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Introduction

Recently one of the authors has defined an almost K\"ahlerian space which is a
generatization of a K\"ahlerian space and called it an $*0$-almost K\"ahlerian space or
briefly an $*0$-space [5]. An $*0$-space is characterized by the fact that the covariant
derivative of the structure tensor fields $\nabla_{J}F_{i}^{h}$ is pure with respect to $j$ and $i$, where
$\nabla j$ denotes the covariant derivative with respect to the Riemannian connection.

On the other hand, in an almost complex space with a $\varphi\cdot connection$ , in a
K\"ahlerian space or in a K-space, a holomorphically projective transformation and a
holomorphically projective curvature tensor have been studied in [8], [2], [3], [4],

and [10]. In this paper, we shall define the notion of the holomorphically projective
transformation, and the holomorphically projective curvature tensor in an $*0$-space.

In the next place, we shall consider an $*O$-space of constant holomorphic sec-
tional curvature and an $*O$-space satisfying the axiom of holomophic planes.

When the holmorphically projective curvature tensor vanishes, we shall prove
that the space is of constant holomorphic sectional curvature and satisfies the axiom
of holomorphic planes. $ln$ the last section, we shall show that a K-space with a
vanishing holmorphically projectitive curvature is necessarilly a K\"ahlerian space.

\S 1. $*O$-almost K\"ahlerian spaces and K.spaces

A $2n$-dimensional differentiable space, with a tensor field $F_{j}^{i}$ and a positive
definite Riemannian metric tensor field $g_{ji}$ satisfying

(1.1) $F_{j}^{\gamma}F_{r}^{i}=-\delta j^{i}$ .
(1.2) $gji=F_{j}^{b}F_{i}^{a}g_{ba}$ .

is called an almost Hermitian space.
An almost Hermitian space is called an $*0$-almost K\"ahlerian or a K.space, if a

tensor $F_{j};=F_{j}^{r}g_{ri}$ satisfies.
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(1.3) $\nabla jF\iota h+F_{j}^{b}F_{\dot{l}}^{a}\nabla_{b}F_{ah}=0$

or
(1.4) $\nabla jF_{ih}+\nabla;F_{jh}=0$,

respectively. Transvecting (1.3) and (1.4) with $g^{jh}$ , we see that an $*0\cdot space$ and a
K-space both satisfy

(1.5) $\nabla_{f}F_{i}^{r}=0$.
Let Tjih, Tkjih be tensors in an almost Hermitian space and we define the

following operation

(1.6) OjiTjih $=\frac{1}{2}(TJth-F_{j}^{b}F_{i}^{a}T_{bah)}$ ,

$*OjiTjih=\frac{1}{2}(Tjth+Fj^{b}F;^{a}Tbah)$ .

For the tensor $T_{ji}$ we denote $*oji\tau jt=*0\tau ji$ briefly.

(1.7) $*okj*oih\tau kjih=\frac{1}{4}(Tkjih+F_{k}^{b}F_{j}^{a}Tbaih+F_{i}^{b}F_{h}^{a}Tkjba+F_{k}^{b}F_{j}^{a}F_{i}^{d}F_{h}^{c}Tbadc)$ .

We see

(1.8) $o_{J;0=O}jiji,$ $*oji*oj;=*oji,$ $*ojtO=Oji$ ,
$*0_{kj}*Oih=*O;h^{*0}kj,$ $OkjO;h=OjhOkj$ .

A tensor is called pure (hybrid) in two indices if the tensor vanishes by

transvection of $*0(0)$ on these indices.
From this definition, the condition (1.3) can be written in the form;

(1.9) $*O_{ji}\nabla_{j}F_{ih}=0$.
In an almost Hermitian space, using (1.2), we have

(1.10) $*O;;\nabla hFjt=0$.
Since an $*0$-space and K-space are an almost Hermitian space, we shall operate

$*0_{ih}$ to (1.4) and using (1.4) and (1.10), we have

$*o_{;\iota\nabla j}F_{ih}=0$.
Hence a K-space is necessarily an $*0\cdot space$ .

