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Introduction

Let M be an HCP3; in other wards M is a simply connected 6-manifold with the
same homotopy type as the standard complex projective 3—spaces.

We will denote by T'! the circle group, by (7T'%, M) the action on M and by F(TY, M)
the fixed point set of 7" action on M. X/\EPh(n) means that the cohomology ring H*( X;

R) is isomorphic to R[a]l/(a?*1), where n=deg a.
By a result in [1] (chap. VII, 5-1), it follows that there are following four cases.
(a) F(T\, M )f\;CP2+ {point}
(b) F(TY, MH)~_5S%+52
(c) KTy M)f\;Sz+ {point} + { point}
(d) K14, M)/\; {point} + { point} + { point} + { point}
In this paper, we shall consider the cases (a) and (b).
We have the following.
Tueorem 1. If F(T1, M)f'\.;CP2+ {point} or F(T!, M)/\;SZ+SZ, then M is diffeo-
morphic to CP53.

THEOREM 2. T2 cannot act effectively on exotic complex projective 3—spaces.
In the following all actions are asumed to be differentiable.

1. The main lemma

LemmMma 1-1. If M contains a submaniforld A such that Af'\Q/CPZ, then M is diffeo-
morphic to CP3.

Proor. Let v=(E, p, A) be the normal bundle of A in M, and ((E, E°), p, A, (D2,
S1)) be pair of disk bundle and sphere bundle associated to v.
It is known that
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(1 2= D1([AD

where X(v) is the Euler class of v, [A] is the fundamental homology class of A and D is
the Poincare duality map. (see[6]1)

Let a(7, respectively) be a generator of H?(A)/tor (H2(M), respectively), where for
denotes the torsion group of H2(A), let B be the dual base of [AIJ(EHy(A)) and let &,
and m be integers such that satisfy i*(y)=ma+ ¢, a2=kB and py(M)=I[72, where t&ETor
and p1(M) is the first Pontrjagin class of M.

It follows immediately that

(2) PR =i (r = m2 o=k B,

It is easy to see that i,[ A]l=km?c, where c(€ Hy(M)) is the dual base of r2(€ H4(M)).
Hence, we have '

D1 LAD=1*(km? v)=km3 a+km? 1.

And
(3) pl(vj=xz(v)=k2m5a2=kzm5ﬁ.
Since
1=1Index A=1/3 P,(A)+[A],
we have .
(4D P,(A)=38.

It follows from the formula *P,(M)=P;(A)+ Pi(»), (2), (3) and (4) that
lkm? B=Fk®mS B+ 3p.
Thus we have
(5) 3=km2(I—k2m?*).

It is not difficult to show that possible values of &, / and |m| are (&, [, |m|)=(3, 10, 1),
(—3,81),0or (—1, —2,1). '
Since / has the form 24j+4 (see [6]), we have

(6) (& 1, Im|)=(, 4, 1), which implies
(7 P(M)=4r
From a result in [6], it following that M is diffeomorphic to CP3.
CoroLLARY 1-2. If F(T}, M)f\:CP2+ {point}, then M is diffeomorphic to CP3.
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2. The Case (b)

In this section, we will study the case (b). :

It is well known that M is the orpit space of a differentiable free S! action on a homo-
topy seven sphere 37. Let #: 37— M be the projection. We may assume that S! acts
to the right on 37 and T1 acts to the left on M. By a theorem of [5], the left T? action
on M lifts to a left T action on 27 which commutes with the right S! action.

In the case (b), it follows from the fact F(Zp, M)DF(TY, M) for any subgroup Zp of
T! and a result in [1] (chap. VII 3-1), the action (T}, M) is semifree. Then we can
choose a lifting so that the action is semifree with the fixed point set #=1(F,)=S3, where
F(TY, M)=Fy+ F,. (It’s proof is not difficult.)

THEOREM 2-1. If F(TY, M)~_S2+S?, then M is diffeomorphic to CP3.
4

Proor. By the exact sequence [1] (chap. III, 10-5)

...... ’—"——i‘Ha_(.Z'?/Tl, KT, z’i))__q‘_.)Hﬂ(zﬂ)__,HQ-—l(zV/Tl’ KT, 37))
@ HICF(TY, 3T HO+I( 1T, F(T1, 57)) —eee

we see that 37/T! is a cohomology 6-sphere and the induced action (S', 27/T1) is semifree

with the fixed point set #—1(Fy)/T'~S2 It follows from above exact sequence, that

M/T'=(237/SY)/T1=(37/T1)/S! is a cohomology 5-sphere. Since M is simply connected

and T is connected, M/T! is simply connected, and hence M/T? is diffeomorphic to SS.
Let U be a T'-invariant tubular neighborhood of F, in M. Clearly, U/T! is a tubular

neighborhood of Fjin M/T'~S5  Hence, there is a diffeomorphism from U/T! to S2x D3

such that F; corresponds to S%x {0}.

Hence, (M-U)/T'~S5—S2xD3~D3x S?

Therefore, we may take the following interpretation.

