On the structure of p-class groups of certain number fields

By

Teruo TAKEUCHI*

(Received November 8, 1976)

1. Introduction

Let K/k be a cyclic extension of prime degree p over an algebraic number field k of finite degree, let M_K be the p-class group of K. The structure of M_K has been studied by many people especially by E. Inaba [5] and G. Gras [3]. In their works M_K is considered as a module over Gal(K/k), where Gal(K/k) is the Galois group of K/k.

In the present paper we shall show first (in 2) that the results on M_K is, when the class number h_k of k is relatively prime to odd prime p, obtained simply by considering M_K as a module over $\mathbb O$, where $\mathbb O$ is the algebraic integer ring of the cyclotomic field of p-th roots of unity.

The second purpose of this paper is to study the relation between M_L and M_K using the results of 2 (in 3), where K/\mathbb{Q} is a cyclic extension of degree p such that only two primes are ramified in it, and where L/\mathbb{Q} is the genus field of K/\mathbb{Q} . Finally we shall show (in 4) by a similar method to that used in 3 that there exist infinitely many cyclic extensions K/\mathbb{Q} of degree p such that p-ranks of M_K are 2 and p-class field towers of K are finite.

Throughout this paper we use the following notation.

Z: the ring of rational integers

Q: the rational number field

p: a rational odd prime

 $\xi_p = \xi$: a primitive p-th root of unity

 \mathfrak{O} : the algebraic integer ring of $\mathbf{Q}(\xi)$

 \mathfrak{p} : the prime divisor of p in \mathfrak{O}

For an algebraic number field K of finite degree,

 C_K : the ideal class group of K

 h_K : the class number of K

 M_K : the p-Sylow group of C_K

For an ideal \mathfrak{a} of K

 $cl(\mathfrak{a})$: the ideal class of \mathfrak{a}

^{*} Niigata University.

 $cl_p(\mathfrak{a})$: the *p*-part of $cl(\mathfrak{a})$ (then for a natural number *a* prime to *p* we may write $cl_p(\mathfrak{a}) = cl(\mathfrak{a})^a$.)

For a module M and a homomorphism f of M,

 M^f : the image of f $M_{(f)}$: the kernel of f.

2. General results in case $p \not \mid h_k$

LEMMA 1. Let M be a finite module over $\mathbb Q$ whose order is a power of p. Then M is $\mathbb Q$ isomorphic to $\sum_{i=1}^r \mathbb Q/\mathfrak p^{e_i}$, where $p^r = \#(M/M^{\varepsilon-1})$.

PROOF. Let \mathbb{O}_{p} be the localization of \mathbb{O} at p. Since the order of M is a power of p, M is a module over \mathbb{O}_{p} . As \mathbb{O}_{p} is a principal ideal domain, by the general theory of a module over a principal domain we have a \mathbb{O} -isomorphism; $M \approx \sum_{i=1}^{r} \mathbb{O}/p^{e_i}$. And from

$$M/M^{\xi-1} \approx \sum_{i=1}^{r} (\mathbb{O}/\mathfrak{p}e_i) / (\mathfrak{p}/\mathfrak{p}e_i) \approx (\mathbb{O}/\mathfrak{p})^r,$$

$$p^r = \# (M/M^{\xi-1}).$$
Q. E. D.

we see

THEOREM 1. Let k be an algebraic number field of finite degree. and let K/k be a cyclic extension of degree p. Assume that $p \not X h_k$. Then M_k is a module over $\mathbb O$ and $\mathbb O$ -isomorphic to $\sum_{k=1}^r \mathbb O/\mathfrak p^{e_k}$, where

$$p^{r} = \frac{p^{t-1}}{(E_{k}: E_{k} \cap N_{K/k} K^{*})}$$

$$t = the number of prime ideals of k ramified in K$$

$$E_{k} = the unit group of k.$$

PROOF. Let σ be a generator of Gal(K/k). Since $p \not \sim h_k$, the restriction of the norm map $N_{K/k}$: $C_K \to C_k \to C_K$ to M_K is trivial. Hence we can view M_K as a module over $Z(\sigma)/N$, where $N=Z(\sigma)(1+\sigma+\dots+\sigma^{p-1})$. Since $Z(\sigma)/N \approx \mathbb{O}$ by $\sigma N \to \xi_p$, we can also view M_K as a module over \mathbb{O} . On the other hand we note that:

