SO(3)-action and 2-torus action on homotopy complex projective 3-spaces

By

Tsuyoshi WATABE

(Received May 20, 1975)

Introduction

In this note, we shall consider SO(3)-action and 2-torus action on homotopy complex projective 3-space with the view of proving that any exotic homotopy complex projective 3-space admits no effective SO(3)-action nor 2-torus action. In this direction the following results are known.

- 1. A homotopy complex projective 3-space (abbreviated by hCP_3) which admits an effective 3-torus action is diffeomorphic to the standard complex projective 3-space CP_3 . ([8])
- 2. An hCP_3 which admits an effective 1-torus action with fixed point set of 2 components is diffeomorphic to CP_3 . ([11])
- 3. An hCP_3 which admits n-dimensional compact connected Lie group action $(n \ge 6)$ is diffeomorphic to CP_3 . ([4])

In this note we shall prove the following

THEOREM. If an hCP_3 admits an effective SO(3)-action or 2-torus action, then it is diffeomorphic to CP_3 .

In the following all actions are assumed to be differentiable.

1. Statement of results

First we shall consider 2-torus action. Let G be a 2-torus and t_1 , t_2 denote the standard complex 1-dimensional representations of G. Then it is well known that the complex representation ring $R(G)=Z[t_1,t_2,t_1^{-1},t_2^{-1}]$.

LEMMA 1. Let ϕ_1 and ϕ_2 be complex 1-dimensional representations of G. Put $\phi_1=t_1^a$ t_2^b and $\phi_2=t_1^c$ t_2^d , where a, b, c, d, are integers. Then if ker $\phi_1\cap$ ker $\phi_2=1$, we have ad-bc=1.

PROOF. Assume the contrary. Then $ad-bc=e\neq\pm 1$ and e is not zero. It is easy to see that there are integers k, l such that at least one of (kd-lb)/e, (la-kc)/e is not integer. Hence there exist real numbers θ and λ such that $a\theta+b\lambda\equiv 0$ (2π) , $c\theta+\lambda d\equiv 0$ (2π)

and θ or λ is not integral multiple of 2π . This contradicts to our assumption.

We have the following

COROLLARY. $R(G)=Z[\phi_1, \phi_2, \phi_1^{-1}, \phi_2^{-1}].$

Let M be an hCP_3 and consider an effective action of G on M. Let F denote the fixed point set F(G, M). It is clear that F contains no component of dimension 4. Then the following four cases can occur.

Case 1. $F=S^2 \cup S^2$ ($S^2=2$ -dimensional sphere)

Case 2. $F = S^2 \cup \{x_1, x_2\}$

Case 3. $F = \{x_1, x_2, x_3, x_4\}$

Consider the case 1 and 2. Let φ_x denote the local representation of G at $x \in S^2$. φ_x may be written by $1+t_1^a t_2^b+t_1^c t_2^d$, where a, b, c and d are integers (Note that φ_x is considered as complex representation). The restricted action to ker $t_1^a t_2^b$ (=1-torus) has 4-dimensional fixed point set. It follows from the following proposition that M is diffeomorphic to CP_3 .

PROPOSITION 1. Assume that there exists an orientable 4-dimensional submanifold F of M such that $F_Q CP_2$ and inclusion $i: F \longrightarrow M$ induces an isomorphism $i^*: H^2(M; Q) \cong H^2(F; Q)$, where Q is the field of rational numbers, for spaces $X, Y, X \cong Y$ means that X and Y have isomorphic Q-cohomology. Then M is diffeomorphic to CP_3 .

We shall prove this proposition in section 2.

Consider case 3. Let $\rho_i = \varphi_{i1} + \varphi_{i2} + \varphi_{i3}$ be the local representation at isolated fixed point x_i (i=1, 2, 3, 4) (considered as complex representation). Assume that $\ker \varphi_{ij} \cap \ker \varphi_{ik} \supseteq \{\text{identity}\}\ (j \neq k)$. Then there exists a subgroup $Z_p \subset G$ (p; prime) such that $F(Z_p, M)$ is 4-dimensional. Denote F be the 4-dimensional component of $F(Z_p, M)$. Then F is Z_p -cohomological complex projective 2-space. Let T be a 1-torus containing Z_p . Since $F(T, M) = F(T/Z_p, F(Z_p, M)) = F(T/Z_p, F) \cup \{\text{one point}\}\$, and Euler characteristic of F(T, M) is equal to that of M, we have $F_{Q}CP_2$ and inclusion $i : F \longrightarrow M$ induces an isomorphism $i^* : H^2(M; Q) \cong H^2(F; Q)$ (see [2] chap. VII). Proposition 1 shows that M is CP_3 . Thus we may assume that for any $i, j, k(j \neq k)$ ker $\varphi_{ij} \cap \ker \varphi_{ik} = \{1\}$. Put $\varphi_1 = \varphi_{11}$ and $\varphi_2 = \varphi_{12}$. Then from lemma 1 it follows that $R(G) = Z[\varphi_1, \varphi_2, \varphi_1^{-1}, \varphi_2^{-1}]$. Since $\ker \varphi_{10} = \ker \varphi_{13} = \ker \varphi_{10} = \ker \varphi_{13} = \{1\}$, we may assume $\varphi_1 = \varphi_1 + \varphi_2 + \varphi_1 \varphi_2$. In fact, let $\varphi_{13} = \varphi_1^a \varphi_2^b$. Then we have |a| = |b| = 1. If $\varphi_{13} = \varphi_1 \varphi_2^{-1}$, we have $\varphi_1 = \varphi_2 \varphi_{13}$ and hence we can take φ_{13} instead of φ_1 . If $\varphi_{13} = \varphi_1^{-1} \varphi_2^{-1}$, no change is needed, because $\varphi_1 \varphi_2$ and $\varphi_1^{-1} \varphi_2^{-1}$ determine the same real representation.

