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Introduction

In this note, we shall consider $SO(3)$-action and 2-torus action on homotopy complex
projective -space with the view of proving that any exotic homotopy complex projective
3-space admits no effective $SO(3)$-action nor 2-torus action. In this direction the follow-
ing results are known.

1. A homotopy complex projective 3-space (abbreviated by $hCP_{3}$) which admits an effec$\cdot$

tive -torus action is diffeomorphic to the standard complex projective 3-space $CP_{3}$. ([8])

2. An $hCP_{3}$ which admits an effective 1-torus action with fixed point set of 2 components
is diffeomorphic to $CP_{3}$ . ([11])

3. An $hCP_{3}$ which admits n-dimensional compact connected Lie group action $(n\geqq 6)$ is
diffeomorphic to $CP_{3}$. ([4])

In this note we shall prove the following

THEOREM. If an $hCP_{3}$ admits an effective $SO(3)$-action or 2-torus action, then it is
diffeomorphic to $CP_{3}$.

In the following all actions are assumed to be differentiable.

1. Statement of results

First we shall consider 2-torus action. Let $G$ be a 2-torus and $t_{1},$ $t_{2}$ denote the
standard complex l-dimensional representations of $G$. Then it is well known that the
complex representation ring $R(G)=Z[t_{1}, t_{2}, t_{1}^{-1}, t_{2}^{-1}]$ .

LEMMA 1. Let $\phi_{1}$ and $\phi_{2}$ be complex 1-dimensional representations of G. Put $\phi_{1}=t_{1}^{a}$

$t_{2}^{b}$ and $\phi_{2}=t_{1^{C}}t_{2^{d}}$ , where $a,$ $b,$ $c,$
$d$, are integers. Then if $ker\phi_{1}\cap ker\phi_{2}=1$ , we have $ad-$

$bc=1$ .
PROOF. Assume the contrary. Then $ad-bc=e\neq\pm 1$ and $e$ is not zero. It is easy to

see that there are integers $k,$ $l$ such that at least one of $(kd-lb)/e,$ $(la-kc)/e$ is not
integer. Hence there exist real numbers $\theta$ and $\lambda$ such that $a\theta+b\lambda\equiv 0(2\pi),$ $c\theta+\lambda d\equiv 0(2\pi)$
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and $\theta$ or $\lambda$ is not integral multiple of $ 2\pi$. This contradicts to our assumption.
We have the following

$CoROLLARY$. $R(G)=Z[\phi_{1}, \phi_{2}, \phi_{1}^{-1}, \phi_{2}^{-1}]$ .
Let $M$ be an $hCP_{3}$ and consider an effective action of $G$ on $M$ Let $F$ denote the fixed

point set $F(G, M)$ . It is clear that $F$ contains no component of dimension 4. Then the
following four cases can occur.

Case 1. $F=S^{2}US^{2}$ ( $S^{2}=2\prec\lim ensiona1$ sphere)

Case 2. $F=S^{2}\cup\{x_{1}, x_{2}\}$

Case 3. $F=\{x_{1}, x_{2}, x_{3}, x_{4}\}$

Consider the case 1 and 2. Let $\varphi_{x}$ denote the local representation of $G$ at $x\in S^{2}$ . $\varphi_{x}$

may be written by $1+t_{1^{a}}t_{2}^{b}+t_{1^{C}}t_{2}^{d}$, where $a,$ $b,$ $c$ and $d$ are integers (Note that $\varphi_{x}$ is
considered as complex representation). The restricted action to $kert_{1^{a}}t_{2^{b}}$ ( $=1$-torus)

has 4-dimensional fixed point set. It follows from the following proposition that $M$ is
diffeomorphic to $CP_{3}$.

PROPOSITION 1. Assume that there exists an orientable 4-dimensional submanifold $F$ of
$M$ such that $F\sim CP_{2}Q$ and inclusion $i:F\rightarrow M$ induces an isomorphism $i^{*}:H^{2}(M;Q)$ ; $H^{2}(F$;
$Q)$ , where $Q$ is the field of rational numbers, for spaces $X,$ $Y,$

$X\sim YQ$ means thatX and $Y$

have isomorphic Q-cohomology. Then $M$ is diffeomorphic to $CP_{3}$.
We shall prove this proposition in section 2.
Consider case 3. Let $\rho\iota=\varphi;_{1}+\varphi i_{2}+\varphi t_{3}$ be th$e$ local representation at isolated fixed

point $x;(i=1,2,3,4)$ (considered as complex representation). Assume that $ker\varphi ij\cap ker$

$\varphi ik\supseteqq$ {identity} $(j\neq k)$ . Then there exists a subgroup $z_{p}\subset G$ ($p$ ; prime) such that $F(Zp$,
$M)$ is $4-\prec limensional$ . Denote $F$ be the 4-dimensional component of $F(Z_{p}, M)$. Then $F$

is $z_{p}$-cohomological complex projective 2-space. Let $T$ be a l-torus containing $z_{p}$. Since
$ F(T, M)=F(T/Zp, F(Zp, M))=F(T/Zp, F)\cup$ {one point}, and Euler characteristic of $F(T$,
$M)$ is equal to that of $M$, we have $F\sim_{Q}CP_{2}$ and inclusion $i:F\rightarrow M$ induces an isomor-
phism $i^{*}:$ $H^{2}(M;Q)^{\sim}\rightarrow H^{2}(F;Q)$ (see [2] chap. VII). Proposition 1 shows that $M$ is $CP_{3}$.
Thus we may assume that for any $i,$ $j,$ $k(j\neq k)ker\varphi ij\cap ker\varphi ik=\{1\}$ . Put $\varphi_{1}=\varphi_{11}$ and $\varphi_{2}=$

$\varphi_{12}$ . Then from lemma 1 it follows that $R(G)=Z[\varphi_{1}, \varphi_{2}, \varphi_{1}^{-1}, \varphi_{2^{-1}}]$ . Since $ker\varphi_{1}\cap ker$

$\varphi_{13}=ker\varphi_{2}\cap ker\varphi_{13}=\{1\}$ , we may assume $\rho_{1}=\varphi_{1}+\varphi_{2}+\varphi_{1}\varphi_{2}$ . In fact, let $\varphi_{13}=\varphi_{1^{a}}\varphi_{2^{b}}$ .
Then we have $|a|=|b|=1$ . If $\varphi_{13}=\varphi_{1}\varphi_{2}^{-1}$ , we have $\varphi_{1}=\varphi_{2}\varphi_{13}$ and hence we can take $\varphi_{13}$

instead of $\varphi_{1}$ . If $\varphi_{13}=\varphi_{1}^{-1}\varphi_{2}^{-1}$ , no change is needed, because $\varphi_{1}\varphi_{2}$ and $\varphi_{1}^{-1}\varphi_{2}^{-1}$ determine
the same real representation.