Let $K_{kji^{h}}$ be the curvature tensor, i.e.

(1.11) Kkji $=\partial kt_{j_{\dot{l}}}^{h}$ } $-\partial jt_{ki}^{h}$ } $+\{_{k1}^{h}\}\{jri\}-\{_{jr}^{h}\}\{_{ki}^{r}\}$

where $\partial_{k}=\partial/\partial x^{k}$, and denote

(1.12) Kkjih $=Kkj\iota^{r}g_{r}h,$ $KJ\iota=K_{rjt^{r}},\tilde{K}jt=F_{j}^{r}Kir,$ $K=g^{ji}K;j$
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$Hji=\frac{1}{2}F^{ab}K_{baji},\tilde{H}ji=F_{j}^{\gamma}Hir,$ $H=F^{ji}Hji$

From which we see

(1.13) $F^{kh}Kkjih=H_{j};$ .
Now, if we assume that $K_{j};=\tilde{H}_{ji}$ , then by the symmetrity of $K_{j}$ ; we have

$\tilde{H}_{j};=\tilde{H}ij$ , which means that $OHji=0$ by definition (1.12). The relation $ K_{j};=\tilde{H}j\iota$ is
equivalent to $\tilde{K}_{ji}=H_{j};$ , from which we have $OKji=0$ by the anti-symmetrity of $Hji$ .
Transvecting $K_{ji}=\tilde{H}_{ji}$ with $g^{ji}$ , we get $K=H$.

We notice that a semi-K\"ahlerian space of type II and an almost K\"ahlerian space
with an almost analytic Nijenhuis tensor satisfy the relation $K_{ji}=\tilde{H}_{ji}$ . S. Koto. [6],

[7].

\S 2. Holomorphically projective transformations and Holomorphycally
projective curvature tensors

We introduce the curves satisfying the differential equations

(2.1) $\frac{d^{2}x^{h}}{dt^{2}}+t_{ji}^{h}$ } $\frac{dx^{j}}{dt}d\frac{i}{t}=\alpha(t)\frac{dx^{h}}{dt}\underline{d}x+\beta(t)F_{i}^{h}\frac{dx^{i}}{dt}$ .

Such a curve is called a holomorphically flat curve or a complex geodesic [4].

If in an $*0$-space there are two connections $t_{ji}^{h}$ } and ’
$\{_{ji}^{h}\}$ , and if the two con-

nections have all holomorphically flat curves in common, then

(2.2) ’ $\{_{j_{i}}^{h}\cdot\}=\{_{ji}^{h}\}+\delta j^{h}\rho;+\delta;^{h}\rho j+F_{j}^{h}\sigma;+F_{i}^{h}\sigma j$

holds for certain vectors fields $\rho$ ; and $\sigma;$ .
Under the restriction (1.5) on both of the connections, we have

$\sigma_{i}=-\tilde{\rho}\iota$

where $\tilde{\rho};=F_{i}^{r}\rho_{r}$

Accordingly (2.2) becomes

(2.3) ’ $\{_{ji}^{h}\}=\{_{ji}^{h}\}+\delta;^{h}\rho;+\delta i^{h}\rho j-F_{j}^{h}\beta;-F_{i}^{h}\tilde{\rho}j$.

This transformation is called a holomorphically projective transformation (H. $P$.
transformation) in an almost Hermitian space with the relation (1.5).