Put $\rho_i = \varphi_1^{a_i} \varphi_2^{a_i'} + \varphi_1^{b_i} \varphi_2^{b_i'} + \varphi_1^{c_i} \varphi_2^{c_i'}$ (i=2, 3, 4), where a_i , a_i' , b_i , b_i' , c_i , c_i' are integers. Note that we may assume that $a_i + b_i = c_i$ and $a_i' + b_i' = c_i'$. Let $K_i = \ker \varphi_i$ (i=1, 2). Consider the restricted action of K_i . We may assume $F(K_i, M) = S^2 \cup \{\text{two points}\}$. Then the following two cases can occur. Write $F(K_1, M) = S_1^2 \cup \{z_1, z_2\}$ and $F(K_2, M) = S_2^2 \cup \{y_1, y_2\}$.

Case 1.
$$x_1, x_2 \in S_1^2$$
 $x_1, x_2 \in S_2^2$ $\{x_3, x_4\} = \{z_1, z_2\}$ $\{x_4, x_3\} = \{y_1, y_2\}$
Case 2. $x_1, x_2 \in S_1^2$ $x_1, x_3 \in S_2^2$ $\{x_3, x_4\} = \{z_1, z_2\}$ $\{x_2, x_4\} = \{y_1, y_2\}$.

Consider the case 1. It can be shown that $\rho_2 = \varphi_1 + \varphi_2 + \varphi_1 \varphi_2^{\pm 1}$. In fact, since $\rho_2 = \varphi_1 a_2 \varphi_2 a_2' + \varphi_1 b_2 \varphi_2 b_2' + \varphi_1 c_2 \varphi_2 c_2'$ and $x_2 \in S_1^2$, we have $\rho_2/K_1 = 1 + \varphi_2 + \varphi_2$ and hence we may assume $a_2' = 0$, $b_2' = \pm 1$ and $c_2' = \pm 1$. Moreover since ρ_2/K_2 is equivalent to ρ_1/K_2 , we may assume $b_1 = 0$, $a_1 = \pm 1$ and $c_1 = \pm 1$. Thus we have $\rho_2 = \varphi_1 + \varphi_2 + \varphi_1 \varphi_2^{\pm 1}$ (Note φ_1 and φ_1^{-1} determine the same real 2-dimensional representation of S^1). By similar arguments, we can show that in case 2 local representations at x_i are given as follows;

$$\rho_{1} = \varphi_{1} + \varphi_{2} + \varphi_{1} \varphi_{2}
\rho_{2} = \varphi_{1} + \varphi_{1}^{a} \varphi_{2} + \varphi_{1}^{a+1} \varphi_{2}
\rho_{3} = \varphi_{2} + \varphi_{1} \varphi_{2}^{b} + \varphi_{1} \varphi_{2}^{b+1}
\rho_{4} = \varphi_{1}^{a_{4}} \varphi_{2}^{a_{4}'} + \varphi_{1}^{b_{4}} \varphi_{2}^{b_{4}'} + \varphi_{1}^{c_{4}} \varphi_{2}^{c_{4}'}$$

In section 3, we show that only possible case is case 1 with one exception and local representations are given;

$$\begin{split} & \rho_1 \! = \! \varphi_1 \! + \! \varphi_2 \! + \! \varphi_1 \varphi_2 \\ & \rho_2 \! = \! \varphi_1 \! + \! \varphi_2 \! + \! \varphi_1 \varphi_2 \\ & \rho_i \! = \! \varphi_1^{a_i} \varphi_2^{a_i'} \! + \! \varphi_1^{b_i} \varphi_2^{b_i'} \! + \! \varphi_1^{c_i} \varphi_2^{c_i'} \qquad i \! = \! 3, \, 4 \end{split}$$

where $a_i' + a_i \neq 0$ and $b_i + b_i' \neq 0$.

In this case let D denote the subgroup of G defined by $\varphi_1 = \varphi_2$. Clearly D is 1-torus with F(D, M) = F(G, M) and $R(D) = Z[\varphi, \varphi^{-1}]$, where $\varphi = \varphi_1 = \varphi_2$. Let η be the pull back of the Hopf bundle over CP_3 via a homotopy equivalence from M to CP_3 . η may be considered a D-bundle over M. Put $\eta \mid x_i = \varphi^{\alpha_i}$. We may assume $\alpha_1 = 0$ (For these arguments, see Part II section 1 in [7]). The following results are proved in [7].

- 1. α_i 's are all distinct integers.
- 2. Let $\varphi^{n_{i1}} + \varphi^{n_{i2}} + \varphi^{n_{i3}}$ be local representations of D at x_i (i=1, 2, 3, 4). Then

$$\prod_{j \neq i} (\alpha_j - \alpha_i) = \varepsilon \prod_{j \neq i} n_{ij} \qquad (i = 1, 2, 3, 4)$$

where $\varepsilon = \pm 1$ is independent on *i*.

