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1. Introduction

Let K/k be a cyclic extension of prime degree p over an algebraic number field % of
finite degree, let Mk be the p-class group of K. The structure of Mk has been studied by
many people especially by E. Inaba [5] and G. Gras [3]. In their works Mk is consi-
dered as a module over Gal/(K/k), where Gal(K/k) is the Galois group of K/k.

In the present paper we shall show first (in 2) that the results on Mk is, when the
class number % of k is relatively prime to odd prime p, obtained simply by considering
Mk as a module over O, where O is the algebraic integer ring of the cyclotomic field of
p-th roots of unity.

The second purpose of this paper is to study the relation between M; and Mk using
the results of 2 (in 3), where K/Q is a cyclic extension of degree p such that only two
primes are ramified in it, and where L/Q is the genus field of K/Q. Finally we shall
show (in 4) by a similar method to that used in 3 that there exist infinitely many cyclic
extensions K/Q of degree p such that p-ranks of Mk are 2 and p-class field towers of K
are finite.

Throughout this paper we use the following notation.

Z: the ring of rational integers
Q: the rational number field
p: a rational odd prime
§p=¢&: a primitive p-th root of unity
£O: the algebraic integer ring of Q(§)
p: the prime divisor of p in O
For an algebraic number field K of finite degree,
Ck: the ideal class group of K
hk: the class number of K
Mk: the p-Sylow group of Cx
For an ideal a of K
cl(a): theidealclassofa ¢
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clp(a): the p-part of c/(a) (then for a natural number « prime to p we may write
clp(a)=cl(a)a.)
For a module M and a homomorphism f of M,
M. the image of f
Msy: the kernel of f.

2. General results in case p { h:

LemMMA 1. Let M be a finite module over O whose order is a power of p. Then M is O-
isomorphic to i}lb/pei, where pr=#$(M/M¢-1).
1=
Proor. Let Op be the localization of O at p. Since the order of M is a power of p,
M is a module over Op. As Op is a principal ideal domain, by the general theory of a

module over a principal domain we have a O-isomorphism; M m‘rji O/pei. And from
-

M| ME=1~ 330 /pes) [ b/ pei) ~ ©/9)7,

we see pr=8#(M/M¢-1). Q. E.D.
THEOREM 1. Let k be an algebraic number field of finite degree. and let K[k be a cyclic
extension of degree p. Assume that pAfhr. Then Mr is a module over O and O—isomorphic
to EZD/pei, where
=
pr= Ll
(Er: Exq Nk K*®

t =the number of prime ideals of k ramified in K
Er=the unit group of k.

Proor. Let o be a generator of Gal(K/k). Since pther, the restriction of the norm
map Nk,x: Ck—Cr—Ck to Mg is trivial. Hence we can view Mk as a module over
Z(o)/N, where N=Z (o) (1+0+...... +02-1), Since Z[o¢)/N~D by eN—>£&,, we can also
view Mk as a module over O. On the other hand we note that:

MK/MK""]- %MK(a—D: CK(«r_l) ﬂMK,

pt

(Ex: Ern Nk, K*) -~

#(CK(a_l)) =kk

Therefore using that p¥Ar and (Er: Exn Nk, K*) is a power of p, we have

!

#(Mx/Mg"™") = (Er: EenNk/k K*) -~

Hence by Lemma 1 we have our theorem. Q. E. D.
Let K/k be as in Theorem 1. Then as pVYhAr, K/k is ramified. If ¢=1, then =0 so
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Mg={1}. And we assume f=2. Let p;,...... p: be the prime ideals ramified in K/k, and
let for ac=k*,
. _( a: K/k ) . : . . L% _
xi(@) = —=—1=) ; norm residue symbol locally at p;. Let X: 2*— G¢ by X (a) = (X, (),

1
------ , Xt(@)), where G=Gal(K/k). And let %= Gt/X(Er). For an element a of Mk, let
a be an ideal of K such that a=cl(a). Then as pVAr, Nk,r(a) is principal in k& Say
Nxe(a)=(e), aCk*. Then we define £* Mx—X by X(a)=%(a) mod X(E)EX. By
the property of norm residue symbol, it is easily verified that this is well-defined. Fur-
. o oo\, . N
thermore since X(Mk°~1)=1€&X, X induces the homomorphism Zx,x: Mk/ MK"“——»&.
Then, the next lemma is essentially a special case of [2, Theorem] and follows from
Hasse Norm Theorem and Hilbert’s Theorem 90.

o oS . .
LemMma 2. Xkr: Mr/Mg°—1— X is a monomorphism.

