On infinitesimal transformations of K-contact
and normal contact metric spaces

By
Hideo Mizusawa

(Received January 15, 1964)

§ 1. Introduction

An odd dimensional differentiable manifold with contact metric structure is
called a normal contact metric space if the Nijenhuis’ tensor vanishes identically.
This space corresponds to an even dimensional Kihlerian space. So it is interesting
to discuss analogues of some theorems which are valid in Kihlerian spaces. Several
problems of this type have been solved in [4]. Further, recently a K-contact metrié‘
space has been defined in [2]. In this paper, we shall add some results concerning
infinitesimal transformations in a K-contact and a normal contact metric space.
In §2 some preliminary identities and notions are given for the later use. In §3
we shall prove that in a normal contact metric space an infinitesimal conformal
transformation is an infinitesimal isometry if the space is of constant scalar curva-
ture. It will be shown in §4 that for an infinitesimal projective transformation, the
analogue of the theorem in §3 holds good. In §5, we discuss an infinitesimal
transformation which leaves ¢;i invariant, and some tensors which are left invariant
by this transformation. In the last section § 6, we shall show that an infinitesimal
affine contact transformation is necessarily an automorphism.

The author wishes his sincere thanks to Prof. S. Sasaki for his valuable sugges-

tions and advices.

§ 2. Preliminaries.

An n(=2m+1) dimensional differentiable manifold M of class C* with (¢,&,7, )
- structure (or an almost contact metric structure [6]) has been defined by S.
Sasaki [6]. By definition it is a manifold with tensor fields ¢;,&i,7; and so called
an associated Riemannian metric tensor gj; defined over M which satisfy the

following relations

@. §ini=1, _
@. 2 rank|p;ii| =n—1,



2. 3) @;i€i=0,
@ D 0jini=0,
2. 5 @it ori=—08;i+&iy;,
@. 6) giiéi=yi,
@ D ZiipkIhi=grh—NkNh.

On the other hand let M be a differentiable manifold with a contact structure
[1]. If we put

@2. 9 2girpir =2¢;i=0ni—0in;V

then we can find four tensors ¢ji, &, »; and g;; so that they define an (¢.£,7.8) -
structure. Such a structure is called a contact metric structure [6].

A manifold with a (an almost) contact metric structure is called a (an almost)
contact metric space.

In an almost contact metric space there are four tensor fields Nji*, Nji, Njt and
N; which are the analogue of the Nijenhuis tensor in an almost complex structure
[61.

In a contact metric space, Nji=0 and N;i=0 hold good, N;i=0 is equivalent to
the fact that &i is a Killing vector field and N;;#=0 yields N;i=0.

A contact metric space with N;i=0 or N;;#=0 is called a K-cotact metric space
[2] or a normal contact metric space respectively. Of course a normal contact
metric space is a K=contact metric space and a K-contact metric space is a contact
metric space. In the following we consider mainly a K-contact and a normal
contact metric space and use a notation 7’ instead of &i.

Let Rgji» be the Riemannian curvature tensor and put®

@. 9 {Rji———‘—gthkjih, Rji=¢j"Rri, R=giiRji,
Hji==gp*hRejin, R¥ji=—¢;j"Hri, R*= giiR¥;i.
We see that
(2. 10) H ji=—%gothkhji. |

In a contact metric space, ¢;; is a closed skew symmetric tensor and
(2. 1D Vrpi”=m—1y;

holds good [7], where V; denotes the covariant differentiation with respect to the

Riemannian connection.
In a K-contact metric space, since 7; is a Killing vector, we have

1) This definition is slightly different from S. Sasaki’s.
2) The notations of Hj and 'ﬁj; are different from M. Okumura’s.



. 12) V ini=gji,
2. 13) V r@ji+ Rerjinr =0.
‘Using the closedness of ¢;;, we get from (2. 13) and (2. 9)
@. 14) Hipr=0,  Rimr=0,  Ripyr=0,
and
2. 15) Rrjingkni=0,
@. 16) Ryjinnknh=gji—057i.
Transvecting (2. 13) with g% and making use of (2. 11), we get
Q. 17 Riypr=m—L)y;.