After some calculations, from (1.11) and (2.3), we obtain
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(2.4) ’Kkji $=Kkji^{h}\delta i^{h}kjjk$) $+(\delta j^{h}Pki-\delta k^{h}Pj;)-(PklF_{j}^{h}-PjlF_{k}^{h})F_{i}^{l}$

$-(P_{kl}F_{j}^{l}-P_{jl}F_{k}^{l})F_{i}^{h}+[F_{i}^{h}(\nabla jF_{k}^{l}-\nabla kF_{j}^{l})+F_{i}^{l}(\nabla;F_{k}^{h}-\nabla kF_{f}^{h})$

$+F_{k}^{h}\nabla jF_{i}^{l}-F_{j}^{h}\nabla kF_{i}^{l}+F_{k}^{l}\nabla jF_{i}^{h}-F_{j}^{l}\nabla kF_{i}^{h}]\rho_{l}$ ,

where we have put

(2.5) $P_{j};=\nabla j\rho;-\rho j\rho;+\rho_{j}\rho;$ .
By contraction over $i$ and $h$ in (2.4), we have

(2.6) $P_{j};=P_{ij}$ .
By contraction over $k$ and $h$ in (2.4), and using (1.3), we have

(2.7) $Aji=-2(nPj;+F_{j}^{b}F;^{a}Pba)+F_{r}^{l}(\nabla jF_{i^{r}}+\nabla iF_{j}^{r})\rho_{l}$

where we have put $A_{ji}=\prime K_{ji}-K_{ji}$ .
Operating $*0_{ji}$ to (2.7) and using (1.3), we have

(2.8) $P_{ji}+F_{j}^{b}F_{i}^{a}P_{ba}=-\frac{1}{n+1}*OA_{ji}$ ,

From which

(2.9) $F_{j}^{l}P_{lj}-F_{i}^{l}P_{lj}=-\frac{1}{2(n+1)}(F_{j}^{l}Ali-F_{\dot{t}}^{l}A\iota j)$ .

Next, transvecting (2.4) with $F_{h}^{k}$, we get

(2.10) $B_{J};=-2F_{j}^{l}P_{li}+2nF_{i}^{l}P_{lj}-[\nabla;F_{j}^{l}-(2n+1)\nabla_{J}F_{i}^{l}]\rho l$

where we have put $B;;=\prime H_{ji}-H_{ji}$ .
Since $B_{j}$ ; is skew symmetric with respect to $j$ and $i$, we get

(2.11) $B_{ji}=(n+1)[-(F_{j}^{l}P_{lj}-F_{i}^{l}P_{lj})+(\nabla jF_{i}^{l}-\nabla iF_{j}^{l})\rho_{l}]$ ,

(2.12) $ 0=(n-1)(F_{j}^{l}P\iota i+F_{i}^{l}P_{!j})+n(\nabla jF_{i}^{l}+\nabla;F_{j}^{l})\rho\iota$ .

Operating $*0_{ji}$ to (2.11) and comparing with (2.9), we get

$*oJ;(Fj^{l}A\iota;)=*oBji$ .
Transvecting (2.12) with $F_{j}^{r}$ and using (1.3), we have

(2.13) $F_{r}^{l}(\nabla jF_{i}^{r}+\nabla;F_{j}^{r})\rho\iota=\frac{n-1}{n}(-P_{j};+F_{j}^{b}F_{i}^{a}P_{ba})$ .
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From (2.7), (2.8) and (2.13), we have

(2.14) $P_{ji}=\frac{1}{2(n^{2}-1)}(jij;)$ .

Substituting (2.9) into (2.11), we get

(2.15) $(\nabla jF_{i}^{l}-\nabla;F\}^{l})\rho l=\frac{1}{2(n+1)}(-F_{j}^{l}AF_{i}{}^{t}A+2B;i)$ .

Substituting (2.14) into $(2.1\Delta)$ , we get

(2.16) $(\nabla_{j}F_{i}^{l}+\nabla jF_{j}^{l})\rho_{l}=\frac{1}{2(n+1)}(F_{j}^{l}A_{l};+F_{i}^{l}Alj)$ .

From (2.15) and (2.16), we obtain

(2.17) $(\nabla jF|^{l})\rho\iota=\frac{1}{2(n+1)}(F_{i}^{l}A_{lj}+B_{ji})$ .