REMARK. Let X': k*—Gt=1 by X(a)= (% (@), ..., Ze—1(e)) and R’ =Gt=1 /¥ (Ex).
If we define a homomorphism

7/5\’K/k: Mg/ Mg°—1! ———+/)2”

I\ aN
by means of £’ and X', then ?K/k is an isomorphism. (cf. [4, Satz 1])
-\
By Xk, we can form an estimate of rank Mx.

THEOREM 2. Let the notation and assumption be as in Theorem 1. Let rank Mx=d
(.e. $(Mk/Mk?)=pd), $(x,x(MK©—1y))=ps.
Then
(i) 2r—s=d=(p—2)(r—s)+7,
(ii) especially, if r=s, then d=r and Mk is elementary.

Proor. Let MK%}V—‘_I, £O/pei, where e...... er, and rank(O/pei)=di. Then d=d;+......
fom
+dr and 1<di<p—1. On the other hand d; =1 if and only if e;=1, and (O/pei) ¢-1y=

pei—1l/pei. Therefore it follows from Lemma 2 that e;=...... =es=dy=...... =ds=1, and
2=di=p—1fori=s+1,...... , . 'This proves (i). If r=s, then ¢;=...... =e,=1 and Mg~
(©/p)r. This proves (ii). Q.E.D.

Moreover, if Er={=+1} i.e. k=Q or k is a imaginary quadratic field such that k=
Q(v/=3), Q4/=T1), then s in Theorem 2 is expressed more explicitly as follows. In
this case, r = f—1 and i}z G! since Er=Nk,x Ek={=%1}. Furthermore, as (Exn Nk K*:
Nk & Ex) =1, every ambiguous ideal class in K/k is represented by an ambiguous ideal in

K/k. Hence Mk —1y is generated by cl/(P; ##), -..... , cl(P: k), where P: is the prime
divisor of pi in K. Therefore /fK/k (MK o—1)) is generated by
ai: K/k a;: K/k Ny =p; b
((_-___pl ) e , <__———pt )), where (a;) =pi bz,

fori=1, ...... , 7. And for a generator ¢ of Gal(K/k), let
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(G I F—

where ai; EZ/pZ, then s= rank(aij).
In case 6=Q(+/—=3) (»+#3), k=Q(+/=T1), similar results hold.

ReMARk. Let q be a prime ideal of 2 with Nq=1 mod p. If p Ve then the p—Sylow
group of I(q) /Pq is cyclic, where I(q) is the ideal group of £ prime to q and Pq is the ray
mod q. Let py,-...... ,Pm be prime ideals of 2 with Npi=1 mod p, and let c=p-p;...... Pm.
Assume p Y hr and Er={+1}). Then the p-Sylow group of I(c)/Pc is isomorphic to the
p-Sylow group of (I(p)/Pp) X (I(p1)/Pyp,) X...... X (I(Pwm) [ Pp,) by the natural homomor-
phism;

I(¢)/Pe—>(I(9)[Pp) X (I(p1)/Pp,) X ... X (I(Pm) [ Ppm).

Hence it follows from Dirichlet Density Theorem that for each integer /=2, there exist
infinitely many #-tuples of prime ideals py,.-.... , b, such that

Npi=1 mod p, i=1, ...... , &,

pe: p-th power nonresidue mod Py,
pi: p-th power residue mod Pp,.....pi_,
but p-th power nonresidue mod Py;_, for i=3,...... , L

Let K/k be a cvclic extension of degree p in which only py, -..... ,p¢ are ramified. Then it
holds that for i #j

(—9-'—-55—/—’?— =1 if and only if pi: p—th power residue mod Pp;, where (a;) =pi. Hence
Mk satisﬁ]es the condition of Theorem 2, (ii) and so M~ (O/p)¢t—1.