Put $\rho;=\varphi_{1^{a}};\varphi_{2^{a_{i^{\prime}}}}+\varphi_{1^{b_{i}}}\varphi_{2^{b_{i^{\prime}}}}+\varphi_{1^{c}};\varphi_{2^{c_{i^{\prime}}}}(i=2,3,4)$ , where $a;,$ $at^{\prime},$ $b;,$ $b\iota^{\prime}$ , ci, $Ci^{\prime}$ are integers.
Note that we may assume that $a;+bi=ci$ and $a\iota^{\prime}+bi^{\prime}=c;^{\prime}$ . Let $Ki=ker\varphi;(i=1,2)$.
Consider the restricted action of $K_{\dot{l}}$ . We may assume $F(Ki, M)=S^{2\cup}$ {two points}. Then
the following two cases can occur. Write $F(K_{1}, M)=a2\cup\{z_{1}, z_{2}\}$ and $F(K_{2}, M)=S_{2}^{2}U\{y_{1}$ ,
$y_{2}\}$ .
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Case 1. $x_{1},$ $x_{2}\in S_{1^{2}}$ $x_{1},$ $x_{2}\in S_{2^{2}}$

$\{x_{3}, x_{4}\}=\{z_{1}, z_{2}\}$ $\{x_{4}, x_{3}\}=\{y_{1}, y_{2}\}$

Case 2. $x_{1},$ $x_{2}\in S_{1^{2}}$ $x_{1},$ $x_{3}\in S_{2^{2}}$

$\{x_{3}, x_{4}\}=\{z_{1}, z_{2}\}$ $\{x_{2}, x_{4}\}=\{y_{1}, y_{2}\}$ .
Consider the case 1. It can be shown that $\rho_{2}=\varphi_{1}+\varphi_{2}+\varphi_{1}\varphi_{2^{\pm 1}}$. In fact, since $\rho_{2}=$

$\varphi_{1^{a_{2}}}\varphi_{2^{a_{2^{\prime}}}}+\varphi_{1^{b_{2}}}\varphi_{2^{b_{2}^{\prime}}}+\varphi_{1^{c_{2}}}\varphi_{2^{c_{2}^{\prime}}}$ and $x_{2}\in S_{1^{2}}$, we hav$e\rho_{2}/K_{1}=1+\varphi_{2}+\varphi_{2}$ and hence we may
assume $a_{2^{\prime}}=0,$ $b_{2}^{\prime}=\pm 1$ and $c_{2}^{\prime}=\pm 1$ . Moreover since $\rho_{2}/K_{2}$ is equivalent to $\rho_{1}|K_{2}$ , we
may assume $b_{1}=0,$ $a_{1}=\pm 1$ and $c_{1}=\pm 1$ . Thus we have $\rho_{2}=\varphi_{1}+\varphi_{2}+\varphi_{1}\varphi_{2}\pm 1$ (Note $\varphi_{1}$ and
$\varphi_{1}^{-1}$ determine the same real 2-dimensional representation of $S^{1}$). By similar arguments,
we can show that in case 2 local representations at $ x\iota$ are given as follows;

$\rho_{1}=\varphi_{1}+\varphi_{2}+\varphi_{1}\varphi_{2}$

$\rho_{2}=\varphi_{1}+\varphi_{1^{a}}\varphi_{2}+\varphi_{1^{a+1}}\varphi_{2}$

$\rho_{3}=\varphi_{2}+\varphi_{1}\varphi_{2^{b}}+\varphi_{1}\varphi_{2^{b+1}}$

$\rho_{4}=\varphi_{1^{a_{4}}}\varphi_{2^{a_{4}^{\prime}}}+\varphi_{1^{b_{4}}}\varphi_{2^{b_{4}^{\prime}}}+\varphi_{1^{c_{4}}}\varphi_{2^{C_{4^{\prime}}}}$

In section 3, we show that only possible case is case 1 with one exception and local
representations are given;

$\rho_{1}=\varphi_{1}+\varphi_{2}+\varphi_{1}\varphi_{2}$

$\rho_{2}=\varphi_{1}+\varphi_{2}+\varphi_{1}\varphi_{2}$

$\rho;=\varphi_{1^{a}};\varphi_{2^{a_{i^{\prime}}}}+\varphi_{1^{b}};\varphi_{2^{b_{i^{\prime}}}}+\varphi_{1^{c}};\varphi_{2^{C;^{\prime}}}$ $i=3,4$

wh$e$re $a;^{\prime}+ai\neq 0$ and $b;+bi^{\prime}\neq 0$.
In this case let $D$ denote the subgroup of $G$ defined by $\varphi_{1}=\varphi_{2}$ . Clearly $D$ is l-torus

with $F(D, M)=F(G, M)$ and $R(D)=Z[\varphi, \varphi^{-1}]$ , where $\varphi=\varphi_{1}=\varphi_{2}$ . Let $\eta$ be th$e$ pull back
of the Hopf bundle over $CP_{3}$ via a homotopy equivalence from $M$ to $CP_{3}$ . $\eta$ may be con-
sidered a $D$-bundle over M Put $\eta|x;=\varphi^{\alpha_{j}}$ . We may assume $\alpha_{1}=0$ (For these arguments,
see Part II section 1 in [7]). The following results are proved in [7].

1. $\alpha i^{\prime}S$ are all distinct integers.
2. Let $\varphi^{n;1}+\varphi^{n_{j2}}+\varphi^{n_{i3}}$ be local representations of $D$ at $x;(i=1,2,3,4)$.

