The second dual of a tensor product of C*-algebras III

By

Tadashi HURUYA

(Received May 20, 1975)

1. Introduction

Let *D* be a C*-algebra, and let *D** denote its dual and *D*** its second dual. Let π_D be the universal representation of *D* on the Hilbert space H_D , then *D*** can be identified with the weak closure of $\pi_D(D)$.

Let A and B be C*-algebras, and let $A \otimes B$ denote the C*-tensor product of A and B and $A^{**} \otimes B^{**}$ the W*-tensor product of A^{**} and B^{**} . If $\pi_A \otimes \pi_B$ has a normal extension to $(A \otimes B)^{**}$ which is a *-isomorphism onto $A^{**} \otimes B^{**}$, we shall say that $(A \otimes B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes B^{**}$. It is known that $(A \otimes B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes B^{**}$ if and only if $(A \otimes B)^{*} = A^{*} \otimes B^{*}$, where $A^{*} \otimes B^{*}$ denotes the uniform closure of the algebraic tensor product of A^{*} and B^{**} in $(A \otimes B)^{*}$ ([2], [4]).

We are interested in C*-algebras A having the property:

(*) $(A \otimes B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes B^{**}$ for an arbitrary C*algebra B.

We shall present a characterization of commutative C*-algebras having the property (*).

The author would like to express his hearty thanks to Professor J. Tomiyama for his many valuable suggestions.

2. Theorem

We first consider a commutative C*-algebra A such that $(A \otimes A)^{**}$ is not canonically *-isomorphic to $A^{**} \otimes A^{**}$.

Let X be a locally compact Hausdorff space, and let $C_0(X)$ be the C*-algebra of all complex-valued continuous functions on X, which vanish at infinity. Let M(X) be the set of all complex regular Borel measures on X and $M(X)^+$ the set of all positive measures of M(X). From the Riesz-Markov representation theorem we can identify M(X) with $C_0(X)^*$.

Throughout this paper, χ_E denotes the characteristic function of a set E, also δ_t

denotes the evaluation functional for a point t.

LEMMA. Suppose that there exists a non-atomic measure μ in M(X). Then $(C_0(X) \otimes_{\alpha} C_0(X))^{**}$ is not canonically *-isomorphic to $C_0(X)^{**} \otimes C_0(X)^{**}$.

PROOF. $C_0(X) \otimes C_0(X)$ can be identified with $C_0(X \times X)$. Hence we define the positive linear functional on $C_0(X \times X)$ as follows:

$$u(a) = \int_X a(t \times t) d\mu(t).$$

Suppose that u is an element of $C_0(X)^* \bigotimes_{\alpha'} C_0(X)^*$, then there exists a sequence (u_n) with the uniform limit u of the form

$$u_n = \sum_{i=1}^{m_n(n)} f_i \otimes g_i^{(n)}, \qquad f_i^{(n)}, \quad g_i \in C_0(X)^*.$$

Let Δ be the diagonal set $(t \times t)_{t \in X}$. For each *n* we define the functional on $C_0(X \times X)$ by the following

$$v_n(a) = u_n(\chi_A a).$$

Then we have

$$|v_{n}(a)-u(a)| = |u_{n}(\chi_{\Delta} a)-u(\chi_{\Delta} a)|$$

$$\leq ||u_{n}(\chi_{\Delta} (,))-u(\chi_{\Delta} (,))|||a||$$

$$\leq ||u_{n}-u|||a||.$$

Hence the sequence (v_n) converges to u uniformly on $C_0(X \times X)$.

Now, from the Fubini theorem we have

$$v_{n}(a) = \sum_{i=1}^{m_{n}} f_{i}^{(n)} \bigotimes_{g_{i}}^{(n)} (\chi_{d} a)$$

= $\sum_{i=1}^{m_{n}} f_{i}^{(n)} (g_{i}^{(n)} (\chi_{d}(s \times t)a(s \times t)))$
= $\sum_{i=1}^{m_{n}} f_{i}^{(n)} (a(s \times s)g_{i}^{(n)}(\{s\}))$

for all a in $C_0(X \times X)$. Since for each $g_i^{(n)}$ the set $(t \in X: g_i(\{t\}) \neq 0)$ is at most countable, v_n are of the form

$$v_n = \sum_{i=1}^{\infty} \alpha_i^{(n)} \delta_{t_i \times t_i}^{(n)(n)}.$$

Moreover the set $\begin{pmatrix} n & (n) \\ t_i \times t_i \end{pmatrix}$ is at most countable, v_n can be written as follows:

26

$$v_n = \sum_{i=1}^{\infty} \alpha_i^{(n)} \delta_{t_i \times t_i}.$$

On the other hand, we have $||v_n - v_m|| = \sum_{i=1}^{\infty} |\alpha_i^{(n)} - \alpha_i^{(m)}|$, and there exists the functional vsuch that

 $v = \sum_{i=1}^{\infty} \alpha_i \, \delta_{t_i \times t_i}$

and

$$\lim \|v_n - v\| = 0.$$

It follows that u=v.

Since v is positive, we obtain $\alpha_i \ge 0$. Hence there exists $\alpha_i > 0$.

