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Introduction

Let $M$ be an $H\mathbb{C}P^{3}$ ; in other wards $M$ is a simply connected -manifold with the
same homotopy type as the standard complex projective 3-spaces.

We will denote by $T^{1}$ the circle group, by $(T^{1}, M)$ the action on $M$ and by $F(T^{1},$ $W$

the fixed point set of $\mathcal{I}^{1}$ action on M. $X\sim P^{h}(n)$ means that the cohomology ring $H^{*}(X$;
$R)$ is isomorphic to $R[a]/(a^{h+1})$, where $n=degaR$.

By a result in [11 (chap. VII, 5-1), it follows that there are following four cases.

(a) $F(T^{1}, M)\sim_{z}\mathbb{C}P^{2}+\{point\}$

(b) $F(T^{1}, M)\sim_{z}S^{2}+S^{2}$

(c) $F(T^{1}, M)\sim S^{2}+\{point\}+\{point\}$
$z$

(d) $F(T^{1}, M)\sim_{z}\{point\}+\{point\}+\{point\}+\{point\}$

In this paper, we shall consider the cases (a) and (b).

We have the following.

THEOREM 1. If $F(T^{1}, M)\sim_{l}\mathbb{C}P+\{point\}$ or $F(T^{1}, M)\sim_{z}S^{2}+S^{2}$, then $M$ is diffeo-
morphic to $\mathbb{C}P^{3}$.

THEOREM 2. $T^{2}$ cannot act effectively on exotic complex proiective 3-spaces.
In the following all actions are asumed to be differentiable.

1. The main lemma

LEMMA 1-1. If $M$ contains a submaniforld $A$ such that $A\sim_{Q}\mathbb{C}P^{2}$
, then $M$ is diffeo-

morphic to $\mathbb{C}P^{3}$.
PROOF. Let $\nu=(E, p, A)$ be the normal bundle of $A$ in $M$, and $((E, E^{0}),$ $p,$ $A,$ $(D^{2}$,

$S^{1}))$ be pair of disk bundle and sphere bundle associated to $\nu$.
It is known that
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(1) $\chi(\nu)=i^{*}D^{-1}(i_{*}[A])$

where $\chi(\nu)$ is the Euler class of $\nu,$ $[A]$ is the fundamental homology class of $A$ and $D$ is
the Poincare duality map. (see [61)

Let $a$($r$, respectively) be a generator of $fP(A)/tor(H^{2}$($w$, respectively), where $tor$

denotes the torsion group of $H^{2}(A)$, let $\beta$ be the dual base of $[A](\in H_{4}(A))$ and let $k,$ $l$

and $m$ be integers such that satisfy $i^{*}(r)=ma+t,$ $ a^{2}=k\beta$ and $p_{1}(M)=lr^{2}$, where $l\in Tor$

and $p_{1}(M)$ is the first Pontrjagin class of $M$.
It follows immediately that

(2) $ i^{*}(\gamma^{2})=i^{*}(\gamma)^{2}=m^{2}a^{2}=km^{2}\beta$.
It is easy to see that $i_{*}[A]=km^{2}c$, where $c\zeta\in H_{4}(M))$ is the dual base of $\gamma^{2}(\in H^{4}(w)$.
Hence, we have

$i^{*}D^{-1}(i_{*}[A])=i^{*}(km^{2}\gamma)=km^{3}a+km^{2}t$.
And

(3) $ p_{1}(\nu)=\chi^{2}(\nu)=k^{2}m^{6}a^{2}=\# m^{6}\beta$.
Since

$1=IndexA=1/3P_{1}(A)\cdot[A]$ ,

we have

(4) $ P_{1}(A)=3\beta$.
It follows from the formula $i^{*}P_{1}(M)=P_{1}(A)+P_{1}(\nu),$ (2)

$,$
(3) and (4) that

$ lkm^{2}\beta=k^{3}m^{6}\beta+3\beta$.
Thus we have

(5) $3=km^{2}(t-h^{2}m^{4})$.
It is not difficult to show that possible values of $k,$ $l$ and $|m|$ are $(k, l, |m|)=(3,10,1)$,
$(-3,8,1)$, or $(-1, -2,1)$.

Since $l$ has the fom $24j+4$ (see [6]), we have

(6) $(k, I, |m|)=(1,4,1)$, which implies

(7) $P_{1}(M)=4\gamma^{2}$.
From a result in [6], it following that $M$ is diffeomorphic to $CP^{3}$.

COROLLARY 1-2. If $F(T^{1}, M)\sim_{l}CP^{2}+\{point\}$ , then $M$ is diffeomorphic to $CP^{3}$.
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2. The Case (b)

In this section, we will study the case (b).

