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The principal purpose of this paper is to generalize well-known properties of
excisive triads by means of the C-notion of Abelian groups which was introduced
by J.-P. Serre [5]. ,

Namely, in §1 we shall define the Mayer-Vietoris sequence of C-excisive triad
and its C-exactness will be shown (see (1.7) and (1.8)), in §2 the Blakers and Massey
triad theorem given by J. C. Moore [2] will be extended for the case of C-excisive
triad (see (2.9)). And the Hurewicz isomorphism theorem for triad will be given
in the last section (§3, (3.1));

Throughout the present paper, all triads will be assumed to be those of are-
wise connected topological spaces, and homology will always mean singular cubic
homology. By €=¢(, IIgz) for example, we mean that € is a class of Abelian
groups which satisfies the axioms (I) and (IIg) given in [5]. Im, Ker, Coker and
A7) mean image, kernel, cokernel and inverse image by A, respectively.

A triad (X; X;, X;) will be called C-excisive, if X=X;UZX,, X, X;, X; and X, N X,
are arcwise connected and the inclusion map k.:(X;, X;NX:) — (X, X;) induces the
G-isomorphism :
kox : H(X:, XiN X)) > Hy(X, X) for all q.

A triad (X; X;, X;) will be called C-proper, if (XU X;; X;, X,) is C-excisive.

Let A and B be two subgroups of a same Abelian group. A will be ecalled
C-equal to B, if the inclusion maps ANB—A and ANB—B are C-isomorphisms.

A sequence of groups {G, f,} will be called C-exact, if the image of G, by
f2+1:Gq.1—Gq is C-equal to the kernel of f,:G,—G,_1, for each q.

Let (X; Xy, X;) be a triad. Let x€ X, and let X* be the space of paths in X
which start at . Define p: X*—> X by p(f)=f(1). Let XFf=p(X,) (a=1,2). The
triad (X*, X¥, X7) will be called the associated triad of the triad (X; X, Xu).

8§1. The Mayer-Vietoris sequence of a C-excisive triad

(1.1) ProPOSITION. Let G, H and K be Abelian groups and let 41:G—H and
u: H— K be homomorphisms such that uel is a C-isomorphism of G with K, where
¢=C{). Then IminKer ueC, A is C-monomorphie, u is C-epimorphie, u is a C-
isomorphism of Im 2 with K and the inclusion map 6 : Im iA/H,+Ker u/H,—~ H/H, is ’



58 ’ E. HONMA

C-isomorphic (in detail, monomorphic and C-epimorphic) where H;=ImAiNKer u is
a subgroup of H.

Proof. Since uol is a C-isomorphism of G with K, K/ui(G)e ¢ and A2"'(H)) e C.
The first relation implies that ] 4(G):2(G)— K is C-epimorphic. It follows from
the second relation that H, € C, namely u|A(G): A(G)— K is C-monomorphic. There-
fore u is a C-isomorphism of A(G) with K. Since K/u(H) is the image of the
canonical epimorphism: K/uA(G)—K/u(H), we have K/u(H)€ C, namely u is C-
epimorphic. Since Ker AcKer (ucd)e ¢, 4 is C-monomorphic. And ImANnKer u
=Ker (uod)e €. Secondly it is clear that # is a monomorphism, and

H/H, _ M pA(G)/ H.
Tm A/H, + Ker s/H, ~ 0X¢ <"(H Y HAG): 3G H,+ Ker W, )

where u(H)/pA(G)< K/ uA(G)=Coker (uold)€ C.
On the other hand, put Gi=A"Y(H,) and let 1:G/G,— u WA(G)/H;, u:uwA(G)/H,
— uA(G) be the homomorphisms induced by 4, 1 respectively, then it is easy to see that

fiod : G/Gy— 4A(G) is an isomorphism. Therefore,
u uA(G)/Hy =A(G/Gy)+Ker u=A(G)/H,+Ker u/H;.
Hence

H/H,
Im A/H,+Ker u/H,

Consequently & is C-epimorphic. This completes the proof.
- (1.2) LEMMA. In the following diagram of Abelian groups and homomorphisms,

~ u(H)/u(H)e€ C.

assume that commutativity holds in each triangle

and Imi.=Kerj, («=1,2). If k;, and kg' are G- /
isomorphisms, then the homomorphism %:G;+G. \

—G defined by (g1, g2)=1%:(91)+12(92) for gueG. / \
(=1, 2) is C-isomorphic, where C=C(I), and fur-

ther we have that Im¢,NIm¢,€ C.