In a normal contact metric space, the formula

2. 18) Vrpji=7;8ki —7i&kj

is fundamental, from which and (2. 13), we have

2. 19) 77 Reji* =9r&ji —7;8ki.
Operating V; to (2. 18) and making use of Ricci’s identity and (2. 9), we obtain
. 20) Eji——HjiZCn-—2>¢ji,
2. 2D Rji—R*ji=n—2)gji+nni,
@. 22) R—R*¥=(n—1)2,

We see that Eji is a skew symmetric and R*;; is a symmetric tensor.
Let £ be the Lie derivative with respect to a vector v/, then the following
v

identities hold good [8].

(2. 23) ;S{?,-}ZV]‘V:'U"‘FRrjihU’,

2. 29 ijm—.f,er]i=7}ra§ (G}

2. 25 £Rjih= V& (i} =V £ ).

2. 26) f{?i}:%ghr(ijgri—{—Vi.fs,grj—Vr.fgji).

A vector field vi is called an infinitesimal isometry or a Killing vector if £g;;

v
=0; an infinitesimal affine transformation if £ {ﬁfi} =0; an infinitesimal (strict if ¢
v

=0) contact transformation if £7i=o07; wWhere ¢ is a scalar and ¢ is called an
v

associated function of vi,



A vector field vi satisfying
@. 27 £ gji=2pgji
v

where p is a scalar, is called an infinitesimal conformal transformation, then vi satisfies

2. 28) .;E{;f,-}zéjhpi+5ihpj—gjiph. pi=0ip,
. 29) LRji=—(Mm—2)Vjpi—giiVrp",
2. 30) £R=—2pR—2(n—1)V,p.

v

A vector field vi satisfying
2. 3D £ {%) =dihpi+ditp;
is called an infinitesimal projective transformation and
Q. 32) ijiZ—(n—l)Vjpi

is valid.
A vector field vi is called an automorphism, if vi leaves four structure tensors

invariant, that is £¢;i=0, £2:=0, f,pizo and £g;i=0.
A normal contvact metricvspace in which the Ri:ci tensor takes the form
. 33) Rji=agji+byni
is called an 7-Einstein space, where a and b become constant (#>>3) and
2. 349 at+b=n—1, R=an+b

hold good [3]. But we can extend the above definition of an »-Einstein space to
the case which the underlying space is K-contact. In this case the propérties that
a and b are constant and (2. 34) also hold good. We shall call such a space an 7-
Einstein K-space.

§ 3. Infinitesimal conformal transformations.

THEOREM 3. 1. Let M be a normal contact metric space of constant scalar curva-
ture R=tn(n—1), ((>3). Then an infinitesimal conformal transformation in M is
necessarily an infinitesimal isometry.

To prove this theorem, we shall use the following theorem which has been
proved by M. Okumura [4]. '

LEMMA. If a normal contact metric space (n>>3) admits an infinitesimal conformal
transformation vi, then vi is decomposed into

3. D Vi =wi —pi



where w' is a Killing vector and p; is a gradient vector defining an infinitesimal
conformal transformation.
Proof of the theorem. Substituting (3. 1) into

«fgjr':Vjvi-l—Vz'vj:Zpgji.
we have
Vipi+Vipj=—2pgji
from which we get V,pr=—np, substituting this into (2. 30), it follows that
@G. 2 ,,f,R: —2[R—n(m—1)]p.

If we assume R=const. and R=4=n(n—1), then we obtain p=0. Hence we have
£g;i=0.
v

COROLLARY. In an n-Einstein space (n>>3) with b==0, any infinitesimal conformal
transformation is necessary an infinitesimal isometry [4].

§ 4. Infinitesimal projective transformations.

LEMMA 4. 1. [4]. If a normal contact metric space admits an infinitesimal
projective transformation vi, then vi is decom posed into

@ D " vi=wi— é_ pi

where wi is a Killing vector and pi is the associated vector and pi is also an infini-
tesimal projective transformation whose associated vector is —2p;.
LEMMA 4. 2. In a normal contact metric space of constant scalar curvature, the

relation
4. 2 ViH;;=R*y;

holds good.
Proof. By virtue of (2. 9), (2. 14) and (2. 18), we get

“ 3 ViH;ji=Vi(p;j R¥ )= (9,87 —178; ) R¥ri+¢j" ViR¥;
=R*j+¢;7ViR*,
On the other hand if we operate yi to (2. 21), then we have
ViRji= Vi1R¥;;, '

Since VjR=2ViR;;=0, we get ViR*¥;;=0. Hence (4. 2) follows from (4. 3). -
LEMMA 4. 3. Let M be a normal contact metric space of constant scalar curvature
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R¥=n(n—1). Then the associated vector p; of an infinitesimal projective transformation
in M belongs to the distribution orthogonal to 7i.
Proof. By virtue of Lemma 4. 1, we obtain

4. 9 ViViph+Ryrjinp” = —2(gihpi + ginp;i).