Then

$\prod_{j\neq i}(\alpha_{j}-\alpha\iota)=\epsilon\prod_{j\neq i}n;j$
$(i=1,2,3,4)$

where $\epsilon=\pm 1$ is independent on $i$ .

3. $\sum_{\dot{\iota}-1}^{4}\prod_{j-1}^{3}(\varphi^{n;}J+1)(\varphi^{n_{i}};-1)=0$

4. $If\prod_{j\neq i}(\varphi^{-\frac{\alpha j-\alpha_{i}}{2}}-\varphi\underline{\alpha_{j}}-\underline{a_{i}}2)/\prod_{j\neq i}(\varphi^{-\frac{nij}{2}}-\varphi\underline{n}i\underline{j}2)$ is independent on $i$, then the

first Pontrjagin class $p_{1}(M)$ of $M$ is equal to 4 $a^{2}$, where $H^{*}(M;Z)=$

$Z[a]/(a^{4})$ , and hence $M$ is diffeomorphic to $CP_{3}([12])$ .
Applying these results to our action of $D$, we have three non-zero all distinct integers

$\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ satisfying
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(1) $a_{1}a_{2}a_{3}=\pm 2$

(2) $a_{1}(a_{1}-a_{2})(a_{1}-a_{3})=\pm 2$

(3) $a:(a_{2}-a_{1})(a_{2}-a_{3})=\pm(a_{3}+a_{3^{\prime}})(b_{3}+b_{3^{\prime}})(c_{3}+c_{3^{\prime}})$

(4) $a_{3}(a_{3}-a_{1})(a_{3}-a_{2})=\pm(a_{4}+a_{4^{\prime}})(b_{4}+b_{4^{\prime}})(c_{4}+c_{4^{\prime}})$ .
From (1) and (2) it follows that $\alpha_{1}=\pm 1,$ $a_{2}=\mp 1$ and $a_{3}=\pm 2$ or $a_{1}=\pm 1,$ $a_{2}=\pm 2$ and

$a_{3}=\mp 1$ , respectively. Then the left hand sides of (3) and (4) are 6 or-6. Since $a_{3}+a_{3^{\prime}}$

and $b_{3}+b_{3}^{\prime}$ are relatively prime and $c_{S}+c_{3^{\prime}}=(a_{3}+a_{3^{\prime}})+(b_{3}+b_{3^{\prime}})$ , we may assume $a_{3}+a_{3^{\prime}}$

$=\pm 1$ and $b_{3}+b_{3^{\prime}}=\pm 2$, respectively. Similarly we have $a_{4}+a_{4^{\prime}}=\pm 1$ and $b_{4}+b_{4^{\prime}}=\pm 2$,
respectively. Then we can choose $ntj$ so that the condition of 4 is satisfied. Thus we
have proved the following

THEOREM A. If an $hCP_{3}$ admits an effective 2-torus action, it is diffeomorphic to $CP_{3}$ .
Now consider $SO(3)$-action on $hCP_{3}M$ Denote $G=SO(3)$ . Note that there is a

point of $M$ whose isotropy subgroup is a maximal torus of $G$. In fact, assume the $con$.
trary. Then all orbits have the same -cohomology of 3-sphere or a point. Hence by
Vietoris-Begle mapping thereom, the orbit map $\pi$ ; $M\rightarrow M^{*}$ induces isomorphism $\pi^{*};$

$H^{*}(M^{*};Q)\rightarrow H^{*}(M;Q)$ for $*\leqq 3$ . It is not difficult to see that this contradicts to the
structure of $H^{*}(M;Q)$ .

In section 4, we shall prove the following

LEMMA 2. If there is an element $g\neq 1$ (1 denotes the identity element of $G$) with 4-
dimensional fixed point set, then $M$ is diffeomorphic to $CP_{3}$ .

Since we are only interested in proving that $M$ is diffeomorphic to $CP_{3}$ , we may
assume that any element of finite order has at most 2-dimensional fixed point set. It
follows

PROPOSITION 2. Any principal isotropy subgroup consists of only identity.
Let $T$ be the standard maximal torus of $G$. We shall find possible types of $F(T, M)$.

It follows from a result in [10] that it is impossible for $F(T, M)$ to have a 4-dimensional
component. Hence we have following possible three cases;

1. $F(T, M)=union$ of two 2-spheres
2. $F(T, M)=union$ of 2-sphere and isolated two points
3. $F(T, M)=union$ of isolated four points.
In case 1, $M$ is diffeomorphic to $CP_{3}$ . Hence we consider the cases 2 and 3.
We shall prove the following lemma in section 4.

LEMMA 3. In case 3, $M$ is diffeomorphic to $CP_{3}$

Let $D_{2}$ be the dihedral subgroup of order 4. We have

LEMMA 4. $ F(D_{2}, M)\neq\emptyset$ .
Then byaresult in [1] (chap. XIII. Th. 4.3), the dimension of F$(D_{2}, M)$ is given by

2 $dimF(D_{2}, M)=(\sum_{H}dimF(H, M))-6$
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where $H$ is subgroups of $D_{2}$ of index 2. Let $a$ and $b$ be generators of $D_{2}$ such that $b\in T$

and $N=T\cup aT$ the normalizer of $T$. Then $H$ is $\{a\},$ $\{b\}$ or {ab}. Snce $dimF(a, M)=dim$

$F(b, M)=dimF(ab, M)=2$ , we have $dimF(D_{2}, M)=0$. It follows from a result in [1]

(chap. XIII. Th. 3.6) that $F(D_{2}, M)$ consist of four points. Moreover $F(b, M)$ is union of
two 2-spheres (see [2], chap. VIII) and hence $F(a, M)$ is also union of two 2-spheres.
$LetF(b, M)=8^{2}US_{2}^{2}$. We may assume that F( $\tau,$ $w=S_{1}^{2}\cup\{x_{1}, x_{2}\}.$ Since F$(a, P(b, M))$

$=F(a, S_{1}^{2})UF(a, S_{2}^{2})\neq ff,$ $F(a, S_{1}^{2})$ and $F(a, S_{2}^{2})$ is not empty. It is known that the fixed
point set of an involution on 2-sphere is l-dimensional or two points (see [2] chap. VII)

and hence $F(D_{2}, M)=\{y_{1}, y_{2}, y_{3}, y_{4}\}$ and $y_{1},$ $y_{2}\in S_{1}^{2}\subseteq F(T, M)$. Hence $y_{1}$ , and $y_{2}\in F(N, M)$.
Possible types of $F(N, M)$ are following