It is well known that $M$ is the $orbit/$ space of a differentiable free $S^{1}$ action on a homo-
topy seven sphere $\Sigma 7$ Let $\pi;\Sigma 7\rightarrow M$ be the projection. We may assume that $S^{1}$ acts
to the right on $\Sigma 7$ and $T^{1}$ acts to the left on $M$. By a theorem of [51, the left $T^{1}$ action
on $M$ lifts to a left $T^{1}$ action on $\Sigma 7$ which commutes with the right $S^{1}$ action.

In the case (b), it follows from the fact $F(Zp, M)\supset I(T^{1}, M)$ for any subgroup $z_{p}$ of
$T^{1}$ and a result in [1] (chap. VII 3-1), the action $(T^{1}, M)$ is semifree. Then we can
choose a lifting so that the action is semifree with the fixed point set $\pi^{-1}(F_{0})\approx S^{3}$, where
$F(T^{1}, M)=F_{0}+F_{1}$. (It’s proof is not difficult.)

THEOREM 2-1. If $f(T^{1},$
$w\sim_{e}S^{2}+S^{2}$, then $M$ is diffeomorphic to $\mathbb{C}P^{3}$.

PROOF. By the exact sequence [1] (chap. III, $1\alpha-5$)

$\mu^{*}-\delta\rightarrow H^{q}(\Sigma 7/T^{1}, fi(T^{1}, \Sigma 7))\rightarrow H^{\triangleleft}(\Sigma 7)q\cdot\rightarrow H^{q-1}(\Sigma 7/T^{1}, I(T^{1\Sigma 7}))$

$\oplus H^{q}(P(T^{1\Sigma 7}))\rightarrow H^{q+1}(\Sigma 7/T^{1}, F(T^{1\Sigma 7}\mu^{s}-\delta\cdot,))\rightarrow\cdots\cdots$

we see that $\Sigma 7/T^{1}$ is a cohomology -sphere and the induced action $(S^{1\Sigma 7}/T^{1})$ is semifree
with the fixed point set $\pi^{-1}(F_{1})/T^{1}\approx S^{2}$. It follows from above exact sequence, that
$M/T^{1}=(\Sigma 7/S^{1})/T^{1}=(\Sigma 7/T^{1})/S^{1}$ is a cohomology -sphere. Since $M$ is simply connected
and $T^{1}$ is connected, $M/T^{1}$ is simply connected, and hence $M/T^{1}$ is diffeomorphic to $S^{5}$.

Let $U$ be a $T$ -invariant tubular neighborhood of $F_{0}$ in $M$. Clearly, $U/T^{1}$ is a tubular
neighborhood of $F_{0}$ in $M/T^{1}\approx S^{5}$ . Hence, there is a diffeomorphism from $U/T^{1}$ to $S^{2}\times D^{3}$

such that $F_{0}$ corresponds to $S^{2}\times\{0\}$ .
Hence, $(M-U)/T^{1}\approx S^{5}-S^{2}\times D^{3}\approx D^{3}\times S^{2}$

Therefore, we may take the following interpretation.

(9) $M/T^{1}=S^{2}\times D^{3}UD^{3}\times S^{2},$ $F_{0}=S^{2}\times\{0\}$ and $F_{1}\subset D^{3}\times S^{2}$.
From the following exact sequences,

$i$.
$0\rightarrow H^{2}(D^{3}\times S^{2}, F_{1})\rightarrow H^{2}(M-U)\rightarrow H^{2}(F_{1})=\sim\rightarrow H^{3}(D^{3}\times S^{2}, F_{1})\rightarrow 0$

(the sequence in [1] (chap. III. 10-5))

and
$j$.

$\rightarrow H^{2}(D^{3}\times S^{2}, F_{1})\rightarrow H^{2}(D^{3}\times S^{2})\rightarrow H^{2}(F_{1})\rightarrow H^{3}(D^{3}\times S^{2}, F_{1})\rightarrow\cdots\cdots$

(cohomology exact sequence of pair $(D^{3}\times S^{2},$ $F_{1})$).

We can prove
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(10) $ i^{*}:H^{2}(D^{3}\times S^{2})\rightarrow H^{2}(F_{1})=\sim$ .
Therefore, we may assume that $F_{1}=\{0\}\times S^{2}\subset D^{3}\times S^{2}$. (see [2])

Let $X_{0}$ be $a\times D^{3}\subset S^{2}\times D^{3}$ and $X_{1}$ a set in $D^{3}\times S^{2}$ which is represented the mapping
cylinder of $a\times S^{2}\rightarrow\{0\}\times S^{2}=F_{1}$ , where $a(\in S^{2})$ is a point and the map is the restriction
of the projection $D^{3}\times S^{2}\rightarrow\{0\}\times S^{2}$.

