The second dual of a tensor product of C^{*} -algebras III

By

Tadashi HURUYA

(Received May 20, 1975)

1. Introduction

Let D be a C*-algebra, and let D^{*} denote its dual and D^{**} its second dual. Let π_D be the universal representation of D on the Hilbert space $H_{\mathcal{D}},$ then D^{**} can be identified with the weak closure of $\pi_D(D)$.

Let A and B be $C^{*}\cdot$ -algebras, and let $A\otimes B$ denote the $C^{*}\cdot$ -tensor product of A and B and $A^{**}\otimes B^{**}$ the W^{*} -tensor product of A^{**} and B^{**} . If $\pi_A\otimes\pi_B$ has a normal extension to $(A\otimes B)^{**}$ which is a *-isomorphism onto $A^{**}\otimes B^{**}$, we shall say that $(A\otimes B)^{**}$ is canonically *-isomorphic to $A^{**}\otimes B^{**}$. It is known that $(A\otimes B)^{**}$ is canonically *-isomorphic to $A^{**}\otimes B^{**}$ if and only if $(A\otimes B)^{*}=A^{*}\otimes B^{*}$, where $A^{*}\otimes B^{*}$ denotes the uniform closure of the algebraic tensor product of A^{*} and B^{*} in $(A\otimes B)^{*}$ ([2], [4]).

We are interested in C^{*} -algebras A having the property:

(*) $(A\otimes B)^{**}$ is canonically *-isomorphic to $A^{**}\otimes B^{**}$ for an arbitrary C*algebra B.

We shall present a characterization of commutative C^{*} -algebras having the property (`*).

The author would like to express his hearty thanks to Professor J. Tomiyama for his many valuable suggestions.

2. Theorem

We first consider a commutative C*-algebra A such that $(A\otimes_{A}A)^{**}$ is not canonically *-isomorphic to $A^{**}\otimes A^{**}.$

Let X be a locally compact Hausdorff space, and let $C_{0}(X)$ be the C*-algebra of all complex-valued continuous functions on X , which vanish at infinity. Let $M(X)$ be the set of all complex regular Borel measures on X and $M(X)^{+}$ the set of all positive measures of $M(X)$. From the Riesz-Markov representation theorem we can identify $M(X)$ with $C_{0}(X)^{*}$.

Throughout this paper, χ_{E} denotes the characteristic function of a set E , also δ_{t}

26 T. Huruya

denotes the evaluation functional for a point t .

LEMMA. Suppose that there exists a non-atomic measure μ in $M(X)$. Then $(C_{0}(X)\otimes$ $C_{0}(X))^{**}$ is not canonically *-isomorphic to $C_{0}(X)^{**}\otimes C_{0}(X)^{**}.$

PROOF. $C_{0}(X)\otimes C_{0}(X)$ can be identified with $C_{0}(X\times X)$. Hence we define the positive linear functional on $C_{0}(X\times X)$ as follows:

$$
u(a) = \int_X a(t \times t) d\mu(t).
$$

Suppose that u is an element of $C_{0}(X)^{*}\otimes_{\alpha}C_{0}(X)^{*}$, then there exists a sequence (u_{n}) with the uniform limit u of the form

$$
u_n=\sum_{i=1}^{m_n(n)}f_i\bigotimes g_i,\qquad \begin{array}{cc} (n)& (n)& (n)\\ f_i& g_i\in C_0(X)^*.\end{array}
$$

Let Δ be the diagonal set $(t\times t)_{t\in X}$. For each *n* we define the functional on $C_{0}(X\times$ X) by the following

$$
v_n(a)=u_n(\chi_A a).
$$

Then we have

$$
|v_n(a) - u(a)| = |u_n(\chi_a a) - u(\chi_a a)|
$$

\n
$$
\leq ||u_n(\chi_a(,)) - u(\chi_a(,))||a||
$$

\n
$$
\leq ||u_n - u|| ||a||.
$$

Hence the sequence (v_{n}) converges to u uniformly on $C_{0}(X\times X)$.