Now there exists a neighborhood of t_i such that $\mu(U(t_i)) < \alpha_i$, and there exists a function a in $C_0(X \times X)$ such that its support lies in $U(t_i) \times U(t_i)$, $a(t_i \times t_i) = 1$, and $0 \le a \le 1$. Then we have

$$v(a) \geq \alpha_i > u(a).$$

This is a contradiction. Therefore $(C_0(X) \otimes C_0(X))^{**}$ is not canonically *-isomorphic to $C_0(X)^{**} \otimes C_0(X)^{**}.$

THEOREM. A commutative C^{*}-algebra $C_0(X)$ has the property (*) if and only if each measure μ in $M(X)^+$ is of the form

 $\mu = \sum_{i=1}^{\infty} \alpha_i \, \delta_{l_i}$ (**)

where each α_i is a non-negative real number.

PROOF. For each μ in $M(X)^+$, considering the set of elements t_i such that $\mu(\{t_i\}) \neq 0$, there exists the countable set (t_i) of X such that $\mu - \sum_{i=1}^{\infty} \mu(\{t_i\}) \delta_{t_i}$ belongs to $M(X)^+$, and

 $(\mu - \sum_{i=1}^{\infty} \mu(\{t_i\}) \delta_{t_i})(s) = 0 \text{ for all } s \text{ in } X.$ Suppose $\mu - \sum_{i=1}^{\infty} \mu(\{t_i\}) \delta_{t_i} \neq 0$, from Lemma, $C_0(X)$ has not the property (*). Hence if $C_0(X)$ has the property (*), μ is of the form (**).

Conversely, let each measure μ in $M(X)^+$ be of the form (**).

Let B be an arbitrary C*-algebra. For each u in $(C_0(X) \otimes B)^*$, from [1. Proposition 32], there exist a measure μ in $M(X)^+$ and a weakly measurable function on X into B^* such that

$$u = \int_X \delta_t \otimes f(t) d\mu(t).$$

Since f(t) is μ -separably-valued, weakly measurable and bounded, it is Bochner μ intagrable. Hence there exists a sequence of finite-valued functions $f_n(t)$ strongly conv-

ergent to f(t) μ -a.e. on X. Then $f_n(t)$ is of the form

$$f_n(t) = \sum_{i=1}^{l_n} \chi_{E_i}^{(n)}(t)_{g_i}^{(n)}, \qquad g_i \in B^*.$$

Then we have

$$\lim \|\sum_{i=1}^{l_n} \chi_{E_i}^{(n)} \mu \otimes_{g_i}^{(n)} - u\| = 0,$$

where $\chi_{E_i}^{(n)}\mu$ denotes the positive functional on $C_0(X)$ such that

$$h \longrightarrow \int_X h(t) \chi_{E_i}^{(n)}(t) d\mu(t).$$

Hence $C_0(X)$ has the property (*).

REMARK. A C^{*}-algebra A has the property (*) if A^{**} is atomic.

PROOF. Let B be an arbitrary C^{*}-algebra and π be a non-degenerate representation of $A \otimes B$.

Then there exist representations π_1 and π_2 of A and B such that

$$\pi(a \otimes b) = \pi_1(a) \pi_2(b) = \pi_2(b) \pi_1(a)$$

for a in A and b in B.

Since the weak closure of $\pi_1(A)$ is atomic, π is unitary equivalent to a representation of the form

$$\sum_{\beta} \pi_{1\beta} \bigotimes \pi_{2\beta}$$

where $\pi_{1\beta}$ and $\pi_{2\beta}$ are representations of A and B respectively. Hence π has a normal extension to $A^{**} \otimes B^{**}$. It follows that every positive functional on $A \otimes B$ has a normal extension to $A^{**} \otimes B^{**}$, so $(A \otimes B)^* = A^* \otimes B^*$. Thus $(A \otimes B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes B^{**}$.

3. Examples

EXAMPLE 1. Let X be a discrete topological space. Then $C_0(X)$ has the property (*).

PROOF. For each μ in $M(X)^+$, the set $I = (t \in X; \mu(\{t\}) \neq 0)$ is countable. Then, $\nu = \mu - \sum_{t \in I} \mu(\{t\}) \delta_t$ is non-atomic and positive.

For each f in $C_0(X)$ and every $\varepsilon > 0$, the set $K = (t \in X: |f(t)| \ge \varepsilon)$ is finite, so that $\nu(K) = 0$. Then we obtain $|\nu(f)| \le \varepsilon ||\nu||$. Hence $\nu(f) = 0$, and, so $\nu = 0$. Therefore, we have $\mu = \sum_{t \in I} \mu(\{t\}) \delta_t$. From Theorem $C_0(X)$ has the property (*).

EXAMPLE 2. Let X be a locally compact Hausdorff space, which is a countable set. Then

 $C_0(X)$ has the property (*).

PROOF. Since X is countable, every positive measure is of the form (**). From Theorem $C_0(X)$ has the property (*).

Let [01] be the unit interval of real numbers. Since the Lebesgue measure on [01] is non-atomic, we have the following example.

EXAMPLE 3. C([01]) has not the property (*).

NIIGATA UNIVERSITY

References

[1] A. GROTHENDIECK: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. no. 16 (1955).

- [2] T. HURUYA: The second dual of a tensor product of C*-algebras. Sci. Rep. Niigata Univ., A, 9 (1972), 35-38.
- [3] R. R. PHELPS: Lectures on Choqet's theorem. Math. Studies, Princeton, Van Nostrand, (1966).
- [4] T. TURUMARU: On the direct product of operator algebras III. Tohoku Math. J., 6 (1954), 208-211.