[1, Theorem 1] is a special case (k=Q) of this remark.

3.

Let K/Q be a cyclic extension of degree p in which only p;, p; are ramified. Then
from Theorem 1 we know

Mg~Q/fpe : e=1.

And let L be the genus field of K/Q, then L/K is an unramified extension of degree p.
Moreover let K:/Q be the cyclic extension of degree p in which only p; is ramified. Then
noting L/K; is cyclic with degree p and pVkk;, we have

Mp~33 O/ pei.

And from the results of 1, it follows that e¢>1 if and only if
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(Pl K/Q) (171 K/Q

1
(Pz K/Q (.bz.K/Q> 1 1)
)23
If e=1, then it is easily seen from Burnside Basis Theorem that M;={1}. And so we
suppose e=2. Let pi be the prime divisor of p; in K. Then at least one of p;, ps is not
principal. Say p, be not principal. Let pi; be a prime divisor of p; in Kj, and let r be a
generator of Gal(K;/Q). As p,is ramified in K; and p, is completely decomposed in Kj,
it holds that

(p1) =pu?
(b2 =parbar...... Parr @D,
Then only par, pa®, - ,Pie®D are ramified in L/K;.

THEOREM 3. Let K/Q be a cyclic extension of degree p in which only p,, p, are ramified,
and let L be the genus field of K/Q. Let pi be the prime divisor of pi in K, and let Pi be a
prime divisor of pi in L. Assume Py is not principal. Let K,/Q be the cyclic extension of
degree p in which only py is ramified. Let Mx~/ye, and assume e=2. Then the following
conditions are equivalent;

(i) e=2,
(ii) (Bre,nNpx,L*: NpgEL)=1 and Mp~(©/p)7,
(iii) X ki (clp(PB,E—D7)) #1,
where
pr= b
(Exk,: Exk,nNL/&x,L*)
T =gq generator of Gal(L/K).

LemMma 3. Let L/ K be an unramified cyclic extension of degree p, and let  be a gene-
rator of Gal(L/K). Then (Ex: EknNr/kL*)=1 and Mp/ML ! is isomorphic to Np,xk My,
(CMk) under the norm map N, k.

Proor. Since (Mk: Np,xkMr)=p, we have $(Np, kM) =%(Mk)/p. Let Np,x: M/
M;"—1— Mk be the homomorphism induced from the norm map Nr,x. Then, as

e _ #(Mk)
$ML/ML D =8MLe-0) = Srpe Ben N gD

we have

_ B(ML /MY _
B (Ker No )= O = e RNy Q. E.D.

Proor of Theorem 3. Let ¢ be a generator of Gal/(L/K;), then we can consider
o as a generator of Gal/(K/Q). Since (Mk: Nr,kMp)=p and Np,kMy is s-admissible,
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Np,kMp=Mk°~1. Hence by Lemma 3 we have
Npk: Mp /M ' ~Mg°~1~p/pe.

Assume (i). Then #(Mr/Mp-Y)=p. As p, is not principal, we have Nr,x clp(Ps)=
cl(pz)ea#+1c=Mk. Hence by Lemma 3 ¢lp(B,) & M ~1. Thus My is generated by clp(B2),
clp(P2)™Y, clp(Po) 2, ..., As P, is an ambiguous ideal in L/K;, Mp(o-1y=M; and
every class in My is represented by ambiguous idal in L/K;. On the other hand, let
Crs-1)° be the group of ideal classes represented by ambiguous ideals in L/K;. Then
(Mpo—1y: Mpeo-p® =1 implies (Crs—1): CLe-n®) =1 since (Creo-1y: Cro-1)) = (Exin
Npk,L*: Nk, E1) = a power of p, where Myo—10=Cr-1)°nMr. Hence (Ex,nNr/k,
L*: Np,k,Er)=1. This proves that (i) implies (ii). Conversely, assume (ii). Then
M;=M]j -1y and every ambiguous class in L/K; is represented by an ambiguous ideal in
L/K;. Therefore M is generated by c/p(B2), c/(Pr)s,-.-.-. ,clp(P2)?*. And since clp(P2)*
=clp(Pp) mod M. ~1, Mp/M "~ is generated by clp(Ps) ML L. Since clp(Po) EML !
and the order of clp(P,) is p, we have $ (M /M V) =p. Hence e¢=2, which proves that
(ii) implies @).