(a) $F(N, M)=\{y_{1}, y_{2}\}\subseteq S_{1}^{2}$

(b) $F(N, M)=\{y_{1}, y_{2}, x_{1}, x_{2}\}$ .
The following lemma is proved in [6] ([6] Th. (3. 2))

LEMMA5. $Letz\in F$($D_{2},$ $wandG_{z}$ isanormalizer ofa l-torus. $ThenG\langle z$)$\cap F(D_{2}, M)$

consists of three points.
Consider case (a). Suppose $y_{1}\in f(N, M)-F(G, M)$. Then it follows from lemma 5

that $G(y_{1})\cap F(D_{2}, M)$ consists of three points. Put $G(y_{1})\cap F(D_{2}, M)=\{y_{1}, z_{1}, z_{2}\}$ . It is
clear that $y_{2}=zj$ for some $j$. Hence $\{z_{1}, z_{2}\}=\{y_{3}, y_{4}\}$ , and one of $y_{1}$ and $y_{2}$ is a fixed point.
Assume $y_{1}\in I(G, M)$. Consider the action of $G$ on $S^{5}$ ( $=the$ small unit sphere around $y_{1}$)

induced by local representation of $G$ at $y_{1}$ . This action has $S^{2}$ as an orbit. It follows
from a result in [91 ([9] sectim 2) that all O-dimensional isotropy subgroup are {1}.
Since 2-dimensional component of $F(a, M)$ containing $y_{1}$ intersects with $2timensional$

component of $F(b, M)$ containing $y_{1}$ at one point $y_{1}$ , the action of $G$ on $S^{5}$ must have a
$non\cdot trivial$ finite isotropy subgroup, which contradicts to the above fact. Similarly we
can show that case (b) can not occur. Thus under our assumption the case in which
$F(T, M)=S^{2}U\{x_{1}, x_{2}\}$ cannot occur. Hence we have proved the following

THEOREM B. If an $hCP_{3}$ admits a non-trivial SO(3)-action, then it is diffeomorphic to
$CP_{3}$ .

2. Proof of Proposition 1

In this section, we shall prove proposition 1. Let $\nu$ be the normal bundle of $F$ in $M$.
It follows from a result in [3] that the Euler class $\chi(\nu)$ is given by

$\chi(\nu)=i^{*}D^{-1}(i_{*}[F])$,

where $[F]$ denotes the fundamental class of $F$ and $D$ : $H^{2}(M, Z)\rightarrow H_{4}(M;Z)$ Poincare
duality. $a$ denotes a generator of $H^{2}(F;Z)/Tor$. $\cong Z$ and $a$ a generator of $H^{*}(M;Z)=$

$Z[a]/(a^{4})$ . Put $ i^{*}(a)=m\alpha+\beta$, where $\beta\in TorH^{2}(F:Z)$ . We ahve $i^{*}(d)=m^{2}a^{2}$.
Put $D^{-1}i_{*}[F]=ka$. Then we have
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$k=<[M],$ $ka^{3}>=<ka\cap[M],$ $a^{2}>$

$=<i_{*}[F],$ $a^{2}>=<[F],$ $i^{*}d>$

$=<[F],$ $m^{2}a^{2}>=m^{2}$.
Hence we have $\chi(\nu)=i^{*}(m^{2}a)=m^{2}(ma+\beta)$. This implies $p_{1}(\alpha)=(\chi(\nu))^{2}=m^{6}\alpha^{2}$.

Put $p_{1}(M)=la^{2}$. From $i^{*}p_{1}(M)=p_{1}(F)+p_{1}(\nu)$ , it follows that $3=m^{2}(l-m^{4})$. Since $m$

and $l$ are integers, we have $l=4$. Hence $M$ is diffeomorphic to $CP_{3}$ (see [12]).

3. 2-torus action

In this section, we shall consider the remaining cases in section 2. We use the same
notations as in section 2.

Case 1. One of $a;+ai^{\prime},$ $bi+bi^{\prime}(i=3,4)$ is zero.

Without loss of generality, we may assume that $a_{3}+a_{3^{\prime}}=0$. If $b_{3}+b_{3^{\prime}}=0$, the fixed
point set of $D$-action is -dimensional, which contradicts to the effectivity. Since $P(D$,
M) has 2-dimensional component $S$ and $x_{1},$ $x_{2}$ as isolated fixed points, we have $x_{4}\in S$. We
may assume that $a_{4}+a_{4^{\prime}}=0$, because the local representations of $D$ at $x_{3}$ and $x_{4}$ are equi-
valent. Choose new coordinates $\theta_{1},$ $\theta_{2}$ on $G$ such that $\varphi_{1}=\theta_{1}$ and $\varphi_{2}=\theta_{1}\theta_{2}$ . Then we have

$\rho_{i}=\theta_{1}+\theta_{1}\theta_{2}+\theta_{1^{2}}\theta_{2}$ $i=1,2$

and $\rho j=\theta_{2^{a_{i^{\prime}}}}+\theta_{1^{b_{j}}}+b_{i^{\prime}}\theta_{2^{b}}\iota^{\prime}+\theta_{1^{c_{j}+c_{j^{\prime}}}}\theta_{2^{c_{j^{\prime}}}}$ $i=3,4$.
We have $at^{\prime}=\pm 1$ and $b\iota+bi^{\prime}=\pm 1$ and hence $\rho j=\theta_{2}+\theta_{1}\theta_{2^{b}}i+\theta_{1}\theta_{2^{b\pm 1}}j$ for $j=3,4$. Moreo-
ver we choose coordinates $\xi_{1},$ $\xi_{2}$ on $G$ such that