(9) M/Tt=S2xD3UD3x S?, Fy=5%x {0} and F;CID3x S2
From the following exact sequences,
0—> H2(D3x S, F1)—> H*(M-U )——1—>H 2(F1 )—> H3(D3x 82, F;)—>0

(the sequence in {1] (chap. III. 10-5))

(cohomology exact sequence of pair (ID3x S2, F1)).

We can prove
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(10) i*: H2(D3x S?)—> H2(FY).
Therefore, we may assume that Fy= {0} x S2CD3x S2. (see [2])

Let X, be axD3CS?2x D3 and X a set in D3x S? which is represented the mapping
cylinder of ax S?*— {0} x S?=F;, where a( & S?) is a point and the map is the restriction
of the projection D3 x S2— {0} x S2.

We will consider p~1( XU X;)= NyU N;, where p is the orbit projection of Tt action
on M and N;=P-1(X;)(i=0,1). Clearly, N, (NV;, respectively) is diffeomorphic to the
mapping cylinder of S3——>ax {0} (€ Fy)(S'—> F;, respectively), where these maps are
the restrictions of the normal bundle’s projections of F; in M (i=0,1). Hence M con-
taints a submanifold N;U N; which is diffeomorphic to CP2, and hence Mis CP3. This
completes the proof of Theorem 2-1.

3. T?actionon M

It is not difficult to prove the following.

LemMmA 3-1. Let T1(T,, D, D_,, respectively) be a subgroup of T X T! such that Ty=
T'x {1} (Te={1} xTY, D={(¢t, t)ETIXT}, D_1={(¢, t 1 )ETI X T}, respectively), and lel
K be a one dimensional subtorus of T1x T1.

(i) If KnTi={1} and KnT,= {1}, then K=Dor D_;.
(ii) If KnT\={1}, KnD={1} and KND_-1= {1}, then K=T,.

THEOREM 3-2. If T? acts effectively on M, then M is diffeomorphic to CP3.

Proor. It is enough to prove the case in which F(T%, M)=23% {pi} (piEM) and dim
F(G, M)<2 for any subgroup G of 7. In this case, we have sutb_tori Ki, K; and K3 of T?
such that Kin K;= {1} (i==j) and each components of F(K;, M) containg P, are two dim-
ensional. (Consider the slice representation of T2 at Py M.)

Now, we may assume that T?=K; x K;
By lemma 3-1, we have Kz=Dor D_;

We may assume F(K;, M)=F+ {p2} + {3}, in fact otherwise M=CP3. From the
fact F(K;, M~F;) is a cohomology sphere, it can be easily shoown that p; is not contained
in the component F; of F(K; M) containing p,. Hence, we may assume that the com-
ponent F; contains P,. In this case, p; and p, are not contained in the component F3 of
F(K3;, M) containing Py. Hence, the component F3; contains Ps.

By [1] (chap. VII, 3-2), it is known that F(G, M) consists of exactly two components
for any cyclic subgroup G of order 2 of T2. Therefore, we may assume that F(Z,, M)=
S+ Si2 for Z,C K3 such that Py, P;& Sy and Py, P& S2. (clearly, one component of F(Kj,

M) is S?).
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Since S;2 is a T?-invariant set, there is a subtorus T'! of T2 such that acts trivially on
S;%. It is easy to see that T'n K;= {1} and T'n Ky= {1}, because T'nK; fixed F;US;? which
contains P;. Hence, T'=Dor D_;.
If T'=Kj3, then M=CP3. Therefore, let Ks=D and T'=D_,.
By the same argument as for K;, we have a subtorus 7o' of 72 such that To'nK;= {1},
T'nD= {1} and To'nD-1= {1}

It follows from Lemma 3-1 that T¢! is K;. Therefore, we have F( K, M)f\;SZ+ S2.
Theorem 2-1 implies that M=CP:.

This completes the proof of Theorem 3-2.

4. Acknowledgement

The auther is indebted to Professor T. Watabe of Niigata University for his com-
ments and suggessions.

NiicatA UNIVERSITY

Reference -

{1] G.E.Brepon: Introduction to Compact transformation groups. Academic Press (1972).

[2] A.HAEFLIGER: Plongements differentiable de variétes dans varietes, Comment. Math. Nelv. 36
(1961), 47-82. .

{3] D.MantcoMmerY and C.T.YANG: Differentiable action on homotopy spheres, Trans. Amer.
Math. Soc. 122 (1966), 480-498.

[4] T.PeTRIE: Smooth S! action on homotopy complex projective space and related topics, Bull. A.M.
S. 78 (1972), 105-153.

[5] T.E.STEWART: Lifting groups action in fiber bundles. Ann. of Math. 74 (1961), 192-198.

[6] D.SuLLivan: Geometric topology seminar. Notes. Princeton University, 1967.




	Introduction
	THEOREM 1. ...
	THEOREM 2. ...

	1. The main lemma
	2. The Case (b)
	THEOREM 2-1. ...

	3. $T^{2}$ action on $M$
	THEOREM $3\leftrightarrow ...

	4. Acknowledgement
	Reference