$$M_K/M_K^{\sigma-1} \approx M_{K(\sigma-1)} = C_{K(\sigma-1)} \cap M_K,$$

$$\#(C_{K(\sigma-1)})=h_k\frac{p^{t-1}}{(E_K\colon E_k\cap N_{K/k}K^*)}.$$

$$\#(M_K/M_{K^{\sigma-1}}) = \frac{p^{t-1}}{(E_k: E_k \cap N_{K/k} K^*)}.$$

Hence by Lemma 1 we have our theorem.

Q. E. D.

Let K/k be as in Theorem 1. Then as $p \not \!\!\!\!/ h_k$, K/k is ramified. If t=1, then r=0 so

 $M_K = \{1\}$. And we assume $t \ge 2$. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ be the prime ideals ramified in K/k, and let for $\alpha \in k^*$,

 $\chi_i(\alpha) = \left(\frac{\alpha : K/k}{\mathfrak{p}_i}\right)$; norm residue symbol locally at \mathfrak{p}_i . Let $\chi: k^* \to G^t$ by $\chi(\alpha) = (\chi_1(\alpha), \ldots, \chi_t(\alpha))$, where G = Gal(K/k). And let $\widehat{X} = G^t/\chi(E_k)$. For an element α of M_K , let α be an ideal of K such that $\alpha = cl(\alpha)$. Then as $p \not \sim h_k$, $N_{K/k}(\alpha)$ is principal in k. Say $N_{K/k}(\alpha) = (\alpha)$, $\alpha \in k^*$. Then we define $\widehat{\chi}: M_K \to \widehat{X}$ by $\widehat{\chi}(\alpha) = \chi(\alpha) \mod \chi(E_k) \in \widehat{X}$. By the property of norm residue symbol, it is easily verified that this is well-defined. Furthermore since $\widehat{\chi}(M_K^{\sigma-1}) = 1 \in \widehat{X}$, $\widehat{\chi}$ induces the homomorphism $\widehat{\chi}_{K/k}: M_K/M_K^{\sigma-1} \to \widehat{\chi}$. Then, the next lemma is essentially a special case of [2, Theorem] and follows from **Hasse Norm Theorem** and **Hilbert's Theorem 90**.

Lemma 2. $\widehat{\chi}_{K/k}$: $M_K/M_K^{\sigma-1} \longrightarrow \widehat{X}$ is a monomorphism.

Remark. Let $\chi': k^* \longrightarrow G^{t-1}$ by $\chi(\alpha) = (\chi_1(\alpha), \ldots, \chi_{t-1}(\alpha))$ and $\hat{\chi}' = G^{t-1}/\chi'(E_K)$. If we define a homomorphism

$$\widehat{\chi}'_{K/k}: M_K/M_K^{\sigma-1} \longrightarrow \widehat{X}'$$

by means of $\widehat{\chi}'$ and $\widehat{\chi}'$, then $\widehat{\chi}_{K/k}$ is an isomorphism. (cf. [4, Satz 1]) By $\widehat{\chi}_{K/k}$ we can form an estimate of $rank \ M_K$.

THEOREM 2. Let the notation and assumption be as in Theorem 1. Let rank $M_K=d$ (i. e. $\#(M_K/M_K^p)=p^d$), $\#(\chi_{K/k}(M_{K(\sigma-1)}))=p^s$. Then

- (i) $2r-s \le d \le (p-2)(r-s)+r$,
- (ii) especially, if r = s, then d = r and M_K is elementary.

PROOF. Let $M_K \approx \sum_{i=1}^r \mathfrak{D}/\mathfrak{p}e_i$, where $e_1 \dots e_r$, and $rank(\mathfrak{D}/\mathfrak{p}e_i) = d_i$. Then $d = d_1 + \dots + d_r$ and $1 \leq d_i \leq p-1$. On the other hand $d_i = 1$ if and only if $e_i = 1$, and $(\mathfrak{D}/\mathfrak{p}e_i)_{(\xi-1)} = \mathfrak{p}e_i^{-1}/\mathfrak{p}e_i$. Therefore it follows from Lemma 2 that $e_1 = \dots = e_s = d_1 = \dots = d_s = 1$, and $2 \leq d_i \leq p-1$ for $i = s+1, \dots, r$. This proves (i). If r = s, then $e_1 = \dots = e_r = 1$ and $M_K \approx (\mathfrak{D}/\mathfrak{p})_r$. This proves (ii).