$\rho;=\xi_{1}+\xi_{1}^{2}\xi_{2}+\xi_{1^{4}}\xi_{2}$ $i=1,2$

$\rho j=\xi_{1^{2}}\xi_{2}+\xi_{1^{b_{j}+1}}\xi_{2^{b_{j}}}+\xi_{1}^{2(b_{j}\pm 1)+1}\xi_{2}^{(b_{j}\pm 1)}$ $j=3,4$.
Consider the action restricted to $D^{\prime}=\{3=\xi 2=\xi_{1}\}$ . Then local representations of $D^{\prime}$ at $x$;

are as follows;

at $x;(i=1,2);\xi+\xi^{4}+\xi^{5}$

at $x;(i=3,4);\xi^{3}+\xi j+\xi^{3(b\pm 1)+1}j$

Clearly $F(D^{\prime}, M)=F(G, M)$. Then there exist three distinct integers $a_{1},$ $a_{2},$ $a_{3}$ satifying

(1) $a_{1}(a_{2}\alpha_{3}$ $=\pm 20$

(2) $a_{1}(a_{1}-a_{2})(a_{1}-a_{3})=\pm 20$

(3) $a_{2}(a_{2}-a_{1})(a_{2}-a_{3})=\pm 3(2b_{3}+1)(3(b_{3}\pm)+1)$

(4) $a_{3}(a_{3}-a_{1})(\alpha_{3}-a_{2})=\pm 3(2b_{4}+1)(3(b_{4}\pm 1)+1)$.
From (1) and (2) it follows that possible pairs of $(a_{1}, \alpha_{2}, a_{3})$ are followings
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case 1 2 3

1 1 $-4$ 5
2 1 5 $-4$

$3$ $-1$ 4 $-5$

$4$ $-1$ $-5$ 4
5 4 $-1$ 5
6 4 5 $-1$

$7$ $-4$ 1 $-5$

$8$ $-4$ $-5$ 1
9 $+5$ 1 4

10 5 4 1
11 $-5$ $-4$ $-1$

$12$ $-5$ $-1$ $-4$

$\alpha_{2}(\alpha_{1}-\alpha_{2})(\alpha_{3}-\alpha_{2})$ $\alpha_{3}(\alpha_{1}-a_{3})(a_{2}-a_{3})$

$\pm 180$ $\pm 180$

$\pm 180$ $\pm 180$

:i180 $\pm 180$

$\pm 180$ $\pm 180$

$\pm 130$ $\pm 30$

$\pm 30$ $\pm 30$

$\pm 30$ $\pm 30$

$\pm 30$ $\pm 30$

$\pm 12$ $\pm 12$

$\pm 12$ $\pm 12$

$\pm 12$ $\pm 12$

$\pm 12$ $\pm 12$

Consider equations; $(2x+1)(3x+4)=\pm 60,$ $\pm 10$, or $(2x+1)(3x-2)=\pm 60,$ $\pm 10$ . It is
easily seen that these equations have no integral roots. Hence cases 1, 2,......, 8 cannot
occur. Consider cases 9,......, 12. Since $(2x+1)(3x+4)=4$ has $0$ as its integral roots,

local representations of $D^{\prime}$ of following type may occur;

at $Xi(i=1,2);\xi+\xi^{4}+\xi^{5}$

at $x;(i=3,4);\xi+\xi^{3}+\xi^{4}$

In [7], it is proved that the number of coonnected components of $F(Z_{p^{\gamma}}, M)$ inter-
cecting $F(D^{\prime}, M)$ is the number of distinct residue classes among the four integers $0,$ $\alpha_{1}$ ,
$\alpha_{2},$ $\alpha_{3}$ . Let $Z_{5}$ be defined by $\xi^{5}=0$. Clearly the number of connected components of $F(Z_{5}$ ,
$w$ intercecting $F(D^{\prime}, M)$ is 3. Hence the number of distinct residue classes among $0,$ $a_{1}$ ,
$\alpha_{2},$ $\alpha_{3}$ is 3. From relations

(1) $\alpha_{1}\alpha_{2}\alpha_{3}$ $=\pm 20$

(2) $\alpha_{1}(\alpha_{1}-\alpha_{2})(\alpha_{1}-\alpha_{3})$ $=\pm 20$

(3) $\alpha_{2}(a_{2}-\alpha_{1})(a_{2}-\alpha_{3})$ $=\pm 12$

(4) $\alpha_{3}(\alpha_{3}-\alpha_{1})(\alpha_{3}-\alpha_{2})$ $=\pm 12$,

it follows that only possible residue classes are;

$\alpha_{1}\equiv 0(5)$

$\alpha_{2}\not\equiv 0(5)$

$\alpha_{3}\not\equiv 0(5)$

$\alpha_{2}\not\equiv\alpha_{3}(5)$.
Then clearly $\alpha_{1}=\pm 5$ and $\alpha_{1}=\alpha_{2}+\alpha_{3}$. Hence we have $\alpha_{2}=\pm 1,$ $\alpha_{3}=\pm 4,$ $a_{1}-\alpha_{2}=\pm 4,$ $\alpha_{1}-\alpha_{3}$

$=\pm 1$ and $\alpha_{2}-\alpha_{3}=\pm 3$ . It is not difficult to see that one can choose signs of $n;j$ so that
condition of 4 in section 1 holds. Therefore $M$ is diffeomorphic to $CP_{3}$ .
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Next we shall consider case 2. In this case we have shown that local representations
at $x$; are given as follows;

$\rho_{1}=\varphi_{1}+\varphi_{2}+\varphi_{1}\varphi_{2}$

$\rho_{2}=\varphi_{1}+\varphi_{1^{a}}\varphi_{2}+\varphi_{1^{a+1}}\varphi_{2}$

$\rho_{3}=\varphi_{2}+\varphi_{1}\varphi_{2^{b}}+\varphi_{1}\varphi_{2^{b+1}}$

$\rho_{4}=\varphi_{1^{a_{4}}}\varphi_{2^{a_{4^{\prime}}}}+\varphi_{1^{b_{4}}}\varphi_{2^{b_{4}^{\prime}}}+\varphi_{1^{C_{4}}}\varphi_{2^{C_{4^{\prime}}}}$

where $c_{4}=a_{4}+b_{4},$ $c_{4^{\prime}}=a_{4^{\prime}}+b_{4^{\prime}}$ .
Since $x_{1}$ and $x_{2}$ are not contained in the same component of $KK_{2},$ $M$), $a$ is neither $0$ nor
$-1$ . Similarly we have $b\neq 0,1$ . Consider the action restricted to $D^{\prime}=\{\varphi_{1}=\varphi_{2}^{-1}$ ]. Clearly
$F(D^{\prime}, M)$ has 2-dimensional component which contains $x_{1}$ . Then the following three
cases can occur;

(1) $a=1$

(2) $a\neq 1$ and $b=1$

(3) $a\neq 1,$ $b\neq 1andoneofa_{4}-a_{4^{\prime}},$ $b_{4}-b_{4^{\prime}}andc_{4}-c_{4^{\prime}}$ is zero.

