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Introduction

In this note, we shall consider SO(3)-action and 2-torus action on homotopy complex
projective 3-space with the view of proving that any exotic homotopy complex projective
3-space admits no effective SO(3)—-action nor 2-torus action. In this direction the follow-
ing results are known.

1. A homotopy complex projective 3—space (abbreviated by hCP3) which admits an effec-
tive 3—torus action is diffeomorphic lo the standard complex projective 3—space CP;. ([8])

2. An hCP3 which admilts an effective 1-torus action with fixed poinl set of 2 components
is diffeomorphic to CP3. ([111)

3. An hCP; which admits n-dimensional compact connected Lie group action (n=6) is
diffeomorphic to CPs. ([4])

In this note we shall prove the following

THEOREM. If an hCP; admits an effective SO(3)-action or 2—torus action, then it is
diffeomorphic to CPs.
In the following all actions are assumed to be differentiable.

1. Statement of results

First we shall consider 2-torus action. Let G be a 2-torus and #;, ¢2 denote the
standard complex 1-dimensional representations of G. Then it is well known that the
complex representation ring R(G)=Z[#,, &, 171, 1,711,

Lemma 1. Lel ¢, and ¢z be complex 1-dimensional representations of G. Put ¢1=1,%
t2b and ¢po=11° t24, where a, b, c, d, are integers. Then if ker ¢\ ker ¢=1, we have ad—
bc=1.

Proor. Assume the contrary. Then ad—bc= e# +1 and e is not zero. It is easy to
see that there are integers k&, / such that at least one of (kd—Ib)/e, (la—kc)/e is not
integer. Hence there exist real numbers ¢ and 4 such that @+ b2=0 (2r), ¢+ 2d=0 (2r)
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and 6 or 4 is not integral multiple of 2z. This contradicts to our assumption.
We have the following

CorROLLARY. R(G)=Z[¢y, ¢2, 174, ¢271].

Let M be an ACP; and consider an effective action of Gon M. Let F denote the fixed
point set F(G, M). It is clear that F contains no component of dimension 4. Then the
following four cases can occur.

Casel. F=S5?2US? (S?=2-dimensional sphere)

Case 2. F=S52U{x,, x5}

Case 3. F= {x, X3, X3, %4}

Consider the case 1 and 2. Let ¢x denote the local representation of G at x&S2. ¢«
may be written by 1-+¢,2 #1264 ¢:¢ 1,4, where q, b, ¢ and d are integers (Note that ¢ is
considered as complex representation). The restricted action to ker #2 £, (=1-torus)
has 4-dimensional fixed point set. It follows from the following proposition that M is
diffeomorphic to CPs.

ProrosiTiON 1. Assume thal there exists an orientable 4-dimensional submanifold F of
M such that F»ZCPz and inclusion i: F— M induces an isomorphism i*: H2(M; Q)= H2(F;
Q), where Q is the field of rational numbers, for spaces X, Y, X~Y means that X and Y
have isomorphic Q-cohomology. Then M is diffeomorphic to CPs. N

We shall prove this proposition in section 2.

Consider case 3. Let pi=¢i;+¢is+¢is be the local representation at isolated fixed
point x:(i=1, 2, 3, 4) (considered as complex representation). Assume that ker ¢;;jn ker
vir2 {identity} (j#k). Then there exists a subgroup Z,C G (p; prime) such that F(Zp,
M) is 4-dimensional. Denote F be the 4-dimensional component of F(Zp, M). Then F
is Zp-cohomological complex projective 2-space. Let T be a 1-torus containing Z». Since
F(T, M)=F(T|Zp, F(Zp, M))=F(T|Zp, F)U {one point}, and Euler characteristic of F(7,
M) is equal to that of M, we have FB/ CP; and inclusion i: F—— M induces an isomor-
phism i*: H2(M; Q= H?*(F; Q) (see [2] chap. VII). Proposition 1 shows that M is CPs.
Thus we may assume that for any i, j, k(7 #k) ker gijnker pir={1}. Put ¢1=¢;1; and ¢;=
¢12. Then from lemma 1 it follows that R(G)=Z[¢1, ¢2, 17}, ¢2~1]. Since ker ¢ ker
piz=Kker ¢snker ¢;3={1}, we may assume py=¢;+¢@:+¢1¢;. In fact, let p13=¢12 @2t.
Then we have [a|=|b|=1. If ¢13=¢1 9271, we have ¢;=¢, ¢;3 and hence we can take ¢;3
instead of ¢;. If o13=¢17 19y ~1, no change is needed, because ¢; ¢2 and ¢; 1,71 determine
the same real representation. '