Moreover, if $E_k = \{\pm 1\}$ i. e. $k = \mathbb{Q}$ or k is a imaginary quadratic field such that $k \neq \mathbb{Q}(\sqrt{-3})$, $\mathbb{Q}(\sqrt{-1})$, then s in Theorem 2 is expressed more explicitly as follows. In this case, r = t-1 and $\widehat{X} = G^t$ since $E_k = N_{K/k} E_K = \{\pm 1\}$. Furthermore, as $(E_k \cap N_{K/k} K^*: N_{K/k} E_K) = 1$, every ambiguous ideal class in K/k is represented by an ambiguous ideal in K/k. Hence $M_{K(\sigma-1)}$ is generated by $cl(\mathfrak{P}_1 h_k)$,, $cl(\mathfrak{P}_t h_k)$, where \mathfrak{P}_i is the prime divisor of \mathfrak{p}_i in K. Therefore $\widehat{\chi}_{K/k}(M_{K(\sigma-1)})$ is generated by

$$\left(\left(\frac{\alpha_i: K/k}{\mathfrak{p}_1}\right), \ldots, \left(\frac{\alpha_i: K/k}{\mathfrak{p}_t}\right)\right)$$
, where $(\alpha_i) = \mathfrak{p}_i h_k$,

for $i=1, \ldots, r$. And for a generator σ of Gal(K/k), let

$$\left(\left(\frac{\alpha_i: K/k}{\mathfrak{p}_j}\right)\right)_{i, j=1, \dots, t} = \left(\sigma^{a_{ij}}\right)_{i, j=1, \dots, t}$$

where $a_{ij} \in \mathbb{Z}/p\mathbb{Z}$, then $s = rank(a_{ij})$.

In case $k = \mathbb{Q}(\sqrt{-3})$ $(p \neq 3)$, $k = \mathbb{Q}(\sqrt{-1})$, similar results hold.

REMARK. Let q be a prime ideal of k with $\mathbf{N} \mathfrak{q} \equiv 1 \mod p$. If $p \not \times h_k$, then the p-Sylow group of $I(\mathfrak{q})/P\mathfrak{q}$ is cyclic, where $I(\mathfrak{q})$ is the ideal group of k prime to \mathfrak{q} and $P\mathfrak{q}$ is the ray mod \mathfrak{q} . Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ be prime ideals of k with $\mathbf{N} \mathfrak{p}_i \equiv 1 \mod p$, and let $\mathfrak{c} = p \cdot \mathfrak{p}_1 \ldots \mathfrak{p}_m$. Assume $p \not \times h_k$ and $E_k = \{\pm 1\}$. Then the p-Sylow group of $I(\mathfrak{c})/P\mathfrak{c}$ is isomorphic to the p-Sylow group of $(I(p)/P_p) \times (I(\mathfrak{p}_1)/P_{\mathfrak{p}_1}) \times \ldots \times (I(\mathfrak{p}_m)/P_{\mathfrak{p}_m})$ by the natural homomorphism;

$$I(\mathfrak{c})/P\mathfrak{c} \longrightarrow (I(\mathfrak{p})/P\mathfrak{p}) \times (I(\mathfrak{p}_1)/P\mathfrak{p}_1) \times \dots \times (I(\mathfrak{p}_m)/P\mathfrak{p}_m).$$

Hence it follows from **Dirichlet Density Theorem** that for each integer $t \ge 2$, there exist infinitely many t-tuples of prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_t$, such that

$$Np_i \equiv 1 \mod p, i=1, \ldots, t,$$

 \mathfrak{p}_2 : p-th power nonresidue mod $P\mathfrak{p}_1$

 \mathfrak{p}_i : p-th power residue mod $P_{\mathfrak{p}_1,\ldots,\mathfrak{p}_{i-2}}$

but p-th power nonresidue mod $P_{\mathfrak{p}_{i-1}}$ for $i=3,\ldots,t$.