Proof. Let g.€ Ga (a=1,2) be elements such that (g;, g;) € Ker ¢, namely %.(g:)
+1.(g2)=0. Applying j,, we have 7,9:(92)=0, i.e. ki (g:)=0. Similarly k.(g.)=0.
Thus Ker icKer k,+Ker k.€ . On the other hand, for each x¢ ji'j19:(G=) there
exists y:€ Gy such that j7,(2)=7:%5(¥:). Therefore x—is(y.)€ Kerj;=Im4,, hence
there exists y, € G, such that x—4;(¥:)=1:(%¥:). Namely & =1,(¥1)+12(¥2) € ©:1(G1)+ %2(Gs).
Thus 57%518:(G:) T 5:(G1)+ix(Gs). Since ji'7192(G2) D1(G1)+12(Gs), We have jFi'71ix(Gs)
=1,(G1)+%2(Gs), and
G
11(G1)+12(G)
Thus 7 is a C-isomorphism.

By (1.1), 4:(G1) N%:(G2)=1,(G1) N Ker 5z € C.

Coker 1= R/’_7.1((;")/]'17:2(G2)C Gl,/k1(G2) =Cokerk,€C.
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(1.83) LEMMA. (The generalization of the hexagonal lemma, c¢f. [1].) In the
following diagram of groups and homomorphisms,

. assume that commutativity holds in each triangle,
G;/ ;\L\ . Imi.=Ker j, (@=1,2), jo20=0. Then for each x€ G,
\ / we have that »
A T ™ hader 1)+ hakei Uo(z) by (Ker o)
/ \ =hs (Ker ks) =5, (Im i, NIm is).
\ % 1 Proof. For each y, € hikil(x) and ¥, € hoks la(z),
N there exist y.'€ ki'ly(x) and y. € ki'l.(x) such that
hi(y2") =Yz, ho(y')=¥%1. Since ky(¥s)=1:(x), i.e. 7192(¥s")
=71%,(x), we have 1y(¥2)—1(x)€ Ker j;=Im 4;. Therefore there exists y,”€ G, such
that i5(¥2)—i0(x)=1:(y."). Applying j;, we have —I,(®)=Fks(y."). Since ky(y\)=1:(x),
ko(y/+y/)=0, i.e. y/+y." € Ker ks. Then '

Y1+Y2=ho(y1)+ hi(ys) = k(Y1) + Toia(y2") = ha(y1) + Fo(2e(2) +1:1(¥1"))
=hs Y1)+ 7001 ¥") =he(y)/' +y.") € ha(Ker kg) .

Moreover, Im 4, NIm ,=Im 3, NKer j.=1%, (Ker k) .
Applying J,, h: (Ker ks)=37, (Im 3, N Im 45) .
Similarly h; Kerk)=35,Im ¢;NIm ;).

(1.4) LEMMA. In the diagram given in (1.8), we have
x;—22€ hy Ker k,),
where z, and z, are arbitrary elements of h.;ki'(x) for each z ¢ G/

Proof. Since z.€ hiki'(x) (a=1, 2), there exists y.€ ki'(x) such that A;(¥.)=2=..
Then x;—2:=h;(¥;—¥Ys). Since k,(¥y1—¥:)=2—x=0, £,—2:€ hy (Ker k).

(1.5) LEMMA. If C=C(I), then the conditions for a triad (X; X;, X;) to be C-
excisive are equivalent to the following conditions: X=X, UX;, X, X1, Xz, XiN Xz
are arcwise connected and H,(X; X, X;)¢ € for all q. '

This is trivial. :

'(1.6) LEMMA. The conditions given in (1.5) are equivalent to the following
conditions: X=X,UX,, X, X;, X;, XiNX; are arcwise connected and the inclusion
map k,: (X, XiNXp)— (X, X;) induces the C-isomorphism k4 : Hy (X, XN X5) ~H (X,
X,) for all q. |

This lemma is also trivial.