We substitute (2.14) and (2.17) into (2.4), and operate $*0_{kj}*0_{ih}$ to this equation.
Then by virtue of (1.10) we see that the tensor

(2.18) $P_{kjih\equiv}*0_{kj}*0_{ih}[K_{kjih}-\frac{1}{2(n^{2}-1)}\{g_{jh}(*OK_{k};-nK_{ki})-g_{kh}(*oK_{j};-nK_{j};)$

$-FjhF_{i}(*OKkl-Kk\iota)+FkhF\}(OK;\iota-Kj\iota)$

$-(n-1)(FhH;-FkhHj;)-2(n-1)F;h^{*oH}kj\}]$

is invariant under the H. P. transformation. We call it the H. P. curvature tensor
in an $*0$-space.

Taking account of (1.7), it is written down as follows:

(2.19) $Pkjih\equiv*OkJ^{*}OihKkjih+\frac{1}{4(n+1)}(gjhLki-gkhL;;+Fjh\tilde{L}ki-Fkh\tilde{L}2F;h^{*}kj)$ ,

where we have put

(2.20) $L_{j};\equiv*OK_{ji}+*O\tilde{H}_{ji},\tilde{L}_{ji}\equiv F_{j}^{l}L_{il}=*OH_{ji}+*O\tilde{K}_{ji}$ .

THEOREM 2.1 In an $*0$-space the H. P. curvature tensor with the form (2.19) is
invariant under the H. P. transformation (2.3).

We notice that, if the space is K\"ahlerian, the following relations are known:
(2.21) $*0_{kj}*o_{ih}K_{kjih}=K_{kjih},$ $*oK_{ji}=K_{ji},$ $*oH_{ji}=H_{ji},\tilde{K}_{j};=H_{ji}$ .

From which in a K\"ahlerian space, we find

(2.22) $P_{kjih}=K_{kjih}+\frac{1}{2(n+1)}(g_{jh}K_{ki}-g_{kh}K_{ji}+F_{jh}H_{ht}-F_{kh}H_{ji}+2F_{ih}H_{kj})$ .
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\S 3. $*0$-spaces with a vanishing H. P. curvature tensor

In an $*0$-space, if the H. P. curvature tensor identically vanishes, then by virtue
of (1.7) and (2.19), we obtain

(3.1) $*0_{kj}*O_{ih}K_{kjih}=-\frac{1}{4(n+1)}(gjh;-gkhj;+Fjh\tilde{L}k;-Fkh\tilde{L}j;+2F;h^{*oH}kj)$ ,

(3.2) $*O_{kj}*O_{ih}K_{kjih}=\frac{1}{4}(K_{kj;h}+F_{k}^{b}F_{j^{a}}K_{baih}+F_{i}^{b}F_{h}^{a}Kkjbabadc\cdot$

Transvecting (3.1) and (3.2) with $g^{ji}$ , we have

(3.3) $2(n-1)^{*oK}ji+2(n+1)^{*o\tilde{H}}jt=gji(K+H)$ .
Transvecting (3.1) with $g^{kh}$ , we have

(3.4) $*oK_{j};=*0\tilde{H}_{ji}$ .
From (3.3) and (3.4), we have

(3.5) $*oKji=*0\tilde{H}jt=\frac{1}{4n}(K+H)gji$ .

From which, we have

(3.6) $*0\tilde{K}ji=-*oHji=\frac{1}{4n}(K+H)Fji$ .

Substituing (3.5) and (3.6) into (3.1), we obtain

(3.7) $*okj*OihKkjih=\frac{k}{4}(gjigkh-gkigjh+FjtFkh-FktFjh-2FkjF;h)$ ,

where

$h=\frac{1}{2n(n+1)}(K+H)$ .

THEOREM 3.1. In an $*0\cdot space$, if a H P. curvature tensor vanishes, then the
curvature tensor of the space has the form (3.7).