The fact that (ii) implies (iii) is obvious. Conversely assume (iii). Then since pr =
$(Mro—1)), Mro—1y is generated by clp(By), clp(P2) 7L, ... .. , clp(Po) &~V Hence every
ambiguous class in L/K; is represented by an ambiguous ideal in L/K;. Thus we have
(Ex,nNr/x,L*: Nk, EL)=1. Next suppose there exist &= M-y and b& My such that
a=b"1#1. Put ai=clp(P2) =D for §=0, 1,...... ,¥—1. Then we can write e=a;j/fi+aj4+, i+1
...... ar—1fr-1, where fj%0 mod p. Then @~V 'i=gq,_ fj=pl"D""17ilc=D Hence
clp(Pp) V77 =p=—D717ile—1_ Thus %\L/Kl (clp(Po=—D7")) =1 which is a contradiction.
Therefore My=Mp -1y~ (O/p)r. This proves that (iii) implies (ii). Q. E. D.

Let py, p2 be odd primes such that pi=1 mod p or pi=p. Then there exist p—1 cyclic
extensions K/Q of degree p in which only p;, p, are ramified, and the genus fields L of
such K/Q coincide. In general, however, every Mk is not necessarily isomorphic to
others. But if Mx~%/p for some K, then pYhr. So Mg~DQ/p for all K. Moreover,

CoroLLARrY 1. ([ 3 Proposition VI 61) If Mg~Q/p? for some K, then Mg~/[p?> for
all K.

Proor. Let K/Q, ]/{\/ Q be cyclic extensions of degree p in which only py, p. are rami-
fied, and let Mx~O/p?, MR~O/pe. Let notation be as in Theorem 3. Then we can take
a generator /z'\of Gal(L/ f{\ ) such that /z-\= z+0i for some j. Since it follows from Theorem
3 (ii) that o operates trivially on M., the operations of = and ?on M; coincide. Hence
ML/ML?'"1=ML/MLr—1, SO #(ML/ML?—I) =p. Thus we have MI?‘*’D/PZ Q. E.D.

COROLLARY 2. If for each pi, i=1, 2 there exists a K in which the prime divisor of pi is
not principal and Mr~O[y?, then My ~D/p.

Proor. Let the prime divisor p; of p; in K be not principal, and let the prime divisor



On the structure of p-class groups of certain number fields 31

?1 of p; in % be not principal. Then by Theorem 3 My~ (9D/p)7, and Gal(L/Ky), Gal(L/
K,) operate trivially on M. Let = be a generator of Ga/(L/K). Then = operates trivi-
ally on My, so M;"~1={1}. Thus we have My ~Mr/M; ~1~D/p. Q. E. D.

4

Let K/Q be a cyclic extension of degree p, and let »(Mk) be the rank of Mkx. Then
from the results of [6] it follows that if »(Mg)=24-2+/5, the p—class field tower of K is

infinite.

Using Cebotarev Density Theorem, we can show by a similar method to that used in
Corollary of Theorem 3 that there exist infinitely many cyclic extensions K/Q of degree
p such that »(Mxk) =2 and p—class field towers of K are finite.

THEOREM 4. There exist infinitely many triples of odd primes py, ps, ps such that p ¥ hr,
where L is the genus field of K/Q and K/Q is a cyclic extension of degree p in which only p,,
D2, D3 are ramified.

LeMMA 4. Let p be an odd prime. For an odd prime p, such that py=1 mod p, there
exist infinitely many odd primes ps which satisfy the following conditions (i), (i), (iii);
(1) p2=1 mod p,
(il) po is p—th power nonresidue modulo p,,
(iii) p1 is p—th power nonresidue modulo p,.