In order to define the generalized Mayer-Vietoris sequence of a C-excisive
triad (X, X,, X;), observe the following diagram, in which A=X,N X, and all homo-
morphisms other than 9, 0;, 0; are induced by inclusion maps. Commutativity
holds in each triangle, and the lower hexagon satisfies the hypotheses of (1.3).
Furthermore ;474 =7xM1x, texNox =JxM2x, and ki« is a C-isomorphism, and by
(1.6), k.4 is also a G-isomorphiém.
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(1.7) DEFINITION. The generalized Mayer-Vietoris sequence ' of a GC-excisive
triad (X; X3, X;) with A=X,NX; is the following sequence: ‘

‘ 4
-+ H,(A)/L, 'LHq(Xl)+Hq(X2)'£) H(X)—>H; 1(A)/Lg-1—>--+,

where L, =0, (Ker k;x) which is equal to 0; (Ker kz4) and to 0(ixHy(X:, A)NigxH,
(X, 4)) (by (1.3)),

d{u})=(hix(u), —hex(w)) for {u}e H,(A)/L, the quotient class represented by
ue Hy(A), |

A

@ (V1, V3) =M15(V1)+M3x(vs) for va€ Hy(Xs) (=1, 2),
Ad(w)= —01kixlix(w)/L,.y for we Hy(X).
Since hox(Ly)=0 (a=1, 2), ¢ is a well-defined homomorphism. By (1.4), the difference
of any two elements of 0,kisl;x(w) is contained in L, ,, hence 4 is well-defind.
(1.8) THEOREM. The generalized Mayer-Vietoris sequence of a C-excisive triad
(X; X;, X;) is C-exact, where C=C(I). In detail, Im¢<Ker¢, Ker¢/Im¢ecC,
Im¢=Ker 4, Im 4=Ker ¢. :
Proof. 1) By a manner similar to that given in [1] for the case of an ordinary
excisive triad, it is possible to prove that Im ¢cKer ¢, Im¢pcKer 4 and Im 4=Ker ¢.
2) If we H(X) and 4(w)=0, then 8kielix(w)< L, =0, (Ker kx). Therefore,
for each z € kixl,s(w) there exists y € Ker k;x such that 8,(x)=0:(y), i.e., x—y € Ker 0,
=NexHy(X;). Thus there exists v.€ H,(X;) such that —y=mn:4(v:). Applying ks
we have that
Ui (W) =F1xMos(Va) =lixMax(Vs), 1.€., W—Mey(vz)€ Ker lix=mxH(X;).
Consequently there exists v;€ Hy(X;) such that w—mgx(vz)=mix(v1), i.e., w=mx

(V1) +M2x (v3) = @(v1, Vo).
3) Setting M=mxH(X;) N\ mex Hy(X2), we have
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Ker ¢/Im ¢ mig(M)/ by H(A)+mai(M)/ b H(A) ,

and

" _ -1 Ker n,4

MM/ i B A)=Ext (maxm i), WA =)
Now kz*nl*’mﬁ}(M)=lz*m1*m1_>:(M)=l2*(M) C laxmzs Hy(X;)=0 and hence ’nl*ml—-):(M) c
Ker k2 € C. Since Ker nyy=h1H(A), mix(M)/hixH,(A)€ C. Similarly mzi(M)/hsyxH,
(A)e €. Consequently Ker ¢/Im¢e C. By 1) and 3) we have that Ker ¢ is C-equal
to Im¢. The proof of (1.8) is complete.