Notice that if the space is K\"ahlerian, (3.7) be reduced to

(3.8) $K_{kjih}=\frac{k}{4}(g_{ji}g_{kh}-g_{ki}g_{jh}+F;;F_{kh}-F_{ki}F_{jh}-2F_{kj}F_{ih})$ ,

$h=\frac{K}{n(n+1)}$ .

\S 4. Almost Hermitian spaces of constant holomorphic sectional curvatures

We consider in an almost Hermitian space a holomorphic sectional curvature
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with respect to a vector $u^{h}$

(4.1)
$k=\frac{-K_{mjlh}F_{q}^{m}u^{q}F_{p}^{l}u^{p}u^{j}u^{h}}{g_{kj}u^{k}u^{j}g_{ih}u^{i}u^{h}}$ .

If $k=$ constant with respect to any vector at any point of the space, then the space
is called a space of constant holomorphic sectional curvature.

In this case

(4.2) $K_{mjlh}F_{q}^{m}F_{p}^{l}u^{q}u^{j}u^{p}u^{h}=-kg_{qj}gphu^{q}u^{j}u^{p}u^{h}$

should be satisfied for any vector $u^{h}$ , from which we get

(4.3) $ 4!p_{(q}^{m_{F_{p}^{\iota}K_{|m|j|l|h)}=-8k(g_{q}pg_{h};+g_{qh}gjp+g_{qj}gph)}}\cdot$ .

Transvecting (4.3) with $F_{k^{q}}F_{i}^{h}$ , we have

$2[(Khj;h+K;jkh)-F_{k^{q}}F_{h}^{l}(K\iota;;_{q}+K;;l_{q})-F_{i}^{p}F_{h}^{m}(Kkjmp+K_{mjk}p)$

$-F_{j}^{m}F_{i}^{l}(K_{mhk}p+Kkhmp)-F_{k^{q}}F_{j}^{l}(K;h\iota_{q}+K\iota hiq)+F_{k}^{q}F_{i}^{p}F_{j}^{m}F_{h}^{l}(K_{mq}\iota p+K_{lqmp})$

$=-8kF_{k^{q}}F_{\dot{l}}^{p}(g_{q}pg_{hJ}+g_{qh}gjp+g_{qj}gph)$ .

This equation is written as follows

(4.4) $*oOihK*0ij^{*}0khK-F_{k^{q}}F_{h}^{l*0*}l;0;_{q}K\iota jiq$

$=-k(gkighjkhkj\cdot$

Taking the alternating part with respect to $k$ and $j$ , we obtain

(4.5) $2*okj*OthKk;ih+2*Okj(*oki*OjhKkijh-*Oji^{*}OkhKjikh)$

$=k(gkhgj;-gjhgkhjijhk;-2FkjFih)$ .
THEOREM 4.1. If an almost Hermitian space has a constard holomorphic sectional

curvature at every point, then the curvature tensor of the space satisfies (4.5).

Now we shall prove that if an $*0$-space satisfies the relation $ K_{ji}=\tilde{H}_{j}\iota$ then the
$k$ in (4.5) is an absolute constant, in \S 1 we have see that if $Kji=\tilde{H}ji$ holds then
$OKji=0$, $OHji=0$ and $K=H$ are valid. Taking account of these relations, we shall
apply the Bianchi identity to (4.4).

From (1.7) the first term of the left hand side of (4.4) is following:

(4.6) $4*okj*oihKkjih=Kkjih+F_{k}^{l}F_{j}^{m}Klmih+F_{i}^{t}F_{h}^{s}Kkits+F_{k}^{l}F_{j}^{m}F_{i}{}^{t}F_{h}^{s}K\iota_{mts}$ .
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Applying the Bianchi identity to the first term of the right hand side of (4.6),

we have

$\nabla pKkjih+\nabla kKjpih+\nabla jpkih$ .
Transvecting with $g^{ph}g^{ji}$ , we get