Put pi=1ai oai’ -+ bi pobi' + i poci’ (1=2, 3, 4), where ai, ai’, bi, bi’, ci, ¢i’ are integers.
Note that we may assume that a;+bi=c; and @'+ bi'=c¢’. Let Ki=ker ¢; (i=1,2).
Consider the restricted action of K;. We may assume F(K;, M)=S2?U {two points}. Then
the following two cases can occur. Write F(K;, M)= 52U {z, 25} and F( K5, M)= Sz2U {3,
Yo} .
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Case 1. x1, %,&= 5,2 x1, £2E S22

{#3, x4} = {21, 22} {4, %3} = {31, 32}
Case 2. 11, 2,52 %1, %3E S22

{x3, x4} = {21, 22} (%2, %) = {31, 32},

Consider the case 1. It can be shown that ps=¢1+¢s+¢; 2.  In fact, since ps=
©18320a2" -+ 102 ol +1c2 052" and x,ES12, we have pa/Ki=1+¢2:+¢; and hence we may
assume a;’'=0, b’=-+1 and ¢o’=+1. Moreover since p;/K; is equivalent to p;| K>, we
may assume b;=0, ;= =1 and g=+1. Thus we have ps=¢;+¢2+¢; 211 (Note ¢; and
171 determine the same real 2-dimensional representation of S!). By similar arguments,
we can show that in case 2 local representations at x; are given as follows;

P1=¢1t+ ¢t 1902

p2=01+t @120+ p1atle,

P3= P2+ Q120+ 1 b 1
P4=P104 224"+ 0164 0pbd' @14 p04’

In section 3, we show that only possible case is case 1 with one exception and local

representations are given;

p1=¢1F+ 2t e102

P2=¢1+Po+Q102

0i=p1%i paai’ + 10i Pabi’ + 1¢i pti’ i=3,4
where a;’+a;#0 and b;+ b’ #0.

In this case let D denote the subgroup of G defined by ¢;=¢,. Clearly D is 1-torus
with F(D, M)=F(G, M) and R(D)=Z[¢, ¢~ 1], where ¢=¢1=¢5. Let 7 be the pull back
of the Hopf bundle over CP; via a homotopy equivalence from M to CP;. 7 may be con-
sidered a D-bundle over M. Put n|xi=¢*. We may assume a;=0 (For these arguments,
see Part II section 1 in [7]). The following results are proved in [7].

1. ai’s are all distinct integers.
2. Let pnitoniz+¢nis be local representations of D at x; (i=1, 2, 3, 4).
Then

O(aj—ed=cIl nij (i=1,2,3,4)
j®i j=i
where e=+1 is independent on i.

4 3
3. 2 I (pmist1(eni—1)=0

i=

4. If 11 go“ci;_‘ﬁ—(p(i;ﬁ) / I (go"ﬂg—-goﬁéi) is independent on #, then the
=i i%i
first Pontrjagin class p; (M) of M is equal to 4a?, where H*(M; Z)=
Zlal/(a*), and hence M is diffeomorphic to CP; ([127]).
Applying these results to our action of D, we have three non-zero all distinct integers

ay, a,, az satisfying
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¢D) ap ay 3= +2
@ a(ay—ap) (a1—a3)==+2
3 ay(ay—ay) (ep—az)=+(az+ay’) (bs+bs’) (c3tcs’)
C)) az(az—ay) (az—az)=+(ay+ay’) (by+b4’) (catcy).