The homology sequence of a C-proper triad (X; X;, X;) may be defined as

follows: In the- following diagram '

] 0 )
s Hy (X, X~ Hoy (X, X,U Xp)— H, (X, U X, X,) —— Hy(X, X)) —- -+
[
' H(X, XN X)

o,

HI X XiNX,)/Kerk

the upper horizontal sequence is the homology exact sequence of the triple
(X, XiuX,, X;), k is a C-isomorphism induced by inclusion map, # is the canonical
map. We define 0’ and 4’ as follows:

0'(x)=0k"'0(x) for we Hy (X, X1UX3),
v({y})=1k(y) for {y}e H(X:, X;NX;)/Kerk, the quotient class represented by
ye H(X, X, X,). '
(1.9) DEFINITION. The homology sequence of the C-proper triad (X; X, X;) is
the folldwing: |

oo (X, X~ H(X, XU X 2 H(X,, X0 X/ Ker b —s H(X, X+ -
(1.10) THEOREM. The homology sequence of the C-proper triad (X; X, X3) is
C-exact, where C=¢(I). In detail, Imj=Kerd, Im&#'=Keri, Imi'cKerj and
Kerj/Im '€ C. - ~ -
Proof. It is clear that Im j=Ker &, Im @cKer 4’ and Im i’cKer j.
Now -
kE*ImkNKers)/Kerk _ k'(ImkNIm0) _

Ker I O = ot (X, X,UX)/Kerk k3 (md)

0.

Thus Im ¢’=Ker ¢'.
Secondly

1Hy (XU Xz, X5)

. oy y 'o =
Ker j/Im ¢'=1Im i/Im (iek) = e 0 %y

—image of Coker ke C.
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§2. The Blakers and Massey theorem for a C-excisive triad

(2.1) LEMMA. Let A and B be Abelian groups, and A’ and B’ be subgroups of
A and B, respectively. If h: A—B is a C-isomorphism and | A’ is a C-epimorphism
from A’ to B/, then h*:A/A’—>B/B’, the canonical homomorphism induced by &,
_is C-isomorphism, where C=C(I).
Proof. h* is the composition of two homomorphisms

A/A’—L B/h(A’)—0> B/B’,

where & is induced by % and 6 is the canonical epimorphism. Since % is C-iso-
morphic [3, Proposition 8], 2* is G-epimorphiec.
Furthermore Ker h*=h-Y(B'/h(A"))=Ext (hh-Y(B")/h(A"), Ker k).
Since hh-Y(B’)/h(A")c B'/h(A")€ G, Ker h€ €, we have Ker h* ¢ C.

(2.2) LEMMA. In the following diagram of Abelian groups and homomorphisms,
assume that h; is a C-epimorphism, h,; is a C-iso-
morphism and h; is a C-monomorphism, where fi Ja
¢=¢C(I). If the commutativity holds in each square, 4, > A > {13
then hy'=h|Kerf, is a C-isomorphism of Ker f: i 1 7, J,h“ s J,h”’
with Ker g, and hy”=h:|Imf, is a C-isomorphism B, > B > Bs
of Im f, with Img,.

Proof. 'By the commutativity in each square, we have

h:(Ker f)cKer g:, h:(Imf;)cImg,.

Furthermore
Ker hy’=Ker foNKer hycKer hz€ C,
Coker hy'=Ker g;/h: (Ker f;)=Ext (Ker g:/h:f2"' (Ker k3), hafe (Ker h;)/he (Ker f3)).
Now the following relations hold: ;
hy(As)NKer gschofe! (Ker h)cKer g, .
To prove the first, let £ be an arbitrary element of h;(4:)NKer g..  There exists
Y € A: such that hy(y)=x. Then g:h:(y)=g:(2)=0., i.e., hsf2(y)=0, hence y € f27* (Ker hs).
Thus z=hy(y)€ hof:"'(Ker h3). To prove the second, let £ be an element of Asf;™?!
(Ker hs). There exists ye€ f,!(Kerhs) such that hx(y)=2. Then g.(x)=g:h:(y)
=hsSoY) € hsfo( fa~* (Ker hy))Ths (Ker h3)=0, i.e., x€ Ker gs. -
By these relations we have the following canonical epimorphism:
Ker g;/(ho(As) NKer g;) — Ker gz/hs 3" (Ker hs) .
Since
Ker g./(h:(As) NKer g5) ~ (Ker ga+hao(A2))/hi(Az) Ba/hs(Ag) € C
we obtain Ker g;/h.f2"! (Ker k3)€ C.
On the other hand, hof 1 (Ker hs)/h: (Ker f;) is the image of f.™! (Ker hs)/Ker f; by
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the homomorphism induced by k., and

fa 1 (Ker hs)/Ker fo =~ fofs 1 (Ker hg)cKer h; € C.