3.
$$\sum_{i=1}^{4} \prod_{j=1}^{3} (\varphi^{n_{ij}}+1)(\varphi^{n_{ij}}-1)=0$$

4. If
$$\prod_{j \neq i} \left(\varphi^{-\frac{\alpha_j - \alpha_i}{2}} - \varphi^{\frac{\alpha_j - \alpha_i}{2}} \right) / \prod_{j \neq i} \left(\varphi^{-\frac{n_{ij}}{2}} - \varphi^{\frac{n_{ij}}{2}} \right)$$
 is independent on *i*, then the

first Pontrjagin class p_1 (M) of M is equal to $4a^2$, where $H^*(M; \mathbb{Z}) = \mathbb{Z}[a]/(a^4)$, and hence M is diffeomorphic to $\mathbb{C}P_3$ ([12]).

Applying these results to our action of D, we have three non-zero all distinct integers α_1 , α_2 , α_3 satisfying

$$\alpha_1 \alpha_2 \alpha_3 = \pm 2$$

- (2) $\alpha_1(\alpha_1-\alpha_2) (\alpha_1-\alpha_3) = \pm 2$
- (3) $a_2(a_2-a_1)(a_2-a_3) = \pm (a_3+a_3')(b_3+b_3')(c_3+c_3')$
- (4) $a_3(a_3-a_1)(a_3-a_2) = \pm (a_4+a_4')(b_4+b_4')(c_4+c_4').$

From (1) and (2) it follows that $a_1 = \pm 1$, $a_2 = \mp 1$ and $a_3 = \pm 2$ or $a_1 = \pm 1$, $a_2 = \pm 2$ and $a_3 = \mp 1$, respectively. Then the left hand sides of (3) and (4) are 6 or -6. Since $a_3 + a_3'$ and $b_3 + b_3'$ are relatively prime and $c_3 + c_3' = (a_3 + a_3') + (b_3 + b_3')$, we may assume $a_3 + a_3' = \pm 1$ and $a_3 + a_3' = \pm$

THEOREM A. If an hCP3 admits an effective 2-torus action, it is diffeomorphic to CP3.

Now consider SO(3)-action on hCP_3 M. Denote G=SO(3). Note that there is a point of M whose isotropy subgroup is a maximal torus of G. In fact, assume the contrary. Then all orbits have the same Q-cohomology of 3-sphere or a point. Hence by Vietoris-Begle mapping thereom, the orbit map π : $M \longrightarrow M^*$ induces isomorphism π^* : $H^*(M^*; Q) \longrightarrow H^*(M; Q)$ for $* \leq 3$. It is not difficult to see that this contradicts to the structure of $H^*(M; Q)$.

In section 4, we shall prove the following

LEMMA 2. If there is an element $g \neq 1$ (1 denotes the identity element of G) with 4-dimensional fixed point set, then M is diffeomorphic to CP_3 .

Since we are only interested in proving that M is diffeomorphic to CP_3 , we may assume that any element of finite order has at most 2-dimensional fixed point set. It follows

PROPOSITION 2. Any principal isotropy subgroup consists of only identity.

Let T be the standard maximal torus of G. We shall find possible types of F(T, M). It follows from a result in [10] that it is impossible for F(T, M) to have a 4-dimensional component. Hence we have following possible three cases;

- 1. F(T, M)=union of two 2-spheres
- 2. F(T, M)=union of 2-sphere and isolated two points
- 3. F(T, M)=union of isolated four points.

In case 1, M is diffeomorphic to CP_3 . Hence we consider the cases 2 and 3.

We shall prove the following lemma in section 4.

LEMMA 3. In case 3, M is diffeomorphic to CP₃

Let D_2 be the dihedral subgroup of order 4. We have

LEMMA 4. $F(D_2, M) \neq \emptyset$.

Then by a result in [1] (chap. XIII. Th. 4.3), the dimension of $F(D_2, M)$ is given by

$$2 \dim F(D_2, M) = (\sum_{H} \dim F(H, M)) - 6$$

where H is subgroups of D_2 of index 2. Let a and b be generators of D_2 such that $b \in T$ and $N = T \cup aT$ the normalizer of T. Then H is $\{a\}$, $\{b\}$ or $\{ab\}$. Since $dim\ F(a,M) = dim\ F(b,M) = dim\ F(ab,M) = 2$, we have $dim\ F(D_2,M) = 0$. It follows from a result in [1] (chap. XIII. Th. 3.6) that $F(D_2,M)$ consist of four points. Moreover F(b,M) is union of two 2-spheres (see [2], chap. VIII) and hence F(a,M) is also union of two 2-spheres. Let $F(b,M) = S_1^2 \cup S_2^2$. We may assume that $F(T,M) = S_1^2 \cup \{x_1,x_2\}$. Since $F(a,F(b,M)) = F(a,S_1^2) \cup F(a,S_2^2) \neq \emptyset$, $F(a,S_1^2)$ and $F(a,S_2^2)$ is not empty. It is known that the fixed point set of an involution on 2-sphere is 1-dimensional or two points (see [2] chap. VII) and hence $F(D_2,M) = \{y_1,y_2,y_3,y_4\}$ and $y_1,y_2 \in S_1^2 \subseteq F(T,M)$. Hence y_1 , and $y_2 \in F(N,M)$. Possible types of F(N,M) are following

(a)
$$F(N, M) = \{y_1, y_2\} \subseteq S_1^2$$

(b)
$$F(N, M) = \{y_1, y_2, x_1, x_2\}.$$

The following lemma is proved in [6] ([6] Th. (3.2))

LEMMA 5. Let $z \in F(D_2, M)$ and G_z is a normalizer of a 1-torus. Then $G(z) \cap F(D_2, M)$ consists of three points.