From (1) and (2) it follows that e;=+1, a;=F1 and az3=+2 or ay=+1, ap=+2 and
a3= F1, respectively. Then the left hand sides of (3) and (4) are 6 or —6. Since a3+ a3’
and b3+ by’ are relatively prime and c+c’' =(az+ a3’ )4+ (b3+bs’), we may assume az+as’
=+1 and bs+b3y'=+2, respectively. Similarly we have a;+a,/=+1 and b;+b/=+2,
respectively. Then we can choose #;; so that the condition of 4 is satisfied. Thus we
have proved the following

THEOREM A. If an hCP;3 admils an effeclive 2—torus action, it is diffeomorphic to CPs.

Now consider SO(3)-action on ZCP; M. Denote G=S0O(3). Note that there is a
point of M whose isotropy subgroup is a maximal torus of G. In fact, assume the con-
trary. Then all orbits have the same @-cohomology of 3-sphere or a point. Hence by
Vietoris-Begle mapping thereom, the orbit map =: M—>M* induces isomorphism =*:
H*(M*;, Q— H*(M; Q) for *<3. It is not difficult to see that this contradicts to the
structure of H*(M; Q).

In section 4, we shall prove the following

LEMMA 2. If there is an element g#1 (1 denoles the identily element of G) with 4-
dimensional fixed point set, then M is diffeomorphic to CP3.

Since we are only interested in proving that M is diffeomorphic to CP;, we may
assume that any element of finite order has at most 2-dimensional fixed point set. It
follows

PRrROPOSITION 2. Any principal isotropy subgroup consists of only identity.

Let T be the standard maximal torus of G. We shall find possible types of F(T, M).
It follows from a result in [10] that it is impossible for F(T, M) to have a 4-dimensional
component. Hence we have following possible three cases;

1. F(T, M)=union of two 2-spheres

2. KF(T, M)=union of 2-sphere and isolated two points

8. F(T, M)=union of isolated four points.

In case 1, M is diffeomorphic to CP;. Hence we consider the cases 2 and 3.

We shall prove the following lemma in section 4.

LeMMA 3. In case 3, M is diffeomorphic to CP;
Let D, be the dihedral subgroup of order 4. We have

LemMma 4. F(Dy, MDD+ &.
Then by a result in [1] (chap. XIIIL Th. 4.3), the dimension of F(D;, M) is given by

2 dim F(Dz, M)=(3} dim FCH, M))—6
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where H is subgroups of D, of index 2. Let a and b be generators of D, such that b&T
and N=TUaT the normalizer of 7. Then His {a}, {b} or {ab}. Since dim F(a, M)=dim
F(b, M)=dim F(ab, M)=2, we have dim F(D,, M)=0. It follows from a result in [1]
(chap. XIIIL. Th. 3.6) that F(D,, M) consist of four points. Moreover F(b, M) is union of
two 2-spheres (see [2], chap. VIII) and hence F(ae, M) is also union of two 2-spheres.
Let F(b, M)=5,2US,2. We may assume that F(T, M)=5:2U{x,, x2}. Since F(a, F(b, M))
=F(a, S2)UF(a, S2)+ &, F(a, Si2) and F(a, S;?) is not empty. It is known that the fixed
point set of an involution on 2-sphere is 1-dimensional or two points (see [2] chap. VII)
and hence F(Ds, M)= {3, ¥2, ¥s 34} and 3, %2ES2C F(T, M). Hence y, and y»,EF(N, M).
Possible types of F(N, M) are following

(a) F(N, MD= {»n, y2} =S¢

(b) F(N, M)= {3, y2, %1, %2}.

The following lemma is proved in [6] ([6] Th. (3. 2))

LEMMA 5. Let zE F(D;, M) and G: is a normalizer of a 1-torus. Then G(2)NF(D,, M)
consists of three points. .

Consider case (a). Suppose & F(N, M)—F(G, M). Then it follows from lemma 5
that G(y»)NF(D;, M) consists of three points. Put G(y)NF(D2, M)={y, z1, 2}. Itis
clear that y»=z; for some 5. Hence {21, 22} = {53, 4}, and one of ¥ and y is a fixed point.
Assume »EF(G, M). Consider the action of G on S% (=the small unit sphere around )
induced by local representation of G at y,. This action has S? as an orbit. It follows
from a result in [9] ([9] section 2) that all O—dimensional isotropy subgroup are {(1}.
Since 2-dimensional component of F(a, M) containing y intersects with 2-dimensional
component of F(b, M) containing y at one point y;, the action of G on S® must have a
non-trivial finite isotropy subgroup, which contradicts to the above fact. Similarly we
can show that case (b) can not occur. Thus under our assumption the case in which
F(T, M)=S2U{x;, x3} cannot occur. Hence we have proved the following

THEOREM B. If an hCP; admits a non-trivial SO(3)—action, then it is diffeomorpbhic to
CP;.