Therefore hqfs ' (Ker hs)/hy(Ker f3)e €. Thus Coker hy’e € and hy’ is C-isomorphic.
The proof that k" is a C-isomorphism proceeds as follows:

Ker hy”=Im fiNKer hy=Ker hy€ C,

Coker ks = g,(By)/(he f1(A1) =Ext (9:(B1)/(hs(Asz) N 91(BY)), (he(As)Ng:1(B1))/heSf1(AY),
where

g}(Bx)/(hz(Az) +91(B1) =~ (g1(B1) +h2(As))/hs(As) Be/ho(As) € €,
(ha(A2) N g1(B1)/ b f1(Ar) = (he(Az) N 91(B1))/ 9:1h1(A1) < 9:(B1)/9:h1(4y)

Since g.(B:)/g9ihi(A,) is the image of By/hi(A;)€ C by the homomorphism induced
by ¢:, we have g:(B))/g:h:(A;)€ € and hence

(ho(A3) N g1(By)/haf1(ADEC.
Consequently Coker hy”’€ C and hy” is a C-isomorphism.

(2.83) LEMMA. In the diagram given in (2.2), if commutativity holds in each
square and if further f:.of; and g.og, are trivial, then h, induces a C-isomorphism
hi :Ker fo/Im f; —Ker g;/Im g,.

Proof. It follows from (2.2) that k. induces C-isomorphisms hy’ and hy”. By
the trivialities of f,of; and gs;og; we have that Im ficKer f; and Im g,cKer g..
Then the assertion follows from (2.1). ‘

The following theorem concerned with the associated triad is a generalization
of Theorem 3.3 of [2].

(2.4) ProrosiTION. Let C=C(,IIz). If a triad (X; X;, X;) is C-excisive, and X
is 1-connected, then the associated triad (X*, X *, X;*) of (X; X;, X;) is C-excisive.

The truth of this theorem follows from the definition of C-excisive triad once
we have extended Theorem 2.2 of [2] in the following form:

(2.5) ProPosITION. Let (E, p, B) and (E’, p’, B’) be fibre spaces in the sense of
Serre [4] with fibre F, A and A’ be subspaces of B and B’ respectively, D=p"'(4),
D'=p""1(A"), B, A, B', A’ and F be arcwise connected and =;(B), =;(B’) operate
trivially on H,(F') for all ¢, finally let f:(E, D)—(E’, D) be a fibre preserving
map, f':(B, A)—(B’, A’) be induced by f. If f¢:H/(B, A)— H/(B’, A’) is C-iso-
morphic for all ¢, then | f«: H(E, D)— H(E', D") is C-isomorphic for all ¢, where
C=C(, IIs).

Application of (2.8), Corollary in [5, p. 263] and the five lemma in the case of
C-notion [5] enables us to prove (2.5) in a way similar to that of Theorem 2.2 of
[2]. :

(2.6) REMARK. It should be noted that we have 7, (X™*, X3) =~ n (X, X,) (=1, 2)
[6] and 7 (X*; Xi*, Xp*) ~ n(X; X3, X3) [2], for all q. -
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The following theorem is due to J.-P. Serre [5]:

THEOREM S. Let (F,p, B) be a fibre space with fibre F', A be a subspace of
B and D=p'(A). Assume that B, A and F' are arcwise connected and the local
system formed by H,(F') on B is trivial for all ¢q. If H(B, A)e C for 0Lg<m
and H,(F)eC for 0<g<r, then the projection p induces

P« : Hy(E, D)— Hy (B, A)

such that p* is C-isomorphic for g£m+r—1 and C-epimorphic for ¢£m+r, where
e=¢cd, II). .