Consider case (a). Suppose $y_1 \in F(N, M) - F(G, M)$. Then it follows from lemma 5 that $G(y_1) \cap F(D_2, M)$ consists of three points. Put $G(y_1) \cap F(D_2, M) = \{y_1, z_1, z_2\}$. It is clear that $y_2 = z_j$ for some j. Hence $\{z_1, z_2\} = \{y_3, y_4\}$, and one of y_1 and y_2 is a fixed point. Assume $y_1 \in F(G, M)$. Consider the action of G on S^5 (=the small unit sphere around y_1) induced by local representation of G at y_1 . This action has S^2 as an orbit. It follows from a result in [9] ([9] section 2) that all 0-dimensional isotropy subgroup are $\{1\}$. Since 2-dimensional component of F(a, M) containing y_1 intersects with 2-dimensional component of F(b, M) containing y_1 at one point y_1 , the action of G on S^5 must have a non-trivial finite isotropy subgroup, which contradicts to the above fact. Similarly we can show that case (b) can not occur. Thus under our assumption the case in which $F(T, M) = S^2 \cup \{x_1, x_2\}$ cannot occur. Hence we have proved the following

THEOREM B. If an hCP_3 admits a non-trivial SO(3)-action, then it is diffeomorphic to CP_3 .

2. Proof of Proposition 1

In this section, we shall prove proposition 1. Let ν be the normal bundle of F in M. It follows from a result in [3] that the Euler class $\chi(\nu)$ is given by

$$\chi(\nu) = i D^{-1}(i_* [F]),$$

where [F] denotes the fundamental class of F and D: $H^2(M, Z) \longrightarrow H_4(M; Z)$ Poincare duality. α denotes a generator of $H^2(F; Z)/T$ or. $\cong Z$ and α a generator of $H^*(M; Z) = Z[\alpha]/(\alpha^4)$. Put $i^*(\alpha) = m\alpha + \beta$, where $\beta \in T$ or $H^2(F; Z)$. We ahve $i^*(\alpha^2) = m^2 \alpha^2$.

Put $D^{-1}i_*[F]=ka$. Then we have

$$k = <[M], ka^3> = < ka \cap [M], a^2>$$

= $< i_*[F], a^2> = <[F], i^*a^2>$
= $<[F], m^2a^2> = m^2.$

Hence we have $\chi(\nu)=i^*(m^2\ a)=m^2(m\alpha+\beta)$. This implies $p_1(\alpha)=(\chi(\nu))^2=m^6\alpha^2$. Put $p_1(M)=l\ a^2$. From $i^*p_1(M)=p_1(F)+p_1(\nu)$, it follows that $3=m^2(l-m^4)$. Since m and l are integers, we have l=4. Hence M is diffeomorphic to CP_3 (see [12]).

3. 2-torus action

In this section, we shall consider the remaining cases in section 2. We use the same notations as in section 2.

Case 1. One of $a_i + a_i'$, $b_i + b_i'$ (i = 3, 4) is zero.

Without loss of generality, we may assume that $a_3+a_3'=0$. If $b_3+b_3'=0$, the fixed point set of D-action is 6-dimensional, which contradicts to the effectivity. Since F(D, M) has 2-dimensional component S and x_1 , x_2 as isolated fixed points, we have $x_4 \in S$. We may assume that $a_4+a_4'=0$, because the local representations of D at x_3 and x_4 are equivalent. Choose new coordinates θ_1 , θ_2 on G such that $\varphi_1=\theta_1$ and $\varphi_2=\theta_1\theta_2$. Then we have

$$\rho_{i} = \theta_{1} + \theta_{1} \theta_{2} + \theta_{1}^{2} \theta_{2} \qquad i = 1, 2$$

$$\rho_{j} = \theta_{2} a_{i}' + \theta_{1} b_{i} b_{i}' \theta_{2} b_{i}' + \theta_{1} c_{i} c_{i}' \theta_{2} c_{i}' \qquad i = 3, 4.$$

and

We have $a_i' = \pm 1$ and $b_i + b_i' = \pm 1$ and hence $\rho_j = \theta_2 + \theta_1 \theta_2 b_j + \theta_1 \theta_2 b_j \pm 1$ for j = 3, 4. Moreover we choose coordinates ξ_1 , ξ_2 on G such that

$$\rho_{i} = \xi_{1} + \xi_{1}^{2} \xi_{2} + \xi_{1}^{4} \xi_{2} \qquad i = 1, 2$$

$$\rho_{j} = \xi_{1}^{2} \xi_{2} + \xi_{1}^{b_{j}+1} \xi_{2}^{b_{j}} + \xi_{1}^{2(b_{j}\pm 1)+1} \xi_{2}^{(b_{j}\pm 1)} \qquad j = 3, 4.$$

Consider the action restricted to $D' = \{\xi = \xi_2 = \xi_1\}$. Then local representations of D' at x_i are as follows;

at
$$x_i$$
 ($i=1, 2$); $\xi + \xi^4 + \xi^5$
at x_i ($i=3, 4$); $\xi^3 + \xi^2 b_j + 1 + \xi^3 (b_j \pm 1) + 1$

Clearly F(D', M) = F(G, M). Then there exist three distinct integers α_1 , α_2 , α_3 satisfying

- $\alpha_1(\alpha_2 \alpha_3) = \pm 20$
- (2) $\alpha_1(\alpha_1-\alpha_2)(\alpha_1-\alpha_3) = \pm 20$
- (3) $\alpha_2(\alpha_2-\alpha_1)(\alpha_2-\alpha_3) = \pm 3(2b_3+1)(3(b_3\pm)+1)$
- (4) $\alpha_3(\alpha_3-\alpha_1)(\alpha_3-\alpha_2) = \pm 3(2b_4+1)(3(b_4\pm 1)+1)$.