Taking the alternative part of (4. 4) with respect to { and &k, we get
Ry jinp” =gjiph— ginpi.

Transvecting this with ¢Ji, we have
Hynpr=grnp”.

Operating V* to ths last equation and making use of Lemma 4. 2, we see that
[R*—m—1)]19"pr=0,

from which we have
[R—n(r—1)]%7pr=0.

bscause of (2. 22). If we assume that R<+n(n—1), then we have %7p,=0.
THEOREM 4. 1. Let M be a normal contact melric space of constant scalar curvature
R=n(n—1). Then an infinisimal projective transformation in M whose associated vector
does not belong to the distribution orthogonal to 7)i is necessary an infinitesimal isometery.
Proof. Lemma 4. 3 shows that there exists no non-trivial associated vector
pi if R=const. R4=n(n—1) and 77p,+0. Hence Theorem 4. 1 follows from Lemma
4. 1. |
As an application of Lemma 4. 1. we have the following.
THEOREM 4. 2. In a normal contact melric space, if an infinitesimal projective
transformation vi is-an infinitesimal contact transformation whose associated function is

a constant, then vi is an automor phism.
In the first place we shall give a lemma.
LEMMA 4. 4. In an almost contact metric space, if an infinitesimal transformation

vi satisfies

(4. 5) £$D]l=g'90]t
v

where o is a scalar, then we have ¢=0,.

Proof. Operating £ to (2. 5) and making use of (4. 5), we have
v
26(——5;"'+7/"7/j)=i€(v"w).

Contracting the last equation with respect to i and j, we find ¢ =0.
Proof of the theorem. By assumption, we put
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£ () =djhpi+ditp;
v
£ni=on;, g=const.
v
Substituting these equations into (2. 24), we get
0@ji— £ Qji=1jpi +7ip;
v
from which we have
4. 6 nipi+7ip;i=0.
4. D £ oji=0¢ji.
v
Transvecting (4. 6) with gii and 7/ respectively, we get p;,=U
Applying Lemma 4. 1, it follows that
CR) £85i=0.
v
From (4. 7) and (4. 8), we have .
Loji=0¢;
v

Applying Lemma 4. 4. we obtain £¢;i=0, £7;=0 and £7=0.
v v v

§ 5. Infinitesimal ¢-transformations.

In this section we shall discuss an infinitesimal transformation which leaves ¢ ¢
invariant. We call it an infinitesimal ¢-transformation for brevity. We shall show
some results concerning mainly to the curvature of the space in consideration.

THEOREM 5. 1. In a contact metric space, an infinitesimal ¢-transformation satisfies

G. D £ni=ayi,
v

G 2) £8ii=0(&ji+nini),
v

and o is a constant. Conversely if an infinitesimal transformation vi satisfies (5. 1) and
(5. 2), then vi is an infinitesimal ¢-transformation and consequently ¢ is a constant.
Proof. We assume that

(5. 3 £¢;i=0.

Operating £ to (2. 5), we get
v

G o 7t £nj+n; £7i=0.
v v
Transvecting (5. 4) with 7; and »¢ respectively, we have

é. 5 .;g nj=an;,
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and
(5. 6 .;5177"=—0'7"
where we have put
o=N"LNYyr=—nr L7,
v v

Substituting (5. 5) into (2. 24), it follows that
5. D oimitami— £V mi=mE G}, 0i=0j.
from which we get
(5. 8 o,-m—omj+2¢rsoji—2s§q>ji=0
by virtue of (2. 8).
Transvecting (5. 8) with 7j, we have
G. 9 aj=(n7or)n;
by virtue of (2. 3) and (5. 6). Hence (5. 8) turns to
G. 10 .fsoji=a¢ji.
On the other hand, operating ;S‘, to
0" ori=—&ji+nni
and making use of (5. 3), (6. 5) and (6. 10), we get (5. 2).
In the next place well shall prove that ¢ is a constant. If we substitute (5. 2)
into the identity (2. 26), then we have
aj(8it+nkyi) +0i(8%+1hy;)
—0h(&ji+715%i) +20(i*ni+ @iky;) ]
From (5. 7), (6. 10) and (5. 11), it follows that

6. 1) £t)=% |

Y, — OJ1 hy 3—” 7
Nor=47 77h.-,$‘, {ji} =5 70r
from which )
97ar=0,

Hence (5. 9) shows that ¢;=0, o=const,
Therefore (5. 11) becomes

6. 12) £ (1) =o(pimmitoit;).