Case (1). Considered the action restricted to $H=\{\varphi_{1}=\varphi_{2}^{-1}\}$ . Clearly $x_{2}$ is contained
in a 2-dimensional component of $F(H, M)$. Since $x_{1}$ and $x_{3}$ are isolated fixed points of
$F(H, M)$, just one of $a_{4}-2a_{4}^{\prime},$ $b_{4}-2b_{4^{\prime}}$ and $c_{4}-2c_{4^{J}}$ must be zero. Assume that $a_{4}=2a_{4^{\prime}}$ .
It follows from the fact $\det(_{a_{4}}^{a_{4}},$ $b_{4}^{4)=}b\pm 1$ that $a_{4^{\prime}}=\pm 1$ and 2 $b_{4^{\prime}}-b_{4}=\pm 1$ . Henoe we
ahve $\rho_{4}=\varphi_{1^{\pm 2}}\varphi_{2^{\pm 1}}+\varphi_{1^{d}}\varphi_{2^{d^{\prime}}}+\varphi_{1^{e}}\varphi_{2^{e^{\prime}}}$ (Note $e=d\pm 2,$ $e^{\prime}=b^{\prime}\pm 1$).

Since $2d^{\prime}-d=\pm 1$ , we have

$\rho_{4}=\varphi_{1^{2}}\varphi_{2}+\varphi_{1}^{2d^{\prime}\mp 1}\varphi_{2^{d^{\prime}}}+\varphi_{1}^{2d^{\prime}f1+2}\varphi_{2^{d^{\prime}+1}}$

or $=\varphi_{1^{2}}\varphi_{2}+\varphi_{1}^{2d^{\prime}\mp 1}\varphi_{2^{d^{\prime}}}+\varphi^{2d^{\prime}\mp 1-2}\varphi_{2^{d^{\prime-1}}}$

Clearly $x_{1},$ $x_{2}$ and $x_{3}$ are isolated fixed points of $H^{\prime}=\{\varphi_{2}=\varphi_{1^{2}}\}$ and hence $x_{4}$ must be $iso$.
lated fixed point. Thus we have the local representations of $H^{\prime}$

at $x_{1};\varphi+\varphi^{2}+\varphi^{3}$

at $x_{2};\varphi+\varphi^{3}+\varphi^{4}$

at $x_{3};\varphi^{2}+\varphi^{2b+1}+\varphi^{2b+3}$

at $x_{4};\varphi^{4}+\varphi^{4d\mp 1}+\varphi^{4d\pm 4\mp 1}$

Hence there exist three distinct integers $a_{1},$ $\alpha_{2},$ $\alpha_{3}$ satisfying

(1) $a_{1}a_{2}a_{3}$ $=\pm 6$

(2) $a_{1}(\alpha_{1}-a_{2})(a_{1}-\alpha_{3})$ $=\pm 12$

(3) $a_{2}(a_{2}-a_{1})(a_{2}-a_{3})$ $=\pm 2(2b+1)(2b+3)$

(4) $a_{3}(\alpha_{3}-a_{1})(\alpha_{3}-a_{2})$ $=\pm 4(4d^{\prime}-1)(4d^{\prime}\pm 41)$.
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From (1) and (2) it follows the following three cases occur.

i) $\alpha_{1}=\pm 1$ $\alpha_{2}=\mp 2$ $\alpha_{3}=\mp 3$

ii) $a_{1}=\pm 1$ $\alpha_{2}=\mp 3$ $\alpha_{3}=\mp 2$

iii) $\alpha_{1}=\pm 3$ $\alpha_{2}=\mp 1$ $\alpha_{3}=\pm 2$,

where the signs are corresponding respectively.
Case i). It follows from (3) and (4) that $b=-2$ and $d^{\prime}=ord^{\prime}=-2$ . If $d^{\prime}=0$, then

$x_{4}$ is contained in 2-dimensional component of $F(K_{1}, M)$ , which contradicts to the assump-
tion. If $d^{\prime}=\pm 2$ , we have $\rho_{4}=\varphi_{1}^{2}\varphi_{2}+\varphi_{1^{3}}\varphi_{2^{2}}+\varphi_{1}\varphi_{2}$ , which implies that only $x_{3}$ is contained
in a 2-dimensional component of the fixed point set of the subgroup $\{\varphi_{1}=\varphi_{2}\}$ of $G$, it is
impossible. It is not difficult to see that case ii) and iii) are impossible.

Case $a\neq 1$ and $b=1$ .
This case reduces to the case $a=1$ .

Case $a\neq 1,$ $b\neq 1$ and one of $a_{4}-a_{4^{\prime}},$ $b_{4}-b_{4^{\prime}}$ and $c_{4}-c_{4^{J}}$ is zero.
We may assume $a_{3}=a_{3^{\prime}}$ without loss of generality. We have the following four

possibilities of $\rho_{4}$ ;

$\varphi_{1}\varphi_{2}+\varphi_{1^{c}}\varphi_{2^{c+1}}+\varphi_{1^{c+1}}\varphi_{2^{c+2}}$

$\varphi_{1}\varphi_{2}+\varphi_{1^{c}}\varphi_{2^{c-1}}+\varphi_{1^{c+1}}\varphi_{2^{c}}$

$\varphi_{1}\varphi_{2}+\varphi_{1^{c}}\varphi_{2^{c+1}}+\varphi_{1^{c-1}}\varphi_{2^{c}}$

$\varphi_{1}\varphi_{2}+\varphi_{1^{c}}\varphi_{2^{c-1}}+\varphi_{1^{c-1}}\varphi_{2^{c-Z}}$

If we put $\varphi_{1}=\theta_{1}$ and $\varphi_{2}=\theta_{1^{2}}\theta_{2}$ , we have
$\rho_{1}=\theta 1+\theta_{1}^{2}\theta_{2}+\theta_{1^{3}}\theta_{2}$