From (1) and (2) it follows that possible pairs of $(\alpha_1, \alpha_2, \alpha_3)$ are followings

case	1	2	3	$\alpha_2(\alpha_1-\alpha_2)(\alpha_3-\alpha_2)$	$\alpha_3(\alpha_1-\alpha_3)(\alpha_2-\alpha_3)$
1	1	-4	5	±180	±180
2	1	5	-4	± 180	± 180
3	-1	4	-5	± 180	± 180
4	-1	-5	4	± 180	± 180
5	4	-1	5	± 130	± 30
6	4	5	-1	± 30	± 30
7	-4	1	-5	\pm 30	± 30
8	-4	-5	1	± 30	± 30
9	+5	1	4	\pm 12	\pm 12
10	5	4	1	\pm 12	± 12
11	-5	-4	-1	\pm 12	\pm 12
12	-5	-1	-4	\pm 12	\pm 12

Consider equations; $(2x+1)(3x+4)=\pm 60$, ± 10 , or $(2x+1)(3x-2)=\pm 60$, ± 10 . It is easily seen that these equations have no integral roots. Hence cases 1, 2,....., 8 cannot occur. Consider cases 9,....., 12. Since (2x+1)(3x+4)=4 has 0 as its integral roots, local representations of D' of following type may occur;

at
$$x_i$$
 ($i = 1, 2$); $\xi + \xi^4 + \xi^5$
at x_i ($i = 3, 4$); $\xi + \xi^3 + \xi^4$

In [7], it is proved that the number of coonnected components of $F(Z_{p^r}, M)$ intercecting F(D', M) is the number of distinct residue classes among the four integers $0, \alpha_1, \alpha_2, \alpha_3$. Let Z_5 be defined by $\xi^5=0$. Clearly the number of connected components of $F(Z_5, M)$ intercecting F(D', M) is 3. Hence the number of distinct residue classes among $0, \alpha_1, \alpha_2, \alpha_3$ is 3. From relations

(1)
$$\alpha_1 \alpha_2 \alpha_3 = \pm 20$$

(2) $\alpha_1(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3) = \pm 20$
(3) $\alpha_2(\alpha_2 - \alpha_1)(\alpha_2 - \alpha_3) = \pm 12$
(4) $\alpha_3(\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2) = \pm 12$,

it follows that only possible residue classes are;

$$\alpha_1 \equiv 0 \quad (5)$$

$$\alpha_2 \neq 0 \quad (5)$$

$$\alpha_3 \neq 0 \quad (5)$$

$$\alpha_2 \neq \alpha_3 \quad (5)$$

Then clearly $\alpha_1 = \pm 5$ and $\alpha_1 = \alpha_2 + \alpha_3$. Hence we have $\alpha_2 = \pm 1$, $\alpha_3 = \pm 4$, $\alpha_1 - \alpha_2 = \pm 4$, $\alpha_1 - \alpha_3 = \pm 1$ and $\alpha_2 - \alpha_3 = \pm 3$. It is not difficult to see that one can choose signs of n_{ij} so that condition of 4 in section 1 holds. Therefore M is diffeomorphic to CP_3 .

Next we shall consider case 2. In this case we have shown that local representations at x_i are given as follows;

$$\rho_{1} = \varphi_{1} + \varphi_{2} + \varphi_{1} \varphi_{2}$$

$$\rho_{2} = \varphi_{1} + \varphi_{1}^{a} \varphi_{2} + \varphi_{1}^{a+1} \varphi_{2}$$

$$\rho_{3} = \varphi_{2} + \varphi_{1} \varphi_{2}^{b} + \varphi_{1} \varphi_{2}^{b+1}$$

$$\rho_{4} = \varphi_{1}^{a_{4}} \varphi_{2}^{a_{4}'} + \varphi_{1}^{b_{4}} \varphi_{2}^{b_{4}'} + \varphi_{1}^{c_{4}} \varphi_{2}^{c_{4}'}$$

where $c_4=a_4+b_4$, $c_4'=a_4'+b_4'$.

Since x_1 and x_2 are not contained in the same component of $F(K_2, M)$, a is neither 0 nor -1. Similarly we have $b \neq 0$, 1. Consider the action restricted to $D' = \{\varphi_1 = \varphi_2^{-1}\}$. Clearly F(D', M) has 2-dimensional component which contains x_1 . Then the following three cases can occur;

(1) a=1

or

- (2) $a \neq 1$ and b=1
- (3) $a \neq 1$, $b \neq 1$ and one of $a_4 a_4'$, $b_4 b_4'$ and $c_4 c_4'$ is zero.

Case (1). Considered the action restricted to $H = \{\varphi_1 = \varphi_2^{-1}\}$. Clearly x_2 is contained in a 2-dimensional component of F(H, M). Since x_1 and x_3 are isolated fixed points of F(H, M), just one of $a_4 - 2a_4$, $b_4 - 2b_4$ and $c_4 - 2c_4$ must be zero. Assume that $a_4 = 2a_4$. It follows from the fact det $\begin{pmatrix} a_4 & b_4 \\ a_4' & b_4' \end{pmatrix} = \pm 1$ that $a_4' = \pm 1$ and $2b_4' - b_4 = \pm 1$. Hence we ahve $\rho_4 = \varphi_1^{\pm 2} \varphi_2^{\pm 1} + \varphi_1^d \varphi_2^{d'} + \varphi_1^e \varphi_2^{e'}$ (Note $e = d \pm 2$, $e' = b' \pm 1$).

