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\S 1. Introduction

An odd dimensional differentiable manifold with contact metric structure is
called a normal contact metric space if the Nijenhuis’ tensor vanishes identically.
This space corresponds to an even dimensional K\"ahlerian space. So it is interesting
to discuss analogues of some theorems which are valid in K\"ahlerian spaces. Several
problems of this type have been solved in [4]. Further, recently a K-contact metric
space has been defined in [2]. In this paper, we shall add some results concerning
infinitesimal transformations in a K-contact and a normal contact metric space.
In \S 2 some preliminary identities and notions are given for the later use. In \S 3
we shall prove that in a normal contact metric space an infinitesimal conformal
transformation is an infinitesimal isometry if the space is of constant scalar curva-
ture. It will be shown in \S 4 that for an infinitesimal projective transformation, $tbe$

analogue of the theorem in \S 3 holds good. In \S 5, we discuss an infinitesimal
transformation which leaves $\varphi j^{j}$ invariant, and some tensors which are left invariant
by this transformation. In the last section \S 6, we shall show that an infinitesimal
affine contact transformation is necessarily an automorphism.

The author wishes his sincere thanks to Prof. S. Sasaki for his valuable sugges-

tions and advices.

\S 2. Preliminaries.

An $n(=2m+1)$ dimensional differentiable manifold $M$ of class $C^{\infty}$ with $(\varphi, \xi, \eta, g)$

-structure (or an almost contact metric structure [6]) has been defined by S.
Sasaki [5]. By definition it is a manifold with tensor fields $\varphi J^{i\xi^{i},\eta;}$ and so called

an associated Riemannian metric tensor $g;$ ; defined over $M$ which satisfy the

following relations

(2. 1) $\xi^{i}\eta;=1$ ,

(2. 2) $rank|\varphi J^{i}|=n-1$ ,
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(2. 3) $\varphi J^{i}\xi^{j}=0$ ,

(2. 4) $\varphi j^{j}\eta\iota=0$ ,

(2. 5) $\varphi j^{r}\varphi r^{j}=-\delta_{j^{i}}+\xi^{i}\eta j$ ,

(2. 6) $g_{ji}\xi^{j}=\eta;$ ,

(2. 7) $gji\varphi k^{j}\varphi h^{j}=gkh-\eta k\eta h$ .

On the other hand let $M$ be a differentiable manifold with a contact structure
[1]. If we put

(2. 8) $ 2gir\varphi j^{\gamma}=2\varphi j;=\partial_{J}\eta;-\partial;\eta$;

then we can find four tensors $\varphi j^{i}\xi^{i},$
$\eta$ ; and $gji$ so that they define an $(\varphi, \xi, \eta, g)-$

structure. Such a structure is called a contact metric structure [6].

A manifold with a (an almost) contact metric structure is called a (an almost)

contact metric space.
In an almost contact metric space there are four tensor fields $N_{j};^{h},$ $N_{ji},$ $Nj^{j}$ and

$N_{j}$ which are the analogue of the Nijenhuis tensor in an almost complex structure
[6].

In a contact metric space, $Nji=0$ and $Nj^{i}=0$ hold good, $N_{j^{j}}=0$ is equivalent to
the fact that $\xi^{i}$ is a Killing vector field and $N_{ji^{h}}=0$ yields $N_{j^{i}}=0$ .

A contact metric space with $Nj^{i}=0$ or $N_{jt^{h}}=0$ is called a $K$-cotact metric space
[2] or a normal contact metric space respectively. Of course a normal contact
metric space is a $K=\sigma ontact$ metric space and a $K$-contact metric space is a contact
metric space. In the following we consider mainly a $K$-contact and a normal

contact metric space and use a notation $\eta^{j}$ instead of $\xi^{i}$ .
Let $R_{kji^{h}}$ be the Riemannian curvature tensor and put2)

(2. 9)
$\left\{\begin{array}{l}R_{ji}=g^{kh}R_{kjih},\\H_{ji}=\varphi^{kh}R_{kjih},\end{array}\right.$

We see that

$\tilde{R}_{j;=\varphi j^{r}}R_{ri}$ , $R=g^{ji}R_{ji}$ ,

$R*J;=-\varphi;^{r}H_{ri}$ , $R*=g^{ji}R*ji$ .