As an immediate consequence of Theorem S, we have the following:

(2.7) ProPoSITION. Let ¢=¢(I, IIg). Let (X; X;, X;) be a triad such that

X is l-connected, X; and X, are arcwise connected,
H(X)e € for 0<q£r, Hy(X, X)€ € for g<ma (a=1,2).
Let (X*; X,*, X,*) be the associated triad of (X; X;, X;) and p:(X*; X;*, Xp*)—
(X; X;, X;) be the projection. Then p induces
Pax : Hy(X*, X&) - Hy(X, Xa)
which is C-isomorphic for g£Lm,+7r—1 and C-epimorphic for gL m.+7r (a=1, 2).
Proof. Since X* is contractible, we have H,(X*)¢c C for each ¢>0. The axiom
(IIg) implies the axiom (IIA) of [5]. Therefore applying Proposition 3.A of [5, p.
269] it follows, from the assumptions: H,(X)e € for 0<qZLr, that H,(F')e C for
0<g<r, where F is the fibre of (X*, p, X). Our theorem now follows from Theo-
rem S.
Before we study the Blakers and Massey triad theorem, it is convenient to
state the following lemma:
(2.8) Lemma. If (X; X,, X,) is a C-excisive triad where C=C(I), then the
following sequence is C-exact:

’

vy H{(Z)/ L~ H XX X)L )~ Hy (XX Xy )~ Hy A(Z)/ L
where Z=(X,;xX;)N Xy, X, is the diagonal of Xx X, L, is the inverse image of L,
(for the definition of L,, see (1.7)) by the isomorphism r of H,(Z) with H(X,NX3)
induced by the homeomorphism Z~X,NX,, % and j’ are induced by the inclusion
maps ©: H(Z)—>H (X, xX;) and j: H(X;x X,)>H(X,x X,, Z), and & is the composi-
tion of the two homomorphisms

H(X; x X, Z)—6—>Hq_1(Z)~0—>Hq_1(Z)/L;_1 ,
"where 0 is the boundary homomorphism and € is the canonical map.

Proof. It is clear that

Im¢=Kerj/, Imj’=KerodcKerd’, Iméo'=Keri/L, ,cKer 1.

Furthermore Ker ¢’/Im j'=0"'(L;-:)/Ker 0 is isomorphic with a subgroup of L;._;.
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Since (X; X, X;) is C-excisive, it follows from (1.2) and (1.3) that L, ;€C, hence
L}_1€ €. Thus Ker ¢’/Im j’€ ¢, and consequently Ker ¢’ is C-equal to Im j’.
Secondly .

O 14 TNV T 10 1
Ker i//Im 0 Rer i/ L. Kor i wW(Li-)eC.

Therefore Ker i’ is C-equal to Im &'.
This completes the proof of C-exactness.

Now Theorem 3.4 of [2] may be generalized as follows:

(2.9) THEOREM. (The generalized Blakers and Massey triad theorem) Let
C=e(d, IIs, I1I). If (X; Xy, X.) is a C-excisive triad with A=X;Nn X, such that

X is 1-connected, (X, X,) and (X, X;) are 2-connected, my(X; X;, Xz)=0,
H/ (X, X,)eC for g<m, H(X, Xz)€ € for g<n,
then 7 (X; X;, Xp)e € for g<m+n-—1,
Tmen-1(X; X, X5) is C-isomorphic with H,(X, X,)® H,.(X, X3).

(2.10) REMARK. In (2.9), if (X; X, X5) is excisive in the ordinary sense, and if
further A is l-connected, then the assumption: =(X; X, X;)=0, is an immediate'
consequence of the other assumptions, and it may be verified as follows: '

Since 7x(X, Xo)=0 and n,(X)=0, n:,(Xe)=0 (@¢=1,2). Then by the Hurewicz
isomorphism theorem, H (X, X,)=0, n3(X, X;) ~ H3(X, X;). From the excision pro-
perty of (X; X, X5), Hy(X,, A)~Hy(X, X;)=0. Then, since X; and A are 1-connected,
we have my(X;, A)=0 and ns(X;, A) ~ Hy(X;, A). Consequently n3(Xi, A) ~ my(X, X3)
(by the isomorphism induced by the inclusion map). Then from the exactness of
the homotopy sequence of triad (X; X, X3), it follows that #3(X; X, X3)=0.