Since $2d'-d=\pm 1$, we have

$$\rho_4 = \varphi_1^2 \varphi_2 + \varphi_1^{2d' \mp 1} \varphi_2^{d'} + \varphi_1^{2d' \mp 1 + 2} \varphi_2^{d' + 1}$$

$$= \varphi_1^2 \varphi_2 + \varphi_1^{2d' \mp 1} \varphi_2^{d'} + \varphi_2^{2d' \mp 1 - 2} \varphi_2^{d' - 1}$$

Clearly x_1 , x_2 and x_3 are isolated fixed points of $H' = \{\varphi_2 = \varphi_1^2\}$ and hence x_4 must be isolated fixed point. Thus we have the local representations of H'

at
$$x_1$$
; $\varphi + \varphi^2 + \varphi^3$
at x_2 ; $\varphi + \varphi^3 + \varphi^4$
at x_3 ; $\varphi^2 + \varphi^{2b+1} + \varphi^{2b+3}$
at x_4 ; $\varphi^4 + \varphi^4 + \varphi^4$

Hence there exist three distinct integers α_1 , α_2 , α_3 satisfying

- $(1) \quad \alpha_1 \alpha_2 \alpha_3 \qquad \qquad = \pm 6$
- (2) $\alpha_1(\alpha_1 \alpha_2)(\alpha_1 \alpha_3) = \pm 12$
- (3) $\alpha_2(\alpha_2-\alpha_1)(\alpha_2-\alpha_3) = \pm 2(2b+1)(2b+3)$
- (4) $\alpha_3(\alpha_3-\alpha_1)(\alpha_3-\alpha_2) = \pm 4(4d'-1)(4d'\pm 41).$

From (1) and (2) it follows the following three cases occur.

i)
$$\alpha_1 = \pm 1$$
 $\alpha_2 = \mp 2$ $\alpha_3 = \mp 3$

ii)
$$\alpha_1 = \pm 1$$
 $\alpha_2 = \mp 3$ $\alpha_3 = \mp 2$

iii)
$$\alpha_1 = \pm 3$$
 $\alpha_2 = \mp 1$ $\alpha_3 = \pm 2$,

where the signs are corresponding respectively.

Case i). It follows from (3) and (4) that b=-2 and d'= or d'=-2. If d'=0, then x_4 is contained in 2-dimensional component of $F(K_1, M)$, which contradicts to the assumption. If $d'=\pm 2$, we have $\rho_4=\varphi_1^2\varphi_2+\varphi_1^3\varphi_2^2+\varphi_1\varphi_2$, which implies that only x_3 is contained in a 2-dimensional component of the fixed point set of the subgroup $\{\varphi_1=\varphi_2\}$ of G, it is impossible. It is not difficult to see that case ii) and iii) are impossible.

Case $a \neq 1$ and b = 1.

This case reduces to the case a=1.

Case $a \neq 1$, $b \neq 1$ and one of $a_4 - a_4'$, $b_4 - b_4'$ and $c_4 - c_4'$ is zero.

We may assume $a_3=a_3'$ without loss of generality. We have the following four possibilities of ρ_4 ;

$$\varphi_{1}\varphi_{2} + \varphi_{1}^{c}\varphi_{2}^{c+1} + \varphi_{1}^{c+1}\varphi_{2}^{c+2}$$
 $\varphi_{1}\varphi_{2} + \varphi_{1}^{c}\varphi_{2}^{c-1} + \varphi_{1}^{c+1}\varphi_{2}^{c}$
 $\varphi_{1}\varphi_{2} + \varphi_{1}^{c}\varphi_{2}^{c+1} + \varphi_{1}^{c-1}\varphi_{2}^{c}$
 $\varphi_{1}\varphi_{2} + \varphi_{1}^{c}\varphi_{2}^{c-1} + \varphi_{1}^{c-1}\varphi_{2}^{c-2}$

If we put $\varphi_1=\theta_1$ and $\varphi_2=\theta_1^2\theta_2$, we have

$$\begin{split} \rho_1 &= \theta_1 + \theta_1{}^2\theta_2 + \theta_1{}^3\theta_2 \\ \rho_2 &= \theta_1 + \theta_1{}^{a+2}\theta_2 + \theta_1{}^{a+3}\theta_2 \\ \rho_3 &= \theta_1{}^2\theta_2 + \theta_1{}^{2b+1}\theta_2{}^b + \theta_1{}^{2b+3}\theta_2{}^{b+1} \\ \rho_4 &= \theta_1{}^3\theta_2 + \theta_1{}^{3c+2}\theta_2{}^{c+1} + \theta_1{}^{3c+5}\theta_2{}^{c+2} \\ \theta_1{}^3\theta_2 + \theta_1{}^{3c-2}\theta_2{}^{c-1} + \theta_1{}^{3c+1}\theta_2{}^c \\ \theta_1{}^3\theta_2 + \theta_1{}^{3c+2}\theta_2{}^{c-1} + \theta_1{}^{3c-1}\theta_2{}^c \\ \theta_1{}^3\theta_2 + \theta_1{}^{3c-2}\theta_2{}^{c-1} + \theta_1{}^{3c-5}\theta_2{}^{c-2}. \end{split}$$

The action restricted to $D = \{\theta_1 = \theta_2\}$ has the same fixed point set as G-action. Then as above, there are three distinct integers α_1 , α_2 and α_3 satisfying

$$(1) \quad \alpha_1 \alpha_2 \alpha_3 \qquad \qquad = \pm 12$$

(2)
$$\alpha_1(\alpha_1-\alpha_2)(\alpha_1-\alpha_3) = \pm (a-3)(a+4)$$

(3)
$$\alpha_2(\alpha_2-\alpha_1)(\alpha_2-\alpha_3) = \pm 3(2b+1)(3b+4)$$

(4)
$$\alpha_3(\alpha_3-\alpha_1)(\alpha_2-\alpha_2) = \pm 4(4c+3)(4c+7)$$

$$= \pm 4(4c-3)(4c+1)$$

$$= \pm 4(4c+3)(4c-1)$$

$$= \pm 4(4c-3)(4c-7).$$

By direct computations we can show a contradiction.