Let K/k be a cyclic extension of degree p in which only p_1, \ldots, p_t are ramified. Then it holds that for $i \neq j$

 $\left(\frac{\alpha_i \colon K/k}{\mathfrak{p}_j}\right) = 1$ if and only if $\mathfrak{p}_i \colon p$ —th power residue mod $P\mathfrak{p}_j$, where $(\alpha_i) = \mathfrak{p}_i$. Hence M_K satisfies the condition of Theorem 2, (ii) and so $M_K \approx (\mathfrak{D}/\mathfrak{p})^{t-1}$.

[1, Theorem 1] is a special case $(k=\mathbf{Q})$ of this remark.

3.

Let K/\mathbb{Q} be a cyclic extension of degree p in which only p_1 , p_2 are ramified. Then from Theorem 1 we know

$$M_K \approx \mathfrak{O}/\mathfrak{p}^e$$
: $e \geq 1$.

And let L be the genus field of K/\mathbb{Q} , then L/K is an unramified extension of degree p. Moreover let K_i/\mathbb{Q} be the cyclic extension of degree p in which only p_i is ramified. Then noting L/K_i is cyclic with degree p and $p \nearrow h_{K_i}$, we have

$$M_L \approx \sum_{i=1}^r \mathfrak{O}/\mathfrak{p}^{e_i}$$
.

And from the results of 1, it follows that e>1 if and only if

$$\begin{pmatrix} \left(\frac{p_1: K/\mathbf{Q}}{p_1}\right) & \left(\frac{p_1: K/\mathbf{Q}}{p_2}\right) \\ \left(\frac{p_2: K/\mathbf{Q}}{p_1}\right) & \left(\frac{p_2: K/\mathbf{Q}}{p_2}\right) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

If e=1, then it is easily seen from **Burnside Basis Theorem** that $M_L=\{1\}$. And so we suppose $e\geq 2$. Let \mathfrak{p}_i be the prime divisor of p_i in K. Then at least one of \mathfrak{p}_1 , \mathfrak{p}_2 is not principal. Say \mathfrak{p}_2 be not principal. Let \mathfrak{p}_{i_1} be a prime divisor of \mathfrak{p}_i in K_1 , and let τ be a generator of $Gal(K_1/\mathbb{Q})$. As p_1 is ramified in K_1 and p_2 is completely decomposed in K_1 , it holds that

$$(p_1) = p_{11}p$$

 $(p_2) = p_{21}p_{21}r \dots p_{21}r^{(p-1)}.$

Then only \mathfrak{p}_{21} , \mathfrak{p}_{21}^{τ} ,...., $\mathfrak{p}_{21}^{\tau(p-1)}$ are ramified in L/K_1 .

THEOREM 3. Let K/\mathbb{Q} be a cyclic extension of degree p in which only p_1 , p_2 are ramified, and let L be the genus field of K/\mathbb{Q} . Let p_i be the prime divisor of p_i in K, and let \mathfrak{P}_i be a prime divisor of p_i in K. Assume p_2 is not principal. Let K_1/\mathbb{Q} be the cyclic extension of degree p in which only p_1 is ramified. Let $M_K \approx \mathbb{Q}/p^e$, and assume $e \geq 2$. Then the following conditions are equivalent;

- (i) e = 2,
- (ii) $(E_{K_1} \cap N_{L/K_1}L^*: N_{L/K_1}E_L) = 1$ and $M_L \approx (\mathfrak{O}/\mathfrak{p})^r$,
- (iii) $\chi_{L/K_1}(cl_p(\mathfrak{P}_2^{(\tau-1)^{r-1}})) \neq 1$,

where

$$p^{r} = \frac{p^{p-1}}{(E_{K_1}: E_{K_1} \cap N_{L/K_1} L^*)}$$

$$\tau = a \text{ generator of } Gal(L/K).$$

Lemma 3. Let L/K be an unramified cyclic extension of degree p, and let τ be a generator of Gal(L/K). Then $(E_K: E_{K} \cap N_{L/K}L^*) = 1$ and $M_L/M_L^{\tau-1}$ is isomorphic to $N_{L/K}M_L$ $(\subseteq M_K)$ under the norm map $N_{L/K}$.