$\rho_{2}=\theta_{1}+\theta_{1^{a+Z}}\theta_{2}+\theta_{1^{a+3}}\theta_{2}$

$\rho_{3}=\theta_{1^{2}}\theta_{2}+\theta_{1}^{2b+1}\theta_{2^{b}}+\theta_{1}^{lb+3}\theta_{2^{b+1}}$

$\rho_{4}=\theta_{1^{3}}\theta_{2}+\theta_{1}^{3c+z}\theta_{2^{c+1}}+\theta_{1}^{3c+5}\theta,,c+2$

$\theta_{1^{3}}\theta_{2}+\theta_{1}^{3c-2}\theta_{2^{c-1}}+\theta_{1}^{3c+1}\theta_{2^{c}}$

$\theta_{1^{3}}\theta_{2}+\theta_{1}^{3c+2}\theta_{2^{c-1}}+\theta_{1}^{3c-1}\theta_{2^{c}}$

$\theta_{1^{3}}\theta_{2}+\theta_{1}^{3c-2}\theta_{2^{c-1}}+\theta_{1^{3-5}}^{c}\theta_{2^{c^{-2}}}$.
The action restricted to $D=\{\theta_{1}=\theta_{2}\}$ has the same fixed point set as G-action. Then

as above, there are three distinct integers $\alpha_{1},$ $\alpha_{2}$ and $\alpha_{3}$ satisfiying

(1) $\alpha_{1}a_{2}a_{3}$ $=\pm 12$

(2) $\alpha_{1}(a_{1}-a_{2})(\alpha_{1}-a_{3})=\pm(a-3)(a+4)$

(3) $\alpha_{2}(a_{2}-a_{1})(\alpha:-\alpha_{3})=\pm 3(2b+1)(3b+4)$

(4) $\alpha_{3}(a_{3}-a_{1})(\alpha_{2}-a_{2})=\pm 4(4c+3)(4c+7)$
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$=\pm 4(4c-3)(4c+1)$

$=\pm 4(4c+3)(4c-1)$

$=\pm 4(4c-3)(4c-7)$.
By direct computations we can show a contradiction.

4. $SO(3)$-action

In this section we shall consider actiona of $G=SO(3)$ on an $hCP_{3},$ $M$ with the follow-
ing property;
$(^{*})$ Let $T$ be the standard maximal torus of $G$. Then the fixed point set $F(T, M)$ is a
union of one 2-sphere and two isolated points or a union of four isolated points.

First we shall prove lemma 2 in section 2. Assume there is an element $g$ of order $p$

($p$ ; prime) such that $\dim F(g, M)$ is greater than 2. If $p$ is odd, $\dim F(g, M)$ is 4 and
$F(g, M)=FU\{pt.\}$ , where $F-CP_{2}$ . Let $S$ be a torus containing $g$. We have $F(S, M)=$

$z_{p}$

$F(S/\{g\}, F(g, M))=F(S/\{g\}, F)\cup\{pt.\}$ . Sinoe the Euler characteristic of $F(T, M)$ is 4,
we have the Euler characteristic of $F(S/\{g\}, F)=3$. Since $H^{1}(F;Z_{p})=H^{3}(F;Z_{p})=0$,

we have $H^{1}(F;Q)=H^{3}(F;Q)=0$ and $H^{2}(F;Q)=Q$. In particular, $H^{2}(F;Z)/Tor.=Z$.
It is easy to see that $F\sim CP_{2}Q$ Sinoe the inclusion $i:F\rightarrow M$ induces an isomorphism $i^{*}pI$

$H^{2}(M;z_{p})^{\sim}\rightarrow;H^{2}(F;z_{p}),$ $i^{*}:H^{2}(M;Z)-H^{2}(F;Z)$ maps the generator of $H^{*}(M;Z)$ to a
non-zero $e$lement and henoe $i^{*}Q:H^{2}(M;Q)^{\sim}\rightarrow H^{2}(F;Q)$ is an isomorphism. By proposition
1, $M$ is diffeomorphic to $CP_{3}$ . If $p$ is even, $\dim F(g, M)$ may be 3 (see [2], Chap. VII).

In this case $F(g, M)$ is connected and $F(g, M)\sim RP_{3}z_{2}$ which contradicts to the fact the

Euler characteristic of $F(S, M)$ is non-zero. In the case in which $\dim F(g, M)=4$, the
same argument as in the case in which $p$ is odd show that $M$ is diffeomorphic to $CP_{3}$ .
This completes the proof of lemma 2.

It follows from the assumption $(^{*})$ that $GF(T, M)$ is at most 4-dimensional and hence
there exists a point $x$ in $M$ whose isotropy subgroup is O-dimensional. Let $H$ be a princi-
pal isotropy subgroup and assume $H\neq\{1\}$ . Sinoe there is an element $x$ with $G_{x}=T,$ $H$ is
cyclic. Let $g$ be an element of $H$ whose order is $p$ ($p$ ; prime). It is clear that $F(g, M)$

is at least 4-dimensional. It follows from lemma 2 that $M$ is diffeomorphic to $CP_{3}$. This
completes the proof of Proposition 2 in section 1.

Consider the case in which $F(T, M)=$ {$x_{1},$ $x_{2}$, X3, $x_{4}$}. Let $a$ denote the element $\left\{\begin{array}{lll}1 & & \\ & -1 & -1\end{array}\right\}$

and $b=\left\{\begin{array}{lll}-1 & & \\ & -1 & 1\end{array}\right\}$ . Then $N=\mathcal{I}UaT$ and $D_{2}=$ { $1,$ $a,$
$b$ , ab}. Cleary $F(T, M)$ is $a$-invariant.