4. SO(3)-action

In this section we shall consider actiona of G=SO(3) on an hCP_3 , M with the following property;

(*) Let T be the standard maximal torus of G. Then the fixed point set F(T, M) is a union of one 2-sphere and two isolated points or a union of four isolated points.

First we shall prove lemma 2 in section 2. Assume there is an element g of order p (p; prime) such that dim F(g, M) is greater than 2. If p is odd, dim F(g, M) is 4 and $F(g, M) = F \cup \{pt\}$, where $F \sim CP_2$. Let S be a torus containing g. We have $F(S, M) = F(S/\{g\}, F(g, M)) = F(S/\{g\}, F) \cup \{pt\}$. Since the Euler characteristic of F(T, M) is 4, we have the Euler characteristic of $F(S/\{g\}, F) = 3$. Since $H^1(F; Z_p) = H^3(F; Z_p) = 0$, we have $H^1(F; Q) = H^3(F; Q) = 0$ and $H^2(F; Q) = Q$. In particular, $H^2(F; Z)/Tor. = Z$. It is easy to see that $F \sim CP_2$. Since the inclusion $i: F \longrightarrow M$ induces an isomorphism $i^*p: H^2(M; Z_p) \hookrightarrow H^2(F; Z_p)$, $i^*: H^2(M; Z) \longrightarrow H^2(F; Z)$ maps the generator of $H^*(M; Z)$ to a non-zero element and hence $i^*Q: H^2(M; Q) \hookrightarrow H^2(F; Q)$ is an isomorphism. By proposition 1, M is diffeomorphic to CP_3 . If p is even, dim F(g, M) may be 3 (see [2], Chap. VII). In this case F(g, M) is connected and $F(g, M) \sim RP_3$, which contradicts to the fact the Euler characteristic of F(S, M) is non-zero. In the case in which dim F(g, M) = 4, the same argument as in the case in which p is odd show that p is diffeomorphic to CP_3 . This completes the proof of lemma 2.

It follows from the assumption (*) that GF(T, M) is at most 4-dimensional and hence there exists a point x in M whose isotropy subgroup is 0-dimensional. Let H be a principal isotropy subgroup and assume $H \neq \{1\}$. Since there is an element x with $G_x = T$, H is cyclic. Let g be an element of H whose order is p (p; prime). It is clear that F(g, M) is at least 4-dimensional. It follows from lemma 2 that M is diffeomorphic to CP_3 . This completes the proof of Proposition 2 in section 1.

Consider the case in which $F(T, M) = \{x_1, x_2, x_3, x_4\}$. Let a denote the element $\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ and $b = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$. Then $N = T \cup aT$ and $D_2 = \{1, a, b, ab\}$. Cleary F(T, M) is a-invariant. Since $M_{(T)}$ is non-empty, there may occur following two case;

Case 1.
$$F(N, M) = \{x_1, x_2\}$$

Case 2.
$$F(N, M) = \emptyset$$
.

Consider case 1. In this case $F(D_2, M) \neq \emptyset$. In section 1, we have noticed that $F(D_2, M) \neq \emptyset$.

M) consists of isolated four points. We may put $F(D_2, M) = \{x_1, x_2, y_1, y_2\}$. Assume $F(G, M) = \emptyset$. It follows from lemma 5 in section 1 that $G(x_1) \cap F(D_2, M)$ and $G(x_2) \cap F(D_2, M)$ are consisting of 3 points and hence $G(x_1)$ and $G(x_2)$ must intercect, which is impossible. Thus $F(G, M) \neq \emptyset$. Assume $x_1 \in F(G, M)$ and consider the SO(3)-action on S^5 induced by the slice representation of G at x_1 . Clearly this action has only 0-dimensional isotropy subgroups and hence principal isotropy subgroups are icosahedral subgroup (see [9]). This is impossible, because $F(D_2, M)$ is 0-dimensional.

Consider case 2. Assume S^2_i is a-invariant (Recall $F(b, M) = S_1^2 \cup S_2^2$.) In this case the same arguments as in the proof of lemma 4 in section 1 show that $F(D_2, M) \neq \emptyset$. Let $F(D_2, M) \cap S_1^2 = \{z_1, z_2\}$. Clearly G_{z_i} is 0-dimensional. By a result in [6] ([6], (3.7)) it follows that $F(D_2, M) \cap G(z_1)$ consists of six points which is impossible. Thus S_i is not a-invariant and hence we may assume that $ax_1 = x_3$, $ax_2 = x_4$. Consider the restricted action of T. We can decompose the tangent space at x_i into a direct sum $T_{x_i}(G(x_i)) \oplus T_{x_i}(S_j^2) \oplus V_i$, where S_j^2 is the component of F(b, M) containing x_i . Then local representation of T at x_i is given by $t + t^{2m_i} + t^{n_i}$, where $R(T) = Z[t, t^{-1}]$ and $(2m_i, n_i) = 1$. Clearly $m_1 = m_2$ and $m_3 = m_4$. It is easy to see that $m_1 = m_3$ and $n_1 = n_3$, $n_2 = n_4$. As noticed in section 1, there are distinct non-zero integers α_1 , α_2 , α_3 satisfying