PROOF. Since $(M_K: N_{L/K}M_L) = p$, we have $\#(N_{L/K}M_L) = \#(M_K)/p$. Let $N_{L/K}: M_L/M_L^{\tau-1} \to M_K$ be the homomorphism induced from the norm map $N_{L/K}$. Then, as

$$\#(M_L/M_L^{\tau-1}) = \#(M_{L(\tau-1)}) = \frac{\#(M_K)}{p(E_K: E_{K\cap}N_{L/K}L^*)},$$

we have

$$\#(Ker\ \mathbf{N}_{L/K}) = \frac{\#(M_L/M_L^{\mathsf{r}-1})}{\#(N_{L/K}M_L)} = \frac{1}{(E_K: E_K \cap N_{L/K}L^*)}.$$
 Q. E. D.

Proof of Theorem 3. Let σ be a generator of $Gal(L/K_1)$, then we can consider σ as a generator of $Gal(K/\mathbb{Q})$. Since $(M_K: N_{L/K}M_L) = p$ and $N_{L/K}M_L$ is σ -admissible,

30 T. Takeuchi

 $N_{L/K}M_L = M_K^{\sigma-1}$. Hence by Lemma 3 we have

$$N_{L/K}$$
: $M_L/M_L^{r-1} \approx M_K^{\sigma-1} \approx \mathfrak{p}/\mathfrak{p}e$.

Assume (i). Then $\#(M_L/M_L^{r-1})=p$. As \mathfrak{p}_2 is not principal, we have $N_{L/K} \, cl_p(\mathfrak{P}_2)=cl(\mathfrak{p}_2)^a\neq 1\in M_K$. Hence by Lemma 3 $cl_p(\mathfrak{P}_2)\oplus M_L^{r-1}$. Thus M_L is generated by $cl_p(\mathfrak{P}_2)$, $cl_p(\mathfrak{P}_2)^{r-1}$, $cl_p(\mathfrak{P}_2)^{(r-1)^2}$, As \mathfrak{P}_2 is an ambiguous ideal in L/K_1 , $M_{L(\sigma-1)}=M_L$ and every class in M_L is represented by ambiguous idal in L/K_1 . On the other hand, let $C_{L(\sigma-1)}^0$ be the group of ideal classes represented by ambiguous ideals in L/K_1 . Then $(M_{L(\sigma-1)}:M_{L(\sigma-1)}^0)=1$ implies $(C_{L(\sigma-1)}:C_{L(\sigma-1)}^0)=1$ since $(C_{L(\sigma-1)}:C_{L(\sigma-1)})=(E_{K_1\cap M_L/K_1}L^*:N_{L/K_1}E_L)=1$ a power of p, where $M_{L(\sigma-1)}^0=C_{L(\sigma-1)}^0\cap M_L$. Hence $(E_{K_1\cap M_L/K_1}L^*:N_{L/K_1}E_L)=1$. This proves that (i) implies (ii). Conversely, assume (ii). Then $M_L=M_{L(\sigma-1)}$ and every ambiguous class in L/K_1 is represented by an ambiguous ideal in L/K_1 . Therefore M_L is generated by $cl_p(\mathfrak{P}_2)$, $cl(\mathfrak{P}_2)^r$,, $cl_p(\mathfrak{P}_2)^{rp-1}$. And since $cl_p(\mathfrak{P}_2)^r$ $\equiv cl_p(\mathfrak{P}_2)$ mod M_L^{r-1} , M_L/M_L^{r-1} is generated by $cl_p(\mathfrak{P}_2)M_L^{r-1}$. Since $cl_p(\mathfrak{P}_2)\oplus M_L^{r-1}$ and the order of $cl_p(\mathfrak{P}_2)$ is p, we have $\#(M_L/M_L^{r-1})=p$. Hence e=2, which proves that (ii) implies (i).