2. Proof of Proposition 1

In this section, we shall prove proposition 1. Let v be the normal bundle of F in M.
It follows from a result in [3] that the Euler class X(v) is given by

X()=*"D71(x [FD,

where [ F] denotes the fundamental class of Fand D: H?*(M, Z)—> H,(M; Z) Poincare
duality. a denotes a generator of H2(F; Z)/Tor. == Z and a a generator of H*(M; Z)=
Zlal/(a*). Put i¥(a)=ma+B, where B&Tor H*(F:Z). We ahve i*(a®)=m? a2

Put D-1i,[ Fl=ka. Then we have
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k =<[M), ka®>=<kan[ M], a*>
=ix[Fl, ®>=<[F), i*a*>
=<[F], m* ®>=m?.
Hence we have y(»)=i*(m? a)=m2(ma+pB). This implies p1(A)=Cx(¥))2=m" a2
Put py(M)=1Ia% From i* py(M)=p(F)+p(»), it follows that 3=m?(I—m*). Since m
and / are integers, we have /=4. Hence M is diffeomorphic to CP; (see [12]).

3. 2-torus action

In this section, we shall consider the remaining cases in section 2. We use the same
notations as in section 2.
Case 1. One of agi+ai’, bi+bi’ (i=3, 4) is zero.

Without loss of generality, we may assume that az+as’=0. If b3+ b3'=0, the fixed
point set of D-action is 6-dimensional, which contradicts to the effectivity. Since F(D,
M) has 2-dimensional component S and x3, %, as isolated fixed points, we have x,&S. We
may assume that @;+a,’=0, because the local representations of D at x3 and x4 are equi-
valent. Choose new coordinates 6, 6, on G such that ¢;=0, and ¢;=60,0,. Then we have

pi=01+0, 0,020 i=1,2
and 0 =020i' +0,bi+bi' Gbi’ +0,citei’ Gyci’ i=3, 4.
We have ai’==+1 and b;+b/==1 and hence pj=05-+0,0:6i+6,0,5;%1 for j=3, 4. Moreo-
ver we choose coordinates &, §; on G such that

pi=&1+8286+6126 i=1,2

0i=61282+816i 18,05 £,2(b;ED+1£,(b;ED) j=3, 4.
Consider the action restricted to D'= {3=§,=§;}. Then local representations of D’ at x;
are as follows;

at x; (i=1, 2); §+&4+65

at xi (i=3, 4); §34-62b;+14-£300;£D+1
Clearly F(D’, M)=F(G, M). Then there exist three distinct integers a;, @,, @3 satifying

¢Y) a;(ap a3 +20
(2) a(ay—az)(ay—az) =+20

(3) a(ay—ay)(az—az) ==+3(2b3+1)(3(b3£)+1)
(4 ag(az—a)(az—ap) ==+3(2bs+1)(3(bsx1) +1).

From (1) and (2) it follows that possible pairs of (a;, a3, a;3) are followings
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case 1 2 3 az(a;—ay) (as—az) as(ar—as) (a;—as)
1 1 —4 5 +180 +180
2 1 5 —4 +180 +180
3 —1 4 —5 +180 +180
4 —1 —5 4 +180 +180
5 4 —1 5 +130 + 30
6 4 5 —1 + 30 + 30
7 —4 1 —5 + 30 + 30
8 —4 —5 1 + 30 + 30
9 +5 1 4 + 12 + 12
10 5 4 1 + 12 + 12
11 —5 —4 —1 + 12 + 12
12 —5 —1 —4 + 12 + 12