$2\nabla^{PK_{kp-\nabla k}K=0}$

Next, as to the second term of (4.6), we get

$g^{ph}g^{ji}[\nabla p(F_{k}^{l}F_{j}^{m}K\iota mth)+\nabla k(F_{j}^{l}F_{p}^{m}K\iota mth)+\nabla j(F_{p}^{l}F_{k}^{m}K\iota_{m}ih)]$

$=2\nabla^{p}\tilde{H}_{kp}-\nabla {}_{k}H$

$=2\nabla^{p}K_{kp-\nabla k}K$

$=0$.
By this way, we find that the third term of (4.6) vanishes and the fourth term becomes

$2\nabla^{p}(F_{p}^{s}F_{k}^{m}K_{sm})-\nabla_{k}K=0$

by virtue of $OK_{pk}=0$.
Thus the first term of the left hand side of (4.4) vanishes. Similarly the second

and third term of the left hand side of (4.4) are reduced to $-4\nabla kK$ and $4\nabla kK$

respectively. Therefore the left hand side of (4.4) is zero by this way. As to the
right hand side of (4.4) we obtain $4(1-n^{2})\nabla\iota k$ in the same way. Hence we have
$\nabla lk=0$.

Notice that in a K\"ahlerian space [1], [11], formula (4.5) be reduced to

(47) Kkjih$=\frac{k}{4}(khjijh\cdot$

In an $*0\cdot space$ by means of Theorem 3.1 and 4.1 we can easily have the fol-
lowing

THEOREM 4.2. In an $*0$-space satisfying $K_{ji}=\tilde{H}_{ji}$ , if a H. P. curvature tensor
vanishes, then the space is of constant holomorphic curvature.

\S 5. Almost Hermitian spaces satisfying the axiom of holomorphic planes

In an almost Hermitian space, there is given a holomorphic plane element
determined by two vectors $u^{h}$ and $F_{i^{h}}u^{i}$ at a point. When we can always draw a
2-dimensional totally geodesic surface passing through this point and being tangent
to the given holomorphic plane element, we say that the space satisfies the axiom
of holomorphic planes.

If we represent such a surface by the parametric equation
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(5.1) $x^{h}=x^{h}(y^{a})$ $a$ . $b$. $c$. $d.=1,2$ ,

then the fact the surface is totally geodesic is represented by the equation

(5.2) $\partial_{c}B_{b^{+B_{C}B_{b}\{\}-B_{a}\{\}=0}}^{hjihh,a}jicb$

where $B_{b}^{h}=\frac{\partial x^{h}}{\partial y^{b}}$ and ’
$t_{cb}^{a}$ } is the Christoffel symbol formed with the $g_{cb}=B_{c}^{j}B_{b}^{i}g_{ji}$ of

the surface.
The integrability condition of (5.2) are

(5.3) $B_{d}^{k}B_{c}^{j}B_{b}^{i}Kk!i^{h}=B_{a}^{h,}K_{dcb^{a}}$ .

If we put

$B_{1}^{h}=u^{h}$ , $B_{2}^{h}=F_{i}^{h}u^{i}$

equation (5.3) must be satisfied by any unit vector $u^{h}$ . Thus we have

(5.4) $\left\{\begin{array}{l}F_{s}^{m}u^{s}u^{j}u^{i}K_{mji^{h}}=\alpha u^{h}+\beta F_{p}^{h}u^{p},\\F_{s}^{m}u^{s}u^{j}F_{q}^{l}u^{q}K_{mj}\iota^{h}=\lambda u^{h}+\mu F_{p}^{h}u^{p}.\end{array}\right.$

From the first equation of (5.4), we obtain

(5.5) $(F_{s}^{m}K_{mji^{h}}-\alpha g_{S};\delta f-\beta g_{sj}F_{i}^{h})u^{s}u^{j}u^{i}=0$ ,

from which

(5.6) $F_{(s}^{m}K|m|ji$ ) $h=\alpha g(sjgi)h+\beta g(sjF;)h$ .