The fact that (ii) implies (iii) is obvious. Conversely assume (iii). Then since $p^r = \sharp (M_{L(\sigma-1)})$, $M_{L(\sigma-1)}$ is generated by $cl_p(\mathfrak{P}_2)$, $cl_p(\mathfrak{P}_2)^{\tau-1}$,....., $cl_p(\mathfrak{P}_2)^{(\tau-1)^{r-1}}$. Hence every ambiguous class in L/K_1 is represented by an ambiguous ideal in L/K_1 . Thus we have $(E_{K_1} \cap N_{L/K_1}L^*: N_{L/K_1}E_L) = 1$. Next suppose there exist $a \in M_{L(\sigma-1)}$ and $b \in M_L$ such that $a = b^{\sigma-1} \neq 1$. Put $a_i = cl_p(\mathfrak{P}_2)^{(\tau-1)^i}$ for $i = 0, 1, \ldots, r-1$. Then we can write $a = a_j f_i \cdot a_{j+1} f_{j+1} \ldots a_{r-1} f_{r-1}$, where $f_j \not\equiv 0 \mod p$. Then $a^{(\tau-1)^{r-1}-j} = a_{r-1} f_j = b^{(\tau-1)^{r-1}-j}(\sigma-1)$. Hence $cl_p(\mathfrak{P}_2)^{(\tau-1)^{r-1}} f_j = b^{(\tau-1)^{r-1}-j}(\sigma-1)$. Thus $\widehat{\chi}_{L/K_1}(cl_p(\mathfrak{P}_2^{(\tau-1)^{r-1}})) = 1$ which is a contradiction. Therefore $M_L = M_{L(\sigma-1)} \approx (\mathfrak{O}/\mathfrak{p})^r$. This proves that (iii) implies (ii). Q. E. D.

Let p_1 , p_2 be odd primes such that $p_i \equiv 1 \mod p$ or $p_i = p$. Then there exist p-1 cyclic extensions K/\mathbb{Q} of degree p in which only p_1 , p_2 are ramified, and the genus fields L of such K/\mathbb{Q} coincide. In general, however, every M_K is not necessarily isomorphic to others. But if $M_K \approx \mathbb{Q}/p$ for some K, then $p \not \sim h_L$. So $M_K \approx \mathbb{Q}/p$ for all K. Moreover,

Corollary 1. ([3 Proposition VI 6]) If $M_K \approx \mathfrak{D}/\mathfrak{p}^2$ for some K, then $M_K \approx \mathfrak{D}/\mathfrak{p}^2$ for all K.

PROOF. Let K/\mathbb{Q} , \widehat{K}/\mathbb{Q} be cyclic extensions of degree p in which only p_1 , p_2 are ramified, and let $M_K \approx \mathbb{O}/\mathfrak{p}^2$, $M_K \approx \mathbb{O}/\mathfrak{p}^e$. Let notation be as in Theorem 3. Then we can take a generator $\widehat{\tau}$ of $Gal(L/\widehat{K})$ such that $\widehat{\tau} = \tau \cdot \sigma^j$ for some j. Since it follows from Theorem 3 (ii) that σ operates trivially on M_L , the operations of τ and $\widehat{\tau}$ on M_L coincide. Hence $M_L/M_L^{\widehat{\tau}-1} = M_L/M_L^{\tau-1}$, so $\#(M_L/M_L^{\widehat{\tau}-1}) = p$. Thus we have $M_K \approx \mathbb{O}/\mathfrak{p}^2$. Q. E. D.

COROLLARY 2. If for each p_i , i=1, 2 there exists a K in which the prime divisor of p_i is not principal and $M_K \approx \mathbb{O}/\mathfrak{p}^2$, then $M_L \approx \mathbb{O}/\mathfrak{p}$.

Proof. Let the prime divisor p_2 of p_2 in K be not principal, and let the prime divisor

 $\widehat{\mathfrak{p}}_1$ of p_1 in \widehat{K} be not principal. Then by Theorem 3 $M_L \approx (\mathfrak{O}/\mathfrak{p})^r$, and $Gal(L/K_1)$, $Gal(L/K_2)$ operate trivially on M_L . Let τ be a generator of Gal(L/K). Then τ operates trivially on M_L , so $M_L^{\tau-1} = \{1\}$. Thus we have $M_L \approx M_L/M_L^{\tau-1} \approx \mathfrak{O}/\mathfrak{p}$. Q. E. D.

4

Let K/\mathbb{Q} be a cyclic extension of degree p, and let $r(M_K)$ be the rank of M_K . Then from the results of [6] it follows that if $r(M_K) \ge 2 + 2\sqrt{p}$, the p-class field tower of K is infinite.