- $(1) \quad \alpha_1 \alpha_2 \alpha_3 \qquad \qquad = \pm 2mn$
- $(2) \quad \alpha_1(\alpha_1 \alpha_2)(\alpha_1 \alpha_3) \qquad = \pm 2mk$
- $(3) \quad \alpha_2(\alpha_2-\alpha_1)(\alpha_2-\alpha_3) \qquad = \pm 2mn$
- $(4) \quad \alpha_3(\alpha_3-\alpha_1)(\alpha_3-\alpha_2) \qquad = \pm 2mk$

It is not difficult to show that n and k are distinct. Hence there is a prime p such that n is divisible by p^s and k is not divisible by p^s . Clearly the number of components of $F(Z_{p^s}, M)$ intersecting F(T, M) is 3 and hence the number of distinct residue classes among the four integers 0, α_1 , α_2 , α_3 , is 3. Thus we have $\alpha_2 \equiv 0(p^s)$, $\alpha_1 \not\equiv 0(p^s)$, $\alpha_3 \not\equiv 0(p^s)$ and $\alpha_1 \not\equiv \alpha_3$ (p^s). Moreover 2m and n divide one of α_1 , α_2 , α_3 , $\alpha_2 - \alpha_1$ and $\alpha_2 - \alpha_3$. Then n divides α_2 . Similarly k divides $\alpha_1 - \alpha_3$. Assume 2m divides α_2 . Then by (1) we have $\alpha_1 \alpha_3 = \pm 1$, and hence $\alpha_1 - \alpha_3 = \pm 2$ and $k = \pm 2$, which contradicts to the fact (2m, k) = 1. Thus we have $2m |\alpha_1| \text{ or } 2m |\alpha_3|$. We may assume $\alpha_1 = \pm 2m$ without loss of generality. Then $\alpha_3 = \pm 1$. Thus the value of the formula in 4 in section 1 is constant on i and hence M is diffeomorphic to CP_3 . This completes the proof of lemma 3.

We shall prove lemma 4. Let k be the largest integer such that $F(Z_{2^k}, M) \neq F(T, M)(Z_{2^k} \subseteq T)$. Since $F(b, M) \supseteq F(T, M)$, we have $k \ge 1$. Assume $F(D_2, M) = \emptyset$. Let a_1 be a generator of Z_{2^k} . Clearly $N' = N/Z_{2^k}$ acts on $F(a_1, M)$. For $x \in F(a M) - F(T, M)$, N'_x is odd cyclic. In fact, assume G_x is cyclic. Then $N'_x = G_x/Z_{2^k}$. If order of N'_x is even, we have $F(Z_{2^{k+1}}, M) \neq F(T, M)$, which contradicts to the choise of k. Next assume G_x is not cyclic. Then $G_x = D_{2^{i+1}}$ (dihedral subgroup), because $F(D_2, M) = \emptyset$. If $k \ge 2$, then $G_x \supset Z_4$, which contradicts to the fact $G_x = D_{2^{i+1}}$. Hence we have k = 1. In this case $N'_x = \{1\}$. Consider the restriction of N'-action to a subgroup isomorphic to D_2 . Since

 $F(a_1, M)$ and F(T, M) have a 2-dimensional component in common, $F(a_1, M) - F(T, M)$ is connected and has homotopy type of S^1 . It follows from above arguments that the subgroup of N' acts on $F(a_1, M) - F(T, M)$ freely, which is impossible (see [2], Chap. II section 8). This completes the proof of lemma 4.

NIIGATA UNIVERCITY

References

- [1] Borel, A. et al.: Seminar on Transformation Groups. Ann. of Math. Studies 46. Princeton Univ. Press 1960.
- [2] Bredon, G. E.: Introduction to Compact Transformation Groups. Academic Press 1972.
- [3] Hirzebruch, F.: Topological methods in algebraic geometry. Springer 1966.
- [4] KAGA, T. and WATABE, T.: Simply connected 6-manifolds of large degree of symmetry. Science rep. of Niigata Univ. Ser. A. No. 12 (1975) 15-32.
- [5] Montgomery, D. and Samelson, H.: On the action of SO(3) on Sⁿ. Pacific J. Math. 12 (1962) 649-659.
- [6] Montgomery, D. and Yang, C. T.: A theorem on the action of SO(3). Pacific J. Math. 12 (1962) 1385-1400.
- [7] Petrie, T.: Smooth S¹-action on homotopy complex projective spaces and related topics. Bull. Amer. Math. Soc. 78 (1972) 105-153.
- [8] Petrie, T.: Torus action on homotopy complex projective spaces. Inv. Math. 20 (1973) 139-146.
- [9] RICHARDSON, R. W. Jr.: Action of the rotational group on the 5-sphere. Ann. of Math. 74 (1961) 414-423.
- [10] UCHIDA, F.: Compact transformation groups and fixed point set of restricted action to maximal torus (to appear).
- [11] Yoshida, T.: On smooth semi-free S¹-action on cohomology complex projective (to appear)
- [12] Montgomery, D and Yang, C. T.: Free differentiable action on homotopy seven spheres II. Proc. Conference on Transformation Groups (New Orleans, La., 1967) Springer (1968) 125-134.