Contracting by $gji$ , we get $\alpha=0$ .
Transvecting this with $F_{k}^{s}$ and taking the alternating part with respect to $k$

and $j$ , we obtain

(5.7) $*O*OihK*kj(kijhkijhj;OkhKjikh)$
$=2gkhgji-gjhgki+FkhFji-F;hFki-2FFih)$

which shows that the space is of constant holomorphic curvature. Thus we have
THEOREM 5.1. If an almost Hermitian space satisfying $K_{j};=\tilde{H}_{j}$ ; admits the axiom

of holomorphic planes, then the space is of constant holomorphic sectional curvature.
In an $*0$-space, by means of Theorem 3.1, we can easily have the following

THEOREM 5.2. In $an*0$-space, if a H. P. curvature tensor vanishes, then the space
admits the axiom of holomorphic planes.

Notice that in a K\"ahlerian space, formula (5.7) be reduced to
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(5.8) $ Kkjih=\frac{\beta}{4}(2khgji-gjhgkikhjijhkikj\cdot$

\S 6. K-spaces with a vanishing H. P. curvature

In a K-space, if we operate $\nabla k$ to (1.4) and taking alternating part with respect
to $k$ and $j$, we have

(6.1) $-Kkjt^{f}F_{rh}-Kkjh^{r}Fir+\nabla k\nabla:Fjh-\nabla j\nabla jFkh=0$.
Transvecting (6.1) with $g^{ji}$ and using (1.5) we have

(6.2) $\tilde{K}_{kh}+Hhk=\nabla^{r}\nabla rFhk$

from which

$\tilde{K}_{ji}+\tilde{K}_{ij}=0$

Hence we have

(6.3) $OKji=0$

Transvecting (6.1) with $F^{kj}$, we get directly

(6.4) $OHji=0$

Using (6.2) aud (6.3), we have [9]

(6.5) $O\tilde{K}_{j};=0$

(6.6) $O\tilde{H}_{j};=0$

LEMMA (6.1) [5] A necessary and sufficient condition that a K-space be Kahlerian
$is$

(6.7) $K_{j};=\tilde{H}_{ji}$

holds good.

Proof. In a K\"ahlerian $space\nabla_{h}F_{ji}=0$, is valid, hence from (6.2) it follows that

$\hat{\dot{K}}_{ji}+H_{ij}=0$.
This is equivalent to (6.7). Conversely we assume a K.space satisfies (6.7), then
using (1.5), we get

$0=\nabla_{r}[\nabla j(F^{ji}F;^{r})]=(\nabla_{r}Fji)(\nabla JF_{i}^{r})+Fj;(\nabla_{r}\nabla JF_{i}^{r})$ .

By virtue of (1.4), we have

(6.8) $F^{ji}(\nabla^{r}\nabla_{r}F_{j};)+(\nabla_{r}F_{j};)(\nabla^{r}F^{ji})=0$.
From (6.2) and (6.8), we obtain
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$(\nabla_{r}Fj;)(\nabla^{r}Fj;)=F^{ji}(\tilde{K}ij+HJ;)$ .
Thus we have

$\nabla_{r}F;;=0$.
This means that the space is K\"ahlerian. $q$. $e$ . $d$ .

Using (6.3), (6.4) and (2.18) we obtain
THEOREM 6.1. In a K-space the H. P. curvature tensor has the form

(6.9) Pkjih $=*okj*ojh[Kkjth+\frac{1}{2(n+1)}(gjhki-gkhj;+F;{}_{h}Hki-FkhHj;+2F;hHkj)]$ .
In a K-space, if a H. P. curvature vanishes, then using (6.1), (6.4) and (3.7) we

have

$K_{ji}=\tilde{H}_{ji}$ .
By virtue of Lemma (6.1), we obtain

THEOREM 6.2 A K-space with a vanishing H. P. curvature is necessarilly Kahlerian.
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