Using **Čebotarev Density Theorem**, we can show by a similar method to that used in Corollary of Theorem 3 that there exist infinitely many cyclic extensions K/\mathbb{Q} of degree p such that $r(M_K) = 2$ and p-class field towers of K are finite.

THEOREM 4. There exist infinitely many triples of odd primes p_1 , p_2 , p_3 such that $p_X h_{\overline{L}}$, where \overline{L} is the genus field of K/\mathbb{Q} and K/\mathbb{Q} is a cyclic extension of degree p in which only p_1 , p_2 , p_3 are ramified.

LEMMA 4. Let p be an odd prime. For an odd prime p_1 such that $p_1 \equiv 1 \mod p$, there exist infinitely many odd primes p_2 which satisfy the following conditions (i), (ii), (iii);

- (i) $p_2 \equiv 1 \mod p$,
- (ii) p_2 is p-th power nonresidue modulo p_1 ,
- (iii) p_1 is p-th power nonresidue modulo p_2 .

PROOF. Put $k=\mathbf{Q}(\xi_p)$, $K_1=\mathbf{Q}\begin{pmatrix} p \\ p_1 \end{pmatrix}$, $\overline{K}_1=k\cdot K_1$ and let K/\mathbf{Q} be the cyclic extension of degree p in which only p_1 is ramified. Then from **Čebotarev Density Theorem** it follows that the Dirichlet density of the rational primes whose decomposition fields in $\overline{K}_1/\mathbf{Q}$ are k is 1/p, and that of the rational primes whose decomposition fields in $K\cdot\overline{K}_1/\mathbf{Q}$ are $k\cdot K$ is $1/p^2$. Hence there exist infinitely many odd primes p_2 such that p_2 are not decomposed in K/\mathbf{Q} and their decomposition fields in $\overline{K}_1/\mathbf{Q}$ are k. Then it is obvious that p_2 satisfy (i), (ii). In order to prove (iii), we suppose that p_1 is p-th power residue modulo p_2 . Then the equation $X^p-p_1\equiv 0 \mod p_2$ has a rational integer solution. Now we may assume $p_2 \not\sim (\mathfrak{D}_{K_1}: \mathbf{Z} \begin{bmatrix} p \\ p_1 \end{bmatrix}$, where \mathfrak{D}_{K_1} denotes the integer ring of K_1 . So there exists a prime divisor \mathfrak{p}_2 of p_2 in K_1 such that $N_{K_1/\mathbf{Q}}\mathfrak{p}_2=p_2$. Let \mathfrak{P}_2 be a prime divisor of \mathfrak{p}_2 in \overline{K}_1 , then we have $N_{\overline{K}_1/\mathbf{Q}}\mathfrak{p}_2=p_2^p$ since the decomposition field of \mathfrak{P}_2 is k. On the other hand, we have $N_{\overline{K}_1/K_1}\mathfrak{P}_2=\mathfrak{p}_2^p$ for $1\leq i\leq p-1$, which is a contradiction. This proves (iii).

Q. E. D.

COROLLARY There exist infinitely many triples of odd primes satisfying the following conditions (i) \sim (vi);

- (i) $p_i \equiv 1 \mod p, i = 1, 2, 3,$
- (ii) p_1 is p-th power nonresidue modulo p_2 ,
- (iii) p_1 is p-th power nonresidue modulo p_3 ,

32 T. Takeuchi

- (iv) p_2 is p-th power nonresidue modulo p_1 ,
- (v) p_3 is p-th power residue modulo p_1 ,
- (vi) p_3 is p-th power nonresidue modulo p_2 .

The proof is analogous to Lemma 4.

Proof of Theorem 4. Let p_1 , p_2 , p_3 be primes satisfying the conditions of the above corollary. Let K_{23}/\mathbf{Q} be the cyclic extension of degree p in which only p_2 , p_3 are ramified and p_1 is completely decomposed. It follows from above conditions (i), (ii), (iii), that such an extension always exists. Let K_1/\mathbf{Q} be the cyclic extension of degree p in which only p_1 is ramified. Then because of the above condition (v), p_3 is completely decomposed in K_1 . Put $L=K_1 \cdot K_{23}$. Then L/\mathbf{Q} is an abelian extension of degree p^2 in which only p_1 , p_2 , p_3 are ramified. Let K/\mathbf{Q} be a subfield of L with degree p over \mathbf{Q} such that $K \neq K_1$, K_{23} . Then p_1 , p_2 , p_3 are ramified in K/\mathbf{Q} , and hence L/K is unramified. Moreover

$$\left(\left(\frac{p_i\colon K/\mathbf{Q}}{p_j}\right)\right)_{i,\,j=1,\,2,\,3} = \begin{pmatrix} ? & * & * \\ * & ? & ? \\ 1 & * & ? \end{pmatrix},$$

where * means nonidentity.