Consider equations; (2x+1)(3x+4)=460, +10, or (2¢+1)(3x—2)= +60, +10. It is
easily seen that these equations have no integral roots. Hence cases 1, 2,...... , 8 cannot
occur. Consider cases 9,...... , 12. Since (2x+1)(3x+4)=4 has 0 as its integral roots,
local representations of D’ of following type may occur;

at x; (i=1, 2); §+64+65

at x; (i=3, 4); §+&3+4-64
In [7], it is proved that the number of coonnected components of F(Zp-, M) inter-
cecting F(D’, M) is the number of distinct residue classes among the four integers 0, oy,
ay, a3. Let Z; be defined by £5=0. Clearly the number of connected components of F(Z;,

M) intercecting F(D', M) is 3. Hence the number of distinct residue classes among 0, ;,
ay, a3 is 3. From relations

(1) aazas =+20
(2) ay(ey—az)(ey—a3) =420
(3 ap(ay—a)(az—asz) =+12
(49 a3(az—a)(az—az) ==+12,

it follows that only possible residue classes are;
a;=0 (5)
a,#=0 (5)
a3 %0 (5)
ap#Eaz (5).

Then clearly @;=+5 and a;=a,+4-a3. Hence we have ay=+1, as=+4, ay—ay=+4, a;—a3
=+1 and a;—a3==+3. It is not difficult to see that one can choose signs of #:; so that
condition of 4 in section 1 holds. Therefore M is diffeomorphic to CPs.
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Next we shall consider case 2. In this case we have shown that local representations
at x; are given as follows; '
P1=¢1t¢2t+102
P2=¢1+ 12 Q2+ @12+,
P3=2+¢1 020+ 1 0301
P4=P124 0204+ 0154 0obd' @14 pped’

where c¢yj=a;+by, ¢y’ =a+b, .
Since x; and x; are not contained in the same component of F( K3, M), a is neither 0 nor
—1. Similarly we have b#0, 1. Consider the action restricted to D’= {¢;=¢,~1]. Clearly
F(D’, M) has 2-dimensional component which contains x;. Then the following three
cases can occur;

(1) a=1
(2) a#1land b=1
(3) a#1, b#1 and one of as—a,’, b4—b, and c¢4—c,’ is zero.

Case (1). Considered the action restricted to H= {¢p1=¢,™1}. Clearly #; is contained
in a 2-dimensional component of F(H, M). Since x; and x3; are isolated fixed points of
F(H, M), just one of a4 —2a,’, by —2b4’ and ¢4 —2¢,” must be zero. Assume that ¢;=2a,’.
It follows from the fact det (%, %)=:t1 that a/==1 and 2b¢—b=+1. - Hence we
ahve py=¢1 T2t 4 1d ppd’ 1o’ (Note e=d+2, & =b" +1).

Since 2d’—d=+1, we have

Pa=91? Pr 1P Flppd’ ) 2d Flt2 gpd’+1
or =1% @+ 12" Flpd' +2d'F12ppd’ 1
Clearly x1, x2 and x3 are isolated fixed points of H’= {¢s=¢;?} and hence x; must be iso-
lated fixed point. Thus we have the local representations of H’

at x;; ¢+ ¢?+¢?

at xp; o+ 3+t

at x3; Q2+ p2bt142b43

at X4; ¢4+¢4d¢1+¢4d:t4:|:1

Hence there exist three distinct integers a;, a;, a3 satisfying

(1) arazap =+6

2) a(yy—ax)(y—a3) =+12

(3) a(az—ay)(ay—as) =+2(2b+1)(26+3)
(D) az(ez—e)(az—ay) =+4(4d'—1)(4d" £41).
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From (1) and (2) it follows the following three cases occur.

i) ap=+1 ay=TF2 a3=TF3
ii) oy = +1 Q= 3 Q3= F2
lli) 1= +3 o= F1 Qz= iZ,

where the signs are corresponding respectively.

Case i). It follows from (3) and (4) that b=—2 and d’'= or d’'=—2. If d’=0, then
x4 is contained in 2-dimensional component of F(K;, M), which contradicts to the assump-
tion. If d’= 12, we have py=¢1% p2-+¢13 022+ ;1 2, which implies that only x3 is contained
in a 2-dimensional component of the fixed point set of the subgroup {¢;=¢,} of G, it is
impossible. It is not difficult to see that case ii) and iii) are impossible.

Case a+1 and b=1.
This case reduces to the case a=1.