(2. 10) $H_{ji}=-\frac{1}{2}\varphi^{kh}R_{khji}$ .

In a contact metric space, $\varphi ji$ is a closed skew symmetric tensor and

(2. 11) $\nabla_{r\varphi J^{\gamma}}=(n-1)\eta j$

holds good [7], where $\nabla$ ; denotes the covariant differentiation with respect to the
Riemannian connection.

In a $K$-contact metric space, since $\eta_{i}$ is a Killing vector, we have

1) This definition is slightly different from S. Sasaki’s.
2) The notations of $H_{jl}$ and $\tilde{R}_{ji}$ are different from M. Okumura’s.



(2. 12) $\nabla j\eta i=\varphi ji$ ,

(2. 13) $\nabla_{k\varphi j;+R_{rkji}\eta^{r}=0}$ .
Using the closedness of $\varphi ji$ , we get from (2. 13) and (2. 9)

(2. 14) $H_{ir}\eta^{r}=0$ , $\tilde{R}_{j\gamma}\eta^{r}=0$ , $R*;_{r}\eta^{r}=0$ ,

and

(2. 15) $R_{kjih}\eta^{k}\eta^{j}=0$ ,

(2. 16) $R_{kjih}\eta^{k}\eta^{h}=gJ;-\eta j\eta;$ .

Transvecting (2. 13) with $g^{ki}$ and making use of (2. 11), we get

(2. 17) $R_{j\gamma}\eta^{r}=(n-1)\eta;$ .
In a normal contact metric space, the formula

(2. 18) $\nabla_{k\varphi j;=\eta jg_{ki}-\eta;g_{kj}}$

is fundamental, from which and (2. 13), we have

(2. 19) $\eta_{\gamma}R_{kji^{r}}=\eta_{k}g_{ji}-\eta Jg_{ki}$ .

Operating $\nabla\iota$ to (2. 18) and making use of Ricci’s identity and (2. 9), we obtain

(2. 20) $\tilde{R}_{ji}-H_{ji}=(n-2)\varphi ji$ ,

(2. 21) $R_{ji}-R*j;=(n-2)g_{j};+\eta!\eta;$ ,

(2. 22) $R-R*=(n-1)^{2}$ .

We see that $\tilde{R}_{ji}$ is a skew symmetric and $R*ji$ is a symmetric tensor.
Let

$Xv$
be the Lie derivative with respect to a vector $v^{j}$ , then the following

identities hold good [8].

(2. 23) $Xvt_{ji}^{h}$ } $=\nabla_{i}\nabla tv^{h}+R_{rjt^{h}}v^{\gamma}$ ,

(2. 24) $\nabla jX\eta;-X\nabla_{J\eta i}=\eta rXvvvt_{ji’}^{r}$ }

(2. 25) $xR_{kji^{h}}=\nabla_{k}Xvv\{^{h}i\}-\nabla_{j}X\{h\}v$

(2. 26) $Xvt_{j}^{h};_{vvv}$} $=\frac{1}{2}g^{hr}(\nabla jXg_{r};+\nabla;Xg_{rj}-\nabla\gamma Xgj;)$ .