Sinoe $M_{(T)}$ is non-empty, there may occur following two case;

Case 1. $F(N, M)=\{x_{1}, x_{2}\}$

$Ca8e2$ . $ F(N, M)=\emptyset$ .
Consider case 1. In this case $F(D_{2}, M)\neq 2^{\prime}$ In section 1, we have noticed that $F(D_{2}$,
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$M)$ consists of isolated four points. We may put $F(D_{2}, M)=\{x_{1}, x_{2}, y_{1}, y_{2}\}$ . Assume
$ F(G, M)=\emptyset$ . It follows from lemma 5 in section 1 that $G(x_{1})\cap F(D_{2}, M)$ and $G(x_{2})nF(D_{2}$ ,
$M)$ are consisting of 3 points and hence $G(x_{1})$ and $G(x_{2})$ must intercect, which is impos-
sible. Thus $ F(G, M)\neq\emptyset$ . Assume $x_{1}\in F(G, M)$ and consider the $SO(3)$-action on $S^{5}$

induced by the slice representation of $G$ at $x_{1}$ . Clearly this action has only O–dimensional
isotropy subgroups and henoe principal isotropy subgroups are icosahedral subgroup (see

[9]). This is impossible, because $F(D_{2}, M)$ is O-dimensional.
Consider case 2. Assume $ S^{2}\iota$ is $a$-invariant (Recall $F(b,$ $M)=S_{1^{2}}\cup S_{2}^{2}.$) In this case

the same arguments as in the proof of lemma 4 in section 1 show that $ F(D_{2}, M)\neq\emptyset$ .
Let $F(D_{2}, M)nS^{2}=\{z_{1}, z_{2}\}$ . Clearly $G_{zi}$ is $0$-dimensional. By a result in [61 ([6], (3.7))

it follows that $F(D_{2}, M)nG(z_{1})$ consists of six points which is impossible. Thus $Si$ is not
$a$-invariant and henoe we may assume that $ax_{1}=x_{3},$ $ax_{2}=x_{4}$. Consider the restricted
action of $T$. We can decompose the tangent spaoe at $x$; into a direct sum $ T_{x;}(G(x\iota))\oplus$

$T_{xj}(Sj^{2})\oplus Vi$, where $Sj^{2}$ is th$e$ component of $F(b, M)$ containing $Xi$ Then local represen-
tation of $T$ at $x$; is given by $t+t^{2m};+t^{n_{i}}$, where $R(T)=Z[t. t^{-1}]$ and $(2m;, ni)=1$ . Clearly
$m_{1}=m_{2}$ and $m_{3}=m_{4}$ . It is easy to see that $m_{1}=m_{3}$ and $n_{1}=n_{3},$ $n_{2}=n_{4}$ . As noticed in
section 1, there are distinct non-zero integers $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ satisfying

(1) $\alpha_{1}\alpha_{2}\alpha_{3}$ $=\pm 2mn$

(2) $a_{1}(a_{1}-\alpha_{2})(a_{1}-\alpha_{3})$ $=\pm 2mk$

(3) $\alpha_{2}(a_{2}-a_{1})(\alpha_{2}-a_{3})$ $=\pm 2mn$

(4) $\alpha_{3}(a_{3}-\alpha_{1})(\alpha_{3}-\alpha_{2})$ $=\pm 2mk$

It is not difficult to show that $n$ and $k$ are distinct. Henoe there is a prime $p$ such
that $n$ is divisible by $ps$ and $k$ is not divisible by $ps$ . Clearly the number of components
of $F(ZpsM)$ intersecting $F(T, M)$ is 3 and henoe the number of distinct residue classes
among the four integers $0,$ $\alpha_{1},$ $a_{2},$ $\alpha_{3}$ , is 3. Thus we have $\alpha_{2}\equiv 0$ (ps), $a_{1}\not\equiv 0$ (ps), $\alpha_{3}\not\equiv 0$ (ps)

and $\alpha_{1}\not\equiv\alpha_{3}$ (ps). Moreover $2m$ and $n$ divide one of $a_{1},$ $\alpha_{2},$ $\alpha_{3},$ $\alpha_{2}-a_{1}$ and $\alpha_{2}-\alpha_{3}$ . Then $n$

divides $a_{2}$ . Similarly $k$ divides $\alpha_{1}-a_{3}$ . Assume $2m$ divides $\alpha_{2}$ . Then by (1) we have
$\alpha_{1}\alpha_{3}=\pm 1$ , and hence $\alpha_{1}-\alpha_{3}=\pm 2$ and $k=\pm 2$ , which contradicts to the fact $(2m, k)=1$ .
Thus we have $2m|a_{1}$ or $2m|\alpha_{3}$ . We may assume $a_{1}=\pm 2m$ without loss of generality.
Then $\alpha_{3}=\pm 1$ . Thus the value of the formula in 4 in section 1 is constant on $i$ and hence
$M$ is diffeomorphic to $CP_{3}$ . This completes the proof of lemma 3.

We shall prove lemma 4. Let $k$ be the largest integer such that $F(Z_{2^{k}}, M)\neq F(T$,
$M)(lk\subseteq T)$. Sinoe $F(b, M)\supseteqq F(T, M)$ , we have $k\geqq 1$ . Assume $ F(D_{2}, M)=\emptyset$ . Let $a_{1}$

be $a$ generator of $Z_{2^{k}}$. Clearly $N=N/Z_{2^{k}}$ acts on $F(a_{1}, M)$ . For $x\in F(aM)-F(T, M)$,
$N_{x}$ is odd cyclic. In fact, assume $G_{x}$ is cyclic. Then $N_{x}=G_{x}/Z_{2^{k}}$ . If order of $N_{x}$ is
even, we have $F(Z_{2^{k+1}}, M)\neq F(T, M)$ , which contradicts to the choise of $k$. Next assume
$G_{x}$ is not cyclic. Then $G_{x}=D_{2i+1}$ (dihedral subgroup), because $ F(D_{2}, M)=\emptyset$ . If $k\geqq 2$,

then $G_{x}\supset Z_{4}$ , which contradicts to the fact $G_{X}=D_{2i+1}$ . Hence we have $k=1$ . In this case
$N_{x}=\{1\}$ . Consider the restriction of $N$-action to a subgroup isomorphic to $D_{2}$ . Since
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$F(a_{1}, M)$ and $F(T, M)$ have a 2-dimensional component in common, $F(a_{1}, M)-F(T, M)$

is connected and has homotopy type of $S^{1}$. It follows from above arguments that the
subgroup of $N^{\prime}$ acts on $F(a_{1}, M)-F(T, M)$ freely, which is impossible (see [2], Chap. II
section 8). This completes the proof of lemma 4.
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