Now, from the Fubini theorem we have

$$
v_n(a) = \sum_{i=1}^{m_n} f_i \otimes g_i^{(n)}(\chi_a a)
$$

=
$$
\sum_{i=1}^{m_n} f_i \left(g_i(\chi_a(s \times t) a(s \times t)) \right)
$$

=
$$
\sum_{i=1}^{m_n} f_i(a(s \times s) g_i(s))
$$

for all a in $C_{0}(X\times X)$. Since for each $g_{i}^{(n)}$ the set $(t\in X: g_{i}(\{t\})\neq 0)$ is at most countable, v_{n} are of the form

$$
v_n = \sum_{i=1}^{\infty} \alpha_i \, \delta_{t_i \times t_i}^{(n)}.
$$

Moreover the set $\binom{n}{t}$ (n) is at most countable, v_{n} can be written as follows:

The second dual of a tensor product of C^{*} -algebras III

$$
v_n = \sum_{i=1}^{\infty} \stackrel{(n)}{\alpha_i} \partial_{t_i \times t_i}.
$$

On the other hand, we have $||v_{n}-v_{m}|| = \sum_{i}|\alpha_{i}-\alpha_{i}|$, and there exists the functional v such that

 $v=\sum_{i=1}^{\infty}\alpha_i\,\delta_{t_i\times t_i}$

and

$$
\lim ||v_n-v||=0.
$$

It follows that $u=v$.

Since v is positive, we obtain $\alpha_i \geq 0$. Hence there exists $\alpha_i > 0$.

Now there exists a neighborhood of t_i such that $\mu(U(t_i))\leq \alpha_i$, and there exists a function a in $C_{0}(X\times X)$ such that its support lies in $U(t_i)\times U(t_i)$, $a(t_i\times t_i)=1$, and $0\leq a\leq 1$. Then we have

$$
v(a)\geq\alpha_i>u(a).
$$

This is a contradiction. Therefore $(C_{0}(X)\otimes_{\alpha}C_{0}(X))^{**}$ is not canonically *-isomorphic to $C_{0}(X)^{**}\otimes C_{0}(X)^{**}.$

THEOREM. A commutative C^* -algebra $C_{0}(X)$ has the property $(*)$ if and only if each measure μ in $M(X)^{+}$ is of the form

(**) $\mu=\sum_{i=1}^{\infty}\alpha_{i}\delta_{t}$

where each α_i is a non-negative real number.

PROOF. For each μ in $M(X)^{+}$, considering the set of elements t_i such that $\mu(\{t_i\})\neq 0$, there exists the countable set (ti) of X such that $\mu-\sum_{i=1}^{\infty}\mu(\{t_i\})\partial_{t_i}$ belongs to $M(X)^+$, and $(\mu-\sum_{t}\mu(\{t_{i}\})\delta_{t}^{j})(s)=0$ for all s in X.

Suppose $\mu-\sum_{\iota}\mu(\{t_i\})\delta_{t_i}\neq 0$, from Lemma, $C_{0}(X)$ has not the property (*). Hence if $C_{0}(X)$ has the property $(*), \mu$ is of the form $(**).$

Conversely, let each measure μ in $M(X)^{+}$ be of the form (**).