To prove the converse, we assume (5. 1) a;id (5. 2), then we see that (5. 6)
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and (b. 10) follow, because
L=l £1j+n; £87
v v v
=oni —an;(gli+nint) = —oni,
and transvecting (5. 8) with 7i, we get
oi—(n7or)ni—29 £ ¢ji=0
v

from which and making use of (2. 3) and (5. 6), we get g;=(57a,)7;.
Hence (5. 8) yields (5. 10). It is easily verified that £¢;;=0 from (5. 2) and (5.
10). Q.E. D, ’

COROLLARY. In a compact contdct melric space, an infinitesimal ¢-transformation
is an automor phism. [7].

Proof. From é. 2)

£8ii=Vui+Vivi=0(gii+nini), o=const.
v .
from which it follows that

V07 = n_zl_lo'

Applying Green’s theorem we have ¢=0 which means vi is an automorphism.
THEOREM 5. 2.3 In an Einstein contact metric space (R==0), an infinitesimal ¢-
transformation is an automor phism.

Proof. Substituting (5. 12) into the identity (2. 25), we have

(5. 13) £ Ryjit=0[Vi(oitni+ifmi) —V i(orrni+eitmm)]
from which it follows that
(5. 14 ;ERjizaVr(goj’m-l-soi’W)
(5. 15) £ R=—o(R+Riinin?,
because of (5. 2). By assumption '
Rji= 'f‘,;‘gjb

(6. 15) reduced to ‘
£R—_ (n—;l)aR

v
and we have ¢=0,

THEOREM 5. 3.9 In a K-contact metric space of constant scalar curvature R==—
(n—1), an infinitesimal ¢-transformation is an automor phism.

Proof. Using (2. 17), (5. 15) becomes

3, 4) These theorem recentry have been proved for a global g-transformation by S.
Tanno.
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£R=—a(R+n—1)

which implies =0 if R=const. and R+=—-(n—1).
THEOREM 5. 4. In an contact melric space, an infinitesimal o-transformation vi

satisfies
(5. 16) égNjiZ_dei’
G. 1D £ Npji=0
where v
(5. 18) Nji=nh(V he;i—V jph') — iV a7,
(5. 19 Niii=prh(Vheit —Viont) —i*(V ki — V k@ht)

+ (Vi Dne—(Vni)y;.
Proof. For. an infinitesimal ¢-transformation, the following equations hold good

v v
6. 21) £ {3} =a(pityi+oitn;), a=const,
v
Substituting (6. 20) and (5. 21) into the identity

EVhrpii—VrLeji=pi" £ {i,r} —ri £ {Zj}’
v v v v

EVii—VrLyi=n" £ {},},
v v v

we obtain
5. 22) £ Vapji=a(0ni —ninn)7;,
v
(5. 23) £V mpi=a(pri—Vnyi).
v

Operating £ to (6. 18) and (5. 19) and making use of (5. 20), (5. 22) and (5. 23),
v

we obtain (5. 16) and (5. 17).

This theorem shows that in a contact metric space, N;;* is an invariant tensor
by an infinitesimal ¢-transformation. @From now on, we shall seek for other
invariant tensors by this transformation. In the first place we shall give the
following.

LEMMA. In a K-contact melric space, for an infinitesimal ¢-transformation vi, the
Sollowing equations hold good.

(Vepi"—V jorm)ni+(Vrpit)ni-—(V jpif)ne ]

5. 24) £ Rijit=o0o [
v +20rj@it+ @ ihoki — orP@ji



1D).

(5. 25) £ Rji=20(—gji+nyni),
(5. 26) £Hji=—nogpji.
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Proof. (5. 24) follows from (5. 13). (5. 25) is obtained from (5. 24) and (2.

