Ly_; or L,.
(8) Since P;=L,#kL;, we have:
S(P3UPy, LyskLy ULtk L) =y’ (0 + ¢ +1D) + (r+ 7 +1) 8.

Hence, for example, we have:

S(PaUPy, 2(LysexLr_1)) =~ n2(n—4) for n=4r.

$(P3UP,, Ly#¥Ly—1 ULk Ly)= Tle‘ (n—1) (i2—3n—3)  for n=4r+1,

s(PsUP, 2(Ly#xLy)) =-—113—n(n—2)2 for n=4r+2,

s(PsUP,, Ly%kL, UL, 4% Ly 1) =—116—(n+1) (n—2) (n—3)  for n=4r+3.
In these cases, limu,.. S(PsUP;, —) =0.

(9 For n, there is unique (n, r) such that (G) n=m—-)m+r(0=r<m), or (ii) n=m2+}r
0=sr<<im).

. _(m\/(m m\f m—3 m r m m
(@) s&suPy KnUKmrLy =5 N(5)+ )+ (E X "5 2 )H(5)+(3))(%)+(5)
m—3 m—1 ryY m—2
(™ ("3 )+(2)( 22)

In fact, the first three terms are equal to s (K3, Km) +s(P1, Km*Ly), s(K3UP;, Km) and
s(K3, Km*L,)+s(Py, Km), respectively. Also, the sum of the other terms is equal to s(K;s
UP;, Ku*Ly) The fourth term is equal to s(K3UPy, K,,,). The fifth term is the number
of K3UP;’s such that K; is a subgraph of K,, and P; is some ¢;. The last term is the
number of K3UP;’s such that | E(KGUP)NEL|=2: Let ei, eir be the said edges, and v;, v;-

be two elements of V(K,,) —{vi, vi-}, then there is one required K3U P;——the graph (vv;
viv)U(vjv;).
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(ii) Similarly to (i), we have: -

SUGUPy, Kt UKmx Ly =( "L Y(7)+ 7 )+( ™52 X m—2‘)+«,§1)

HEX X ™)+ (T X )
Hence, in these cases, hmn_,.,. S(K3UP1, —) =0.

(10) s(P,U2P,, Cy) = n(( ) (7= 5) )=—1-n(n—5)(n—6). In fact, let Ca= (5105
vnvy) and Py= (v10203). Then the number of subgraphe of Py—4= (v405.--v5) Which are
isomorphic to 2P; is equal to ( ”2 4)— (n—5). Hence, we have: lims_..S(PU2P;, C»)
=0.
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