A vector field $v^{j}$ is called an infinitesimal isometry or a Killing vector if $Xg_{ji}$

$=0$ ; an infinitesimal affine transformation if $Xv\{_{ji}^{h}\}=0$ ; an infinitesimal (strictif
v

$\sigma$

$=0)$ contact transformation if $X\eta;=\sigma\eta;v$
where $\sigma$ is a scalar and $\sigma$ is called an

associated function of $v^{j}$ .
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A vector field $v^{i}$ satisfying

(2. 27) $Xg_{ji}=2\rho g_{ji}v$

where $\rho$ is a scalar, is called an infinitesimal conformal transformation, then $v^{j}$ satisfies

(2. 28) $X\{jhi\}=\delta_{j^{h}}\rho_{i}+\delta_{i^{h}}\rho J-g_{ji}\rho^{h}v$ $\rho;=\partial;\rho$ ,

(2. 29) $XRn-2\nabla\rho;-g_{ji}\nabla_{r}\rho^{r}v$

(2. 30) $XR=-2\rho R-2(n-1)\nabla r\rho^{r}v$

A vector field $v^{j}$ satisfying

(2. 31) $X\{jhi\}=\delta_{j^{h}}\rho;+\delta_{t}^{h}\rho jv$

is called an infinitesimal projective transformation and

(2. 32) $XR_{j};=-(n-1)\nabla j\rho tv$

is valid.
A vector field $v^{i}$ is called an automorphism, if $vt$ leaves four structure tensors

invariant, that is $X\varphi J^{i}=0v$ $X\eta;=0v$ $X\eta^{i}=0v$ and $Xg_{ji}=0v$

A normal contact metric space in which the Ricci tensor takes the form

(2. 33) $ R_{j;=}agji+b\eta j\eta\iota$

is called an $\eta$-Einstein space, where $a$ and $b$ become constant $(n>3)$ and

(2. 34) $a+b=n-1,$ $R=an+b$

hold good [3]. But we can extend the above definition of an $\eta$-Einstein space to
the case which the underlying space is K-contact. In this case the properties that
$a$ and $b$ are constant and (2. 34) also hold good. We shall call such a space an $\eta-$

Einstein $K$-space.

\S 3. Infinitesimal conformal transformations.

THEOREM 3. 1. Let $M$ be a normal contact metric space of constant scalar curva-
ture $R\neq n(n-1)$ , $(n>3)$ . Then an infinitesimal conformal transformation in $M$ is
necessarily an infinitesimal isometry.

To prove this theorem, we shall use the following theorem which has been
proved by M. Okumura [4].

LEMMA. If a normal contad metric space $(n>3)$ admits an infinitesimal conformal
transformation $v^{i}$ , then $v^{i}$ is decomposed into

(3. 1) $v=w-\rho^{i}$
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where $w^{j}$ is a Killing vector and $\rho_{i}$ is a gradient vector defining an infinitesimal
conformal transformation.

Proof of the theorem. Substituting (3. 1) into

$xgjv$

we have

$\nabla_{J\rho;\rho j}j+\nabla=-2\rho gji$

from which we get $\nabla r\rho^{r}=-n\rho$ , substituting this into (2. 30), it follows that

(3. 2) $XR=-2[R-n(n-1)]\rho v$

If we assume $R=const$ . and $R\neq n(n-1)$ , then we obtain $\rho=0$ . Hence we have

$Xg_{J};=0v$

COROLLARY. In an $\eta$-Einstein space $(n>3)$ with $b\neq 0$ , any infinitesimal cmformal
transformation is necessary an infinitesimal isometry [4].

\S 4. Infinitesimal projective transformations.

LEMMA 4. 1. [4]. If a normal contact metric space admits an infinitesimal
projective transformation $v^{j}$ , then $v^{j}$ is decomposed into

(4. 1) $v^{j}=w^{i}-\frac{1}{2}\rho^{i}$

where $w^{i}$ is a Killing vector and $\rho^{i}$ is the associated vector and $\rho^{j}$ is also an infini-
tesimal projective transformation whose associated vector is $-20;$ .

LEMMA 4. 2. In a normal contad metric space of constant scalar curvature, the
relation

(4. 2) $\nabla^{i}H_{ji}=R^{*}\eta J$

holds good.