Transvecting (5. 24) with ¢k, we get (5. 26).
Now, by virtue of (5. 13), (5. 22) and the relation

£V ini=oV jni
v

which is analogous to (5. 23), we can verify that, after some computation, in a

contact metric space

(5. 27 ‘ L Prji"n=0

holds good, where Pgj;# is defined by

(5. 28) Prjih=Rpjih— é £ Rejit+ (0khn;—0 4917
v

We can obtain easily the following identities

(5. 29) Pjyit=0,  Pgjnh=0. Prjrr=0,
(5. 30) PjiEPrji’ZRji—-ol_— £Rji+ (m—1)n;n:,
(6. 31) jSEngthjih:Hji*—é £Hj;:.

v

In a K-contact metric space, by virtue of (5. 25) and (5. 26), we see
(5. 32) Pj;=Rji+2gji— (n+Lym;,
(5. 33) jS:Hji“i”n(Pji-’
Moreover we have
nkynPrjih=0, ©htPrjih=2Qk;j.
In a normal contact metric space we see that
NrPriih=0,

(5. 34) Pji=¢;7Qir, Qji=¢;"Pir.

because of (2. 20) and (2. 21).

call

In a normal contact metric space (5. 28) reduces to
(5. 35) Pprjih= Ryjit+ (Grinji —&iink)n* — (Orn; — 0" )i
—@ihori+orr@ji—20ih@k;.

Thus we have obtained three invariant tensors Pgj;*, Pj;; and Q;;. We
Ppjih the g-curvature tensor.

shall
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In a K-contact metric space, if Prj;i#=0, then we get P;;=0, that is, the Ricci
tensor takes the form

Rji=—2gji+m+L)n;yi
which implies the space is an 7-Einstein one with R=—(n—1).

Conversely if an »-Einstein K-space admits an infinitesimal ¢-transformation, then
taking the Lie derivative of
Rji=agji+byini
and making use of (5. 25), (5. 1) and (5.2) we obtain P;;=0. Thus we have
THEOREM 5. 5. In order that a K-contact metric space be an y-Einstein one it is
necessary and sufficient that the tensor Pj; vanishes identically.
Next, in a normal contact metric space, we can verify Hj; is a closed tensor by

means of (2. 10), (2. 18) and Bianchi’s identity. So Q;i=Hji+ne;; is also closed.
On the other hand from (5. 33) and (5. 34), we find

ViQji=Vi(pi"Pir)
=(R+n—1)p;+ % 0" VR,

Thus, if R=—(—1), then we have ViQ;;=0 which shows that Qj; is a harmonic
tensor. Conversely, if Q;; be harmonic, we get R=—(»z—1). Hence we have

THEOREM 5. 6. In a normal contact metric space, we have R=—(n—1) if and
only if the tensor Qj; is harmonic.

Combining Theorem 5. 3 and 5. 6, we have the following

THEOREM 5. 7. If a normal contact melric space of constant scalar curvature has
no harmonic tensor Qji, then an infinitesimal o-transformation is an automor phism.

§ 6. Infinitesimal affine transformations.

We shall prove the following
THEOREM 6. 1. In a K-contact metric space, if an infinitesimal contact transfor-

mation vi is affine, then vi is an automor phism.
Proof. By assumption, we shall put

6. 1 £ {1} =0,
6. 2) Lni=oni.
v

Substituting (6. 1) and (6. 2) into the identity (2. 24), we get

(6. 3) oinitopjii— Leji=0, oj=0ja,
v
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from which we have
oni+toini=0.

If we transvect this with »¢ and gJ/i respectively, then we get

o;=0.
Hence (6. 3) turns to
6. 9 | £pji=00ji, o =const. l
from which we have
(6. 5 ’fy}i:—___a-yiz"

Next, from (2. 16) it follows that
Rejiknknn=_gji —njni.
Operating ‘f to the last equation and using (6. 2) and (6. 5), we get
(6. 6) .;Egjizz‘”?f’?i

because of £Rp;j;#=0.
v

On the other hand, taking the Lie derivative of (2. 7) and using (6. 2), (6. 4) and
(6. 6), it follows that

pri(opi”+ £0;7)=0
v
from which we obtain
£Loji=—opjt.
v

By virtue of Lemma 4. 4, we have =0, so vi is an automorphism.
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