Case a+1, b+#1 and one of ay—ay, by— by and cs—c4 is zero.
We may assume az=as’ Wit_hout loss of generality. We have the following four
possibilities of py;

P12+ P1€ PacH 1 et pyet?

P12t 1€ P2 "1+t oe

P1P2 P16 P2 T4 01c 71 pe

P1P2+ P16 P2t "1+ e 1 ppe 2

If we put ¢;=0; and ¢»=0,20,, we have

p1=¢1+0,20;+0,360;

p2=01+40,2%20,+0,a+30,

03=012 00,261 0,5 0,25+3 0,b+1

P4=01305+0,3¢+2 foc+14 §,3c+5 fc+2
0130,+0,3c20,c~14- 0,3 +18,¢
01305+ 0,3c+20,c=14-0,3c "1 G,c
01305+ 01372 0,c714-6,3¢—56,c 2,

The action restricted to D= {#;=6,} has the same fixed point set as G-action. Then
as above, there are three distinct integers @;, a; and a3 satisfiying ‘

(A1) ajazaz =+12

@) a(e—ax)(a1—ea3) =+(a—3)(a+4)
(3) ax(az—ay)(ar—a3) =+3(20+1)(3b+4)
(1) a(ez—a)(ar—az) =+4(4c+3)(4c+7)
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= 1+4(4c—3)(4c+1)
= +4(4c+3)(4c—1)
=+4(4c—3)(4c—-7).

By direct computations we can show a contradiction.

4. SO(3)-action

In this section we shall consider actiona of G=S0O(3) on an 2ACP;, M with the follow-
ing property;
(*) Let T be the standard maximal torus of G. Then the fixed point set F(T, M) is a
union of one 2-sphere and two isolated points or a union of four isolated points. :
First we shall prove lemma 2 in section 2. Assume there is an element g of order p
(p; prime) such that dim F(g, M) is greater than 2. If p is odd, dim F(g, M) is 4 and
F(g, M)=FU{pt.}, where F;CPZ. Let S be a torus containing g. We have F(S, M)=

F(S/{g}, F(g, M))=F(S/ {g}p, F)U{pt}. Since the Euler characteristic of F(T, M) is 4,
we have the Euler characteristic of F(S/{g}, F)=3. Since HI(F; Zp)=H3(F; Zp)=0,
we have HY(F; Q) =H3(F; @) =0 and H%(F; @=Q. In particular, H3(F; Z)/Tor.=Z.
It is easy to see that FB« CP,. Since the inclusion i: F—— M induces an isomorphism #*»:
H*(M; Zp)S H(F; Zp), i* HX(M; 2) H*(F; Z) maps the generator of H*(M; Z) toa
non-zero element and hence i*q: H3(M; @)= H?(F; @) is an isomorphism. By proposition
1, M is diffeomorphic to CP;. 'If p is even, dim F(g, M) may be 3 (see [2], Chap. VII).
In this case F(g, M) is connected and F(g, M)ZRPs, which contradicts to the fact the

Euler characteristic of F(S, M) is non-zero. In the case in which dim F(g, M)=4, the
same argument as in the case in which p is odd show that M is diffeomorphic to CPs.
This completes the proof of lemma 2.

It follows from the assumption (*) that GF(T, M) is at most 4-dimensional and hence
there exists a point x in M whose isotropy subgroup is O—dimensional. Let H be a princi-
pal isotropy subgroup and assume H=# {1}. Since there is an element x with G:=T, H is
cyclic. Let g be an element of H whose order is p (p; prime). It is clear that F(g, M)
is at least 4—dimensional. It follows from lemma 2 that M is diffeomorphic to CP:. This

completes the proof of Proposition 2 in section 1.

1
Consider the case in which F(T, M)= {1, X2, X3, %1} . Let @ denote the element [ —1 ]
—1

and b=|: -1 J . Then N=TUaT and D,= {1, a, b, ab}. Cleary F(T, M) is e-invariant.
Since M(T) is non-empty, there may occur following two case;

Case 1. F(N, M)= {x1, %2}

Case2. F(N,M)=4.