Proof. By virtue of (2. 9), (2. 14) and (2. 18), we get

(4. 3) $\nabla^{i}H_{ji}R*$

$=R*\eta j+\varphi J^{r}\nabla^{i}R*_{\gamma j}$ .

On the other hand if we operate $\nabla^{i}$ to (2. 21), then we have

$\nabla^{iR_{ji}=\nabla^{tR*}ji}$ .

Since $\nabla jR=2\nabla^{i}R_{ji}=0$ , we get $\nabla^{tR*}ji=0$ . Hence (4. 2) follows from (4. 3).

LEMMA 4. 3. Let $M$ be a normal contact metric space of constant scalar curvature
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$R\neq n(n-1)$ . Then the associated vector $\rho$ ; of an infinitesimal projective transformation
in $M$ belongs to the distribution orthogmal to $\eta^{i}$ .

Proof. By virtue of Lemma 4. 1, we obtain

(4. 4) $\nabla j\nabla;\rho h+R_{rjih}\rho^{r}=-2(gjh\rho;+gth\rho;)$ .
Taking the alternative part of (4. 4) with respect to $i$ and $h$, we get

$R_{rjiho^{r}=gji\rho_{h}-gjh\rho_{i}}$ .
Transvecting this with $\varphi ji$ we have

$H_{\gamma h}\rho^{r}=\varphi rh\rho^{r}$ .

Operating $\nabla^{h}$ to the last equation and making use of Lemma 4. 2, we see that

$[R*-(n-1)]\eta^{r}\rho_{r}=0$ ,

from which we have

$[R-n(n-1)]\eta^{r}\rho_{r}=0$ .

because of (2. 22). If we assume that $R\neq n(n-1)$ , then we have $\eta^{r}\rho_{r}=0$ .
THEOREM 4. 1. Let $M$ be a normal cmtabt metric space of constant scalar curvature

$R\neq n(n-1)$ . Then an infinisimal projective transformation in $M$ whose associated vector
does not belong to the distribution orthogonal to $\eta^{i}$ is necessary an infinitesimal isomelery.

Proof. Lemma 4. 3 shows that there exists no non-trivial associated vector
$\rho^{j}$ if $R=const$ . $R\neq n(n-1)$ and $\eta^{r}\rho_{r}\neq 0$ . Hence Theorem 4. 1 follows from Lemma
4. 1.

As an application of Lemma 4. 1. we have the following.

THEOREM 4. 2. In a normal contact metric space, if an infinitesimal projective

transfomaiiomri is an infinitesimal contact transformation whose associated function is
a constant, then $v^{j}$ is an automorphism.

In the first place we shall give a lemma.
LEMMA 4. 4. In an almost cmtact metric space, if an infinitesimal transfornatim

$v^{j}$ satisfies
(4. 5) $x\varphi j^{j}=a\varphi j^{j}v$

where $a$ is a scalar, then we have $a=0$ .

Proof. Operating
$x_{v}$

to (2. 5) and making use of (4. 5), we have

$2\sigma(-\delta_{j^{i}}+\eta^{i}\eta j)=X(\eta^{i}\eta j)v$

Contracting the last equation with respect to $i$ and $j$ , we find $\sigma=0$ .

Proof of the theorem. By assumption, we put
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$Xv\{_{ji}^{h}\}=\delta_{j^{h}}\rho_{i}+\delta_{i^{h}}\rho j$

$X\eta;=a\eta_{i}v$
$\sigma=const$ .

Substituting these equations into (2. 24), we get

$a\varphi;;-X\varphi ji=\eta j\rho;+\eta;\rho jv$

from which we have

(4. 6) $\eta j\rho;+\eta;\rho j=0$ .
(4. 7)

$X\varphi J;=a\varphi jiv$

Transvecting (4. 6) with $gi^{j}$ and $\eta i$ respectively, we get $\rho;=\cup$

Applying Lemma 4. 1, it follows that
(4. 8) $xg_{ji}=0v$

From (4. 7) and (4. 8), we have
$x\varphi j^{i}=a\varphi j^{i}v$

Applying Lemma 4. 4. we obtain $X\varphi;^{j}=0v$ $X\eta\iota=0v$ and $X\eta^{j}=0v$

\S 5. Infinitesimal $\varphi- tran8format\ddagger on8$ .