Proof of (2.9). The proof proceeds after the manner of J. C. Moore [2]. By ‘
(2.4), (2.6) and (2.7) it may be assumed that X is contractible, hence the following
relations 1° and 2° hold [2]:
1°, 7 (XixXs, Z) ~ng(X; Xy, X3) for all ¢, where Z is the same set as given
in (2.8). ‘

2°. In the following diagram, we

J1 '
have that j,|Ker x is an isomorphism Hy(X: X Xg) = Hy(Xi X X3, X;V X)
of Ker u with H (X, x X;, X;V X3), where ll«l
J1 is injection, u is the natural homo- H(X)+H,(X5)

morphism defined using the projections
of X;x X, on its factors. Now consider the following diagram:

>/ ) >’ ’
ooy H(Z)/ Ly > H( X, % Xa)/ (L) 2 H, (X x X, Z) 7, H, (Z)/Ly -

A l ! ‘p i’ur
Hq(A)/Lq I— Hq(Xl)+HQ(X2)
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where the upper horizontal sequence is C-exact one given in (2.8), 7’ and u’ are
induced by r and u (for the definition of r, see (2.8)), ¢ is the map given in (1.7),
and commutativity holds in the square. _

Since (X; X, X;) is C-excisive, its generalized Mayer-Vietoris sequence:

t '_’Hq(A)/Lq_“?_’Hq(XI)“l'Hq(XZ) i"Hq(X) in—l/Lq—l e

is C-exact (by (1.8)). Now X is contractible, hence H(X)=0. Then by (1.8),
Ker ¢=Im 4=0, i.e., ¢ is a monomorphism. Therefore we have Im ' NKer x'=0,
i.e., Ker j'NKer #'=0, and moreover %' is monomorphic. Thus 5’ |Ker i’ is a mono-
morphism of Ker ' into Hy(X;x Xz, Z). Since Im ’cKer /=0, H(X;x Xz, Z)=Ker &,
hence

H,(X:xX;, Z)/7’ (Ker #)=Ker 0’/7' (Ker y)=Ext (Ker ¢’/Im 5/, Im 5'/3’ (Ker u)),
where Ker 9’/Im j'€ € (by (2.8)). And by (1.1) with H;=0,

H(X: x X5)/1(L,") €C
Im '+ Ker u/ ’

hence Imj'/5’(Ker )€ C.

Consequently H,(X;x X,, Z) is the C-isomorphic image of Ker x’/ by j’.
Furthermore, since #(L,)€ C, Ker u is C’-isomorphié with Ker @/=Ker u/i(L,).
Combining these results, we find that H,(X, X X;, Z) is C-isomorphic with H,(X; X X,
XivXe). _
Then using the Kiinneth theorem, we see that H,(X;xX;, Z) is C-isomorphic with

> H(X)QH(X;) + > ) H, (X)) *» H(Xz)

r+38=q r48=q—
78>0

for all q. Since the axiom (Ilg) is equivalent to the axiom (IIg") of [5],

H.(X;)® H,X;)€ C for non-zero r and s such that r4+s<m+n-2,

H. (X,))* H(X;)€ € for all r and s such that r+s<m+n—2.
Hence

H(XxXX,, Z)e@ for g<m+n-—2,

H, . o(Xi X X;, Z) is C-isomorphic with H, _(X;)® H,_1(Xs). _
Since m(X,)=ny(X, X,)=0, X, is l-connected (a=1,2), and hence X;xX; is also.
Moreover my(XiX Xs, Z) ~ ns(X; X1, X:)=0. Then by the relative Hurewicz iso-
morphism theorem [5],

(X1 x Xe, Z)€C for g<m+n-—2,
Tmen-2(X1 X Xz, Z) is C-isomorphic with H,, _(X,) & H,_1(X3).
This completes the proof of (2.9). :
(2.11) CoroLLARY. Let C=C(, IIg, III). If (X; X;, X,) is a 8_—proper triad such

that ,_
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XU X; is 1l-connected, n3(X;U Xy X3, X2)=0,
(X;U X, X)) and (X;U X;, X;) are 2-connected,
H(X,;UX;, X;)€C€ for g<m, Hy(X,UX;, X;)€ C for g<n,
m(X, X1 U Xp) € € for g<r,

then n/(X; X, X;)€ € for ¢g<min (m+n-—1, r).