So by the results of 2 we have $M_K \approx (\mathfrak{O}/\mathfrak{p})^2$. Let \mathfrak{p}_1 , \mathfrak{p}_2 , \mathfrak{p}_3 be the prime divisors of p_1 , p_2 , p_3 in K respectively, then these are not principal in K and \mathfrak{p}_1 , \mathfrak{p}_3 are completely decomposed in L/K. And let \mathfrak{P}_3 be a prime divisor of \mathfrak{p}_3 in L, then $N_{L/K}(cl_p(\mathfrak{P}_3)) = cl(\mathfrak{p}_3)^a \neq 1 \in M_K$. So by Lemma 3 we have $cl_p(\mathfrak{P}_3) \oplus M_L^{r-1}$, where τ is a generator of Gal(L/K). On the other hand from $M_K \approx (\mathfrak{O}/\mathfrak{p})^2$, we see $\#(M_L/M_L^{r-1}) = p$. Hence M_L is generated by $cl_p(\mathfrak{P}_3)$, $cl_p(\mathfrak{P}_3)^{r-1}$, $cl_p(\mathfrak{P}_3)^{(r-1)^2}$,....... As $cl(\mathfrak{P}_3)$ is an ambiguous class in L/K_1 , the order of $cl_p(\mathfrak{P}_3)$ is p. Let σ_1 be a generator of $Gal(L/K_1)$, then σ_1 operates trivially on M_L since $\mathfrak{P}_3^{\sigma_1} = \mathfrak{P}_3$. Similarly, let \mathfrak{P}_1 be a prime divisor of \mathfrak{p}_1 in L, then $cl_p(\mathfrak{P}_1) \oplus M_L^{r-1}$ and M_L is also generated by $cl_p(\mathfrak{P}_1)$, $cl_p(\mathfrak{P}_1)^{r-1}$, $cl_p(\mathfrak{P}_1)^{(r-1)^2}$,...... Let σ_{23} be a generator of $Gal(L/K_{23})$, then σ_{23} operates trivially on M_L since $cl(\mathfrak{P}_1)$ is an ambiguous class in L/K_{23} . Therefore noting Gal(L/Q) is generated by $Gal(L/K_1)$ and $Gal(L/K_{23})$ we see that τ also operates trivially on M_L . Thus we have $M_L = M_L/M_L^{r-1} \approx \mathfrak{O}/\mathfrak{p}$. On the other hand \overline{L}/L is the unramified cyclic extension of degree p. Hence by **Burnside Basis Theorem** we have $p \not | h_L$.

References

- [1] F. GERTH III, Number fields with prescribed l-class groups, Proc. Amer. Math. Soc., 49 (1975), 284-288.
- [2] R. Gold, Genera in abelian extensions, Proc. Amer. Math. Soc., 47 (1975), 25-28.
- [3] G. Gras, Sur les l-classes d'ideaux dans les extensions cycliques relative de degre premier l, Ann. Inst. Fourier, Grenoble 23, 3 (1973), 1-48, 4 (1973), 1-44.
- [4] F. Halter-Koch, Ein Satz über die Geschlechter relativzyklischer Zahlkörper von Primzahlgrad und seine Anwendug auf biquadratisch-bizyklische Körper, J. Number Theory, 4 (1972), 144-156.

- [5] E. Inaba, Uber die Struktur der l-klassengruppe zyklischer Zahlkörper von Primzahlgrad 1, J. Fac. Sci. Univ. Tokyo Sect I, 4 (1940), 61-115.
- [6] P. ROQUETTE, On class field towers, Proc. instr. conf. at Brighton (Algebraic Number Theory), (1967), 231-249.