Consider case 1. In this case F(D,, M)+ &. In section 1, we have noticed that F(D,,



SO(3)-action and 2-torus action on homotopy complex projective 3—staces _ 11

M) consists of isolated four points. We may put F(Ds, M)={x1, X2, %1, ¥2}. Assume
(G, M)=g. It follows from lemma 5 in section 1 that G(x1)NF(D;, M) and G(x:)NF( Do,
M) are consisting of 3 points and hence G(x;) and G(x;) must intercect, which is impos-
sible. Thus F(G, M)+# 2. Assume x,&F(G, M) and consider the SO(3)-action on S5
induced by the slice representation of G at x;. Clearly this action has only 0—dimensional
isotropy subgroups and hence principal isotropy subgroups are icosahedral subgroup (see
[91). This is impossible, because F(D,, M) is 0—-dimensional.

Consider case 2. Assume S?% is ¢-invariant (Recall F(b, M)=S5,2US;2) In this case
the same arguments as in the proof of lemma 4 in section 1 show that F(D,;, M)+ 2.
Let F(Do, M)NS:2= {21, 22}. Clearly G:; is 0-dimensional. By a result in [6] ([6], (3.7))
it follows that F(D,, M)NG(2;1) consists of six points which is impossible. Thus S; is not
a-invariant and hence we may assume that aex;=x3, axo=2x4 Consider the restricted
action of . We can decompose the tangent space at x; into a direct sum Tx;(G(%:))®
Tx;(S;?2)@ Vi, where S;2 is the component of F(b, M) containing x;. Then local represen-
tation of T at x; is given by 7+ ¢2mi+ ¢#i, where R(T)=Z[¢, ¢t~1] and (2m;, n;)=1. Clearly
mi=my and mz=my. It is easy to see that m;=m3 and n;=n3, no=n4. As noticed in
section 1, there are distinct non-zero integers «;, a;, @3 satisfying '

(D ajozes =42mn
2) ay(er—ay)(a;—az) = +2mk
(3) ay(az—a;)(ar—a3) =+ 2mn
(4 ax(az—a(az—az) = +2mk

It is not difficult to show that » and % are distinct. Hence there is a prime p such
that » is divisible by ps and & is not divisible by ps. Clearly the number of components
of F(Zps, M) intersecting F(T, M) is 3 and hence the number of distinct residue classes
among the four integers 0, a;, @, @3, is 3. Thus we have a;=0(ps), a; Z0(ps), az=0(ps)
and a;#a3 (ps). Moreover 2m and » divide one of ay, as, a3, a2—a; and a;—a3. Then »
divides a;. Similarly % divides ¢j—a3. Assume 2m divides ;. Then by (1) we have
a1a3=+1, and hence ¢y—a3==+2 and k= +2, which contradicts to the fact (2m, k)=1.
Thus we have 2m|a; or 2m|a;. We may assume a;= 1+2m without loss of generality.
Then as3=+1. Thus the value of the formula in 4 in section 1 is constant on ¢ and hence
M is diffeomorphic to CP;. This completes the proof of lemma 3.

We shall prove lemma 4. Let k2 be the largest integer such that F(Zx, M)# F(T,
M)(szgT). Since F(b, M)2F(T, M), we have k=1. Assume F(D;, M)=2. Leta
be a generator of Z;x. Clearly N'=N/Z;x actson F(a;, M). For x&F(a M)—F(T, M),
N'x is odd cyclic. In fact, assume Gx is cyclic. Then N x=Gx/Z;x. If order of N« is
even, we have F(Zx+1, M)+ F(T, M), which contradicts to the choise of 2. Next assume
Gz is not cyclic. Then Gyx=D;i+; (dihedral subgroup), because F(D;, M)=g. If k=2,
then G:DZ,;, which contradicts to the fact Gx=Dsi+;. Hence we have £#=1. In this case
N z:={1}. Consider the restriction of N'-action to a subgroup isomorphic to D,. Since
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Fla;,, M) and F(T, M) have a 2-dimensional component in common, F(a;, M)—FT, M)
is connected and has homotopy type of S. It follows from above arguments that the
subgroup of N’ acts on F(a;, M)— F(T, M) freely, which is impossible (see [2], Chap. II
section 8). This completes the proof of lemma 4.
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