Let B be an arbitrary C^{*}-algebra. For each u in $(C_{0}(X)\otimes_{\mathbb{B}}B)^{*}$, from [1. Proposition 32], there exist a measure μ in $M(X)^{+}$ and a weakly measurable function on X into B^{*} such that

$$
u=\int_X\!\delta_t\otimes f(t)\,d\mu(t).
$$

Since $f(t)$ is μ -separably-valued, weakly measurable and bounded, it is Bochner μ intagrable. Hence there exists a sequence of finite-valued functions $f_{n}(t)$ strongly conv-

$$
\overline{27}
$$

ergent to $f(t)$ μ -a.e. on X. Then $f_{n}(t)$ is of the form

$$
f_n(t) = \sum_{i=1}^{l_n} \chi_{E_i}^{(n)}(t) g_i,
$$

 $g_i \in B^*.$

Then we have

$$
\lim \|\sum_{i=1}^{l_n} \chi_{E_i}^{(n)} \mu \otimes_{\mathcal{E}}^{(n)} - u\| = 0,
$$

where $\chi_{E_{i}}^{(n)}\mu$ denotes the positive functional on $C_{0}(X)$ such that

$$
h \longrightarrow \int_X h(t) \chi_{E_i}^{(n)}(t) d\mu(t).
$$

Hence $C_0(X)$ has the property $(*).$

REMARK. A $C^{*}-algebra A$ has the property $(*)$ if A^{**} is atomic.

PROOF. Let B be an arbitrary C^{*}-algebra and π be a non-degenerate representation of $A\otimes B$.

Then there exist representations π_{1} and π_{2} of A and B such that

$$
\pi(a\otimes b) = \pi_1(a)\,\pi_2(b) = \pi_2(b)\,\pi_1(a)
$$

for a in A and b in B .

Since the weak closure of $\pi_{1}(A)$ is atomic, π is unitary equivalent to a representation of the form

$$
\sum_{\beta}\pi_{1\beta}\bigotimes\pi_{2\beta}
$$

where $\pi_{1\beta}$ and $\pi_{2\beta}$ are representations of A and B respectively. Hence π has a normal extension to $A^{**}\otimes B^{**}$. It follows that every positive functional on $A\otimes B$ has a normal extension to $A^{**}\otimes B^{**}$, so $(A\otimes B)^{*}=A^{*}\otimes_{\alpha} B^{*}$. Thus $(A\otimes B)^{**}$ is canonically *-isomorphic to $A^{**}\!\!\otimes\!\!B^{**}\!.$

3. Examples

EXAMPLE 1. Let X be a discrete topological space. Then $C_{0}(X)$ has the property (*).

PROOF. For each μ in $M(X)^{+}$, the set $I=(t\in X:\mu(\{t\})\neq 0)$ is countable. Then, $\nu=$ $\mu-\Sigma_{t\in I}\mu(\{t\})\delta_{t}$ is non-atomic and positive.

For each f in $C_{0}(X)$ and every $\varepsilon > 0$, the set $K=(t\in X:|f(t)|\geq\varepsilon)$ is finite, so that $\nu(K)=0$. Then we obtain $|\nu(f)|\leq\varepsilon\|\nu\|$. Hence $\nu(f)=0$, and, so $\nu=0$. Therefore, we have $\mu=\sum_{t\in I}\mu(\{t\})\delta_{t}$. From Theorem $C_{0}(X)$ has the property (*).

EXAMPLE 2. Let X be a locally compact Hausdorff space, which is a countable set. Then

 $C_0(X)$ has the property $(*)$.

PROOF. Since X is countable, every positive measure is of the form $(**)$. From Theorem $C_{0}(X)$ has the property $(*)$.

Let $[01]$ be the unit interval of real numbers. Since the Lebesgue measure on $[01]$ is non-atomic, we have the following example.

EXAMPLE 3. $C([01])$ has not the property $(*)$.

NIIGATA UNIVERSITY

References

[1] A. GROTHENDIECK: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. no. 16 (1955).

- [2] T. HURUYA: The second dual of a tensor product of C*-algebras. Sci. Rep. Niigata Univ., A, 9 (1972), 35-38.
- [3] R. R. PHELPS: Lectures on Choqet's theorem. Math. Studies, Princeton, Van Nostrand, (1966).
- [4] T. TURUMARU: On the direct product of operator algebras III. Tōhoku Math. J., 6 (1954), 208-211.