Proor. Put k=Q(§p), K1=Q ({’/ —pT ), Ki=k-K; and let K/Q be the cyclic extension
of degree p in which only p; is ramified. Then from Cebotarev Density Theorem it fol-
lows that the Dirichlet density of the rational primes whose decomposition fields in K;/Q
are k is 1/p, and that of the rational primes whose decomposition fields in K-K;/Qare k- K
is 1/p% Hence there exist infinitely many odd primes p, such that p, are not decomposed
in K/Q and their decomposition fields in K;/Q are k. Then it is obvious that p, satisfy
(i), (ii). In order to prove (iii), we suppose that p; is p~th power residue modulo p Then
the equation X{:Lblzo mod p, has a rational integer solution. Now we may assume
pz,{’({)xlz y/ [f/ D ]), where Ok, denotes the integer ring of Kj. So there exists a
prime divisor ps of po in Kj such that Nk,,Qp,=p,. Let P, be a prime divisor of p; in Kj,
then we have Ng,,Q p;=p,? since the decomposition field of P, is & On the other hand,
we have NE&, kP2 =po for 1=i:Zp—1, which is a contradiction. This proves (iii).

Q. E.D.

COROLLARY There exist infinitely many lriples of odd primes satisfying the following
conditions (1)~ (vi);
(1) pi=lmodp,i=1,2,3,
(ii) p1 is p—th power nonresidue modulo p,,
(iii) p. is p—th power nonresidue modulo ps,
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(iv) p3 is p—th power nonresidue modulo p,,

(V) p3is p—th power residue modulo p,,

(vi) 'psis p—th power nonresidue modulo p,.
The proof is analogous to Lemma 4.

Proor of Theorem 4. Let p;, P2, p3 be primes satisfying the conditions of the above
corollary. Let K»/Q be the cyclic extension of degree p in which only p,, p3 are ramified
and p, is completely decomposed. It follows from above conditions (i), (ii), (iii), that such
an extension always exists. Let K;/Q be the cyclic extension of degree p in which only
p1is ramified. Then because of the above condition (v), p; is completely decomposed in
K,. Put L=K;+K»n. Then L/Q is an abelian extension of degree 2 in which only pi, p»,
p3 are ramified. Let K/Q be a subfield of L with degree p over Q such that K# K;, Ky.
Then py, p2, Pz are ramified in K/Q, and hence L/K is unramified. Moreover

? k%
((le%{—/g— )i,j-1,2,3 =k 0?70
* 7

where * means nonidentity.

So by the results of 2 we have Mx~ (O/p)2. Let p;, b2, p3 be the prime divisors of p,, ps,
s in K respectively, then these are not principal in K and p;, p3 are completely decom-
posed in L/K. And let PB3 be a prime divisor of p; in L, then Np,x(clp(PBs)) =cl(ps)a+
1&Mk. Soby Lemma 3 we have c¢/p(Ps) M 1, where = is a generator of Gal/(L/K).
On the other hand from Mgk~ (O/p)2, we see $(Mr/M"~)=p. Hence M| is generated
by clp(PBs), clp(Pa)*7L, clp(P3a) TV ,...... . As ¢/(B3) is an ambiguous class in L/Kj;, the
order of clp(Ps3) is p. Let o, be a generator of Gal(L/K;), then o, operates trivially on
M since P3°1=P3;. Similarly, let $PB, be a prime divisor of p, in L, then clp (Py) EM "1
and M| is also generated by ¢lp (P1), clp(P1) "L, clp(P)—D2,...... . Let o33 be a generator
of Gal(L]/K,), then 023 operates trivially on My since ¢/(P,) is an ambiguous class in
L/K,. Therefore noting Gal(L/Q) is generated by Gal(L/K;) and Gal(L/K,;) we see
that = also operates trivially on M;. Thus we have My=M/M;"1~O/p. On the other
hand L/L is the unramified cyclic extension of degree . Hence by Burnside Basis
Theorem we have p VY Ar. Q. E. D.
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