We will consider $p^{-1}(X_{0}UX_{1})=N_{0}UN_{1}$ , where $p$ is the orbit projection of $T^{1}$ action
on $M$ and $N=P^{-1}(Xi)(i=0,1)$ . Clearly, $N_{0}$ ( $N_{1}$ , respectively) is diffeomorphic to the
mapping cylinder of $S^{3}\rightarrow a\times\{0\}(\in F_{0})$( $S^{1}\rightarrow F_{1}$ , respectively), where these maps are
the restrictions of the normal bundle’s projections of $Fi$ in $M(i=0,1)$ . Hence $M$ con-
taints a submanifold $N_{0}\cup N_{1}$ which is diffeomorphic to $CP^{2}$, and hence $M$ is $\mathbb{C}P^{3}$. This
completes the proof of Theorem 2-1.

3. $T^{2}$ action on $M$

It is not difficult to prove the following.

LEMMA 3-1. Let $T_{1}$( $T_{2},$ $D,$ $D_{-1}$ , respectively) be a subgroup of $T^{1}\times T^{1}$ such lhat $T_{1}=$

$T^{1}\times\{1\}$ ( $T_{2}=\{1\}\times T^{1},$ $D=\{(t,$ $t)\in T^{1}\times T\},$ $D_{-1}=\{(t,$ $t^{-1})\in T^{1}\times T^{1}\}$ , respectively), and $lel$

$K$ be $a$ one dimensional subtorus of $T^{1}\times T^{1}$.
(i) If $K\cap T_{1}=\{1\}$ and $K\cap T_{2}=\{1\}$ , then $K=D$ or $D_{-1}$ .
(ii) If $K\cap T_{1}=\{1\},$ $K\cap D=\{1\}$ and $K\cap D_{-1}=\{1\}$ , then $K=T_{2}$ .

THEOREM $3\leftrightarrow 2$. If $T^{2}$ acts effectively on $M$, then $M$ is diffeomorphic to $\mathbb{C}P^{3}$.

PROOF. It is enough to prove the case in which $F(T^{2}, M)=\sum_{i=0}^{3}\{p\iota\}(p;\in M)$ and $\dim$

$F(G, M)\leqq 2$ for any subgroup $G$ of $T^{2}$ . In this case, we have subtori $K_{1},$ $K_{2}$ and $K_{3}$ of $T^{2}$

such that $KK=\{1\}(i\neq i)$ and each components of $F(Ki, M)$ containg $P_{0}$ are two $dim$.
ensional. (Consider the slice representation of $T^{2}$ at $P_{0}\in M$)

Now, we may assume that $T^{2}=K_{1}\times K_{2}$

By lemma 3-1, we have $K_{3}=D$ or $D_{-1}$

We may assume $F(K_{1}, M)=F_{1}+\{p_{2}\}+tp_{3}\}$ , in fact otherwise $M=CP^{3}$. From the
fact $F(K_{2}, M-F_{1})$ is a cohomology sphere, it can be easily shoown that $p_{1}$ is not contained
in the component $F_{2}$ of $F(K_{2}, M)$ containing $p_{0}$ . Hence, we may assume that the com-
ponent $F_{2}$ contains $P_{2}$ . In this case, $p_{1}$ and $p,$. are not contained in the component $F_{3}$ of
$F(K_{3}, M)$ containing $P_{0}$ . Hence, the component $F_{3}$ contains $P_{3}$ .

By [1] (chap. VII, 3-2), it is known that $F(G, M)$ consists of exactly two components
for any cyclic subgroup $G$ of order 2 of $T^{2}$ . Therefore, we may assume that $F(Z_{2}, M)=$

$S_{)}^{2}+a^{2}$ for $Z_{2}\subset K_{3}$ such that $P_{0},$ $P_{3}\in S_{0^{2}}$ and $P_{1},$ $P_{2}\in S_{1}^{2}$ . (clearly, one component of $F(K_{3}$ ,
$M)$ is $S_{I}^{2}$).
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Since $a^{2}$ is a $T^{2}$-invariant set, there is a subtorus $T^{1}$ of $T^{2}$ such that acts trivially on
$S_{1^{2}}$ . It is easy to see that $T^{1}\cap K_{1}=\{1\}$ and $T^{1}\cap K_{2}=\{1\}$ , because $T^{1}\cap Ki$ fixed $FiUS_{1}^{2}$ which
contains $Pi$ . Hence, $T^{1}=D$ or $D_{-1}$ .
If $T^{1}=K_{3}$ , then $M=\mathbb{C}P^{3}$ . Therefore, let $K_{3}=D$ and $T^{1}=D_{-1}$ .
By the same argument as for $K_{2}$ , we have a subtorus $T_{0}^{1}$ of $T^{2}$ such that $T_{0^{1}\cap}K_{1}=\{1\}$ ,
$T_{0}^{1}\cap D=\{1\}$ and $T_{0\cap}^{1}D_{-1}=\{1\}$

It follows from Lemma 3-1 that $\tau_{0^{1}}$ is $K_{2}$ . Therefore, we have $F(K_{2}, M)\sim_{z}S^{2}+S^{2}$.
Theorem 2-1 implies that $M=\mathbb{C}P^{3}$.

This completes the proof of Theorem 3-2.
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