Proof. By (2.9), we have that 7, (XU X,; X;, X2)€ C for g<m+n—1. Therefore
by the exactness of the following homotopy sequence of tetrad (X; X,U X,, Xi, X5):
s (X U X X, Xp) = (X5 X, X)) — (X XG U X X, Xb)
= 7q (X U X Xy, Xp) =+,
we have that 7/(X; Xy, X3) = n(X; XU X3, Xi, X;) is C-isomorphic for g<m+mn—1.
Since 7,(X; X U Xs, Xy, Xp) ~ (X, X;UX;) for all g, it follows, from the assump-

tion: 7 (X, X;UXp) € C for g<r, that n(X; X;, X;) € € for g<min (m+n—-1, 7).

§3. The Hurewicz isomorphism theorem for triad

The matter of this section has no intimate relations with that of preceding

sections. The following theorem is a formal generalization of the relat‘ive Hurewicz
isomorphism theorem due to J.-P. Serre [5].

(3.1) THEOREM. Let (X; Xy, X;) be a triad such that
X, X;, X; and X,NX; are l-connected,
the inclusion maps 73(Xz) = 72(X) and 7a(X; N X;)—ma(X,) are epimorphie,
(X1, XiNnX3)e € for gL,
where C=C(, IIg, III). If n,(X; X;, X3)€ C for g<n, we have that H,/(X; X;, Xp)€C
for 0'<q<'n and the natural map w::7n,(X; X, Xp) > H(X; X;, X;) is C-isomorphic
for ¢=n and C-epimorphic for ¢g=n-+1. ,

Proof. The Hurewicz isomorphism theorem implies that H(X;, X;NX;:) €€ for
g4n. Therefore the exactness of the homology sequence of (X; X, X;) implies
that the homomorphism

Jx: H(X, Xp) > H(X; X3, Xo)
induced by inclusion, is GQisomorphic for g4n and is C-epimorphic for ¢g=n-+1.
Similaﬂy by the assumptions: 7,(X;, X;NX;)€ ¢ for ¢<n, and by the exactness of
the homotopy sequence of (X; X, X3), we have that

jO‘: ﬂq(X, XZ) g Tl'q(X; Xl: X2)
is C-isomorphic for qg4£n.

From the hypotheses: =n,(X;X,, X;)€é C for g<n, we have that 7m(X, Xz)e(‘i for
g<mn, and by the application of the Hurewicz isomorphism theorem we see that
H/(X, X;)e C for g<n and the natural homomorphism
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w; : (X, X;) > H(X, X3)
is G-isomorphic for g4£n and C-epimorphic for g=n+1.
Consequently H(X; X;, X;)€ € for g<mn, and from the following commutative dia-
grams, where j,, jx and o; in the left diagram are C-isomorphisms and j« and o,
in the right diagram are C-epimorphisms, it follows that the natural homomorphism
Wz : my(X; Xi, Xp) > Hy(X; X, Xp) s G-isomorphic for g¢=n and C-epimorphic for
g=n+1.

n(X, Xz) 22> a(X; Xy, Xo) Tnsi(X, Xa) 2> 00i(X; X, Xo)
[ l . g l [ON l . a)zl
HA(X, X3) 2% Ho(X; X, Xo) O Hu(X, X)) 255 H, (X X, XD

Thus the proof is complete. ' _
(8.2) CoroLLARY. Let (X; X;, X;) be the triad mentioned in (8.1). if H/(X; X,
X,)e €=¢(, Ilg, III) for 0<g<n, we have that :
n(X; Xy, X5)€ C for 2£Lqg<m,

and the natural homomorphism . : 7(X; X, Xo) >H(X; X;, X;) is C-isomorphic for
g=n and C-epimorphic for g=n-+1. ‘

- Proof. Since the inclusion map : 7x(X;) = 7(X) is epimorphic and 7,(X;)=0,
(X, X2)=0. Since m(Xy)=0, m:(X;, X;iNX;)=0. Then by the exactness of the
homotopy sequence of (X; X;, X;) we have that 7(X; X;, X;)=0¢€ C.

Our corollary now follows from (3.1).
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