In this section we shall discuss an infinitesimal transformation which leaves $\varphi j^{i}$

invariant. We call it an infinitesimal $\varphi$ -transformation for brevity. We shall show
some results concerning mainly to the curvature of the space in consideration.

THEOREM 5. 1. In a contact metric space, an infinitesimal $\varphi$ -transformation satisfies
(5. 1)

$X\eta_{i}=\sigma\eta_{i}v$

(5. 2) $xg_{ji}=a(g_{ji}+\eta;\eta_{i})v$

and $\sigma$ is a constant. Conversely if an infinitesimal transformation $v^{i}$ satisfies (5. 1) and
(5. 2), then $v^{j}$ is an infinitesimal $\varphi$ -transformation and consequently $a$ is a constant.

Proof. We assume that

(5. 3) $x\varphi j^{j}=0v$

Operating
$Xv$

to (2. 5), we get

(5. 4) $\eta^{i}X\eta j+\eta!X\eta^{i}=0vv$

Transvecting (5. 4) with $\eta_{i}$ and $\eta^{i}$ respectively, we have

(5. 5) $X\eta jv=a\eta j$
,
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and

(5. 6) $X\eta^{j}=-a\eta^{i}v$

where we have put

$a=\eta^{r}X\eta_{r}=-\eta_{\gamma}X\eta^{r}vv$

Substituting (5. 5) into (2. 24), it follows that

(5. 7) $aj\eta;+a;\eta j-X\nabla j\eta;=\eta hXvvt_{ji}^{h}1$ , $a;=\partial ja$ ,

from which we get

(5. 8) $aj\eta;-a;\eta j+2a\varphi ji-2X\varphi j;=0v$

by virtue of (2. 8).

Transvecting (5. 8) with $\eta i$, we have

(5. 9) $\sigma_{J^{=(\eta^{r}a_{r})\eta j}}$

by virtue of (2. 3) and (5. 6). Hence (5. 8) turns to

(5. 10) $X\varphi j;=a\varphi jiv$

On the other hand, operating
$Xv$

to

$\varphi j^{r}\varphi f;=-g_{j};+\eta j\eta$ ;

and making use of (5. 3), (5. 5) and (5. 10), we get (5. 2).

In the next place well shall prove that $a$ is a constant. If we substitute (5. 2)

into the identity (2. 26), then we have

(5. 11) $Xvt_{ji}^{h}$ } $=\frac{1}{2}\left\{\begin{array}{l}a_{j(\delta_{i^{h}}+\eta^{h}\eta_{i})+ai(\delta_{j^{h}}+\eta^{h}\eta j)}\\-\sigma^{h}(g_{ji}+\eta j\eta_{i})+2\sigma(\varphi j^{h}\eta_{i}+\varphi\iota^{h}\eta j)\end{array}\right\}$

From (5. 7), (5. 10) and (5. 11), it follows that

$\eta^{r}a_{r}=g^{ji}\eta_{h}Xv\{_{ji}^{h}\}=_{z^{\eta^{r}a_{r}}}^{\underline{3}-\underline{n}}$

from which

$\eta^{\gamma}a_{r}=0$ .
Hence (5. 9) shows that $a_{J^{=0}}$ , $a=const$ .

Therefore (5. 11) becomes

(5. 12) $Xvt_{ji}^{h}$ } $=a(\varphi j^{h}\eta;+\varphi;^{h}\eta j)$ .

To prove the converse, we assume (5. 1) and (5. 2), then we see that (5. 6)
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and (5. 10) follow, because
$X\eta^{i}=g^{ji}X\eta jvvv+\eta jXg^{ji}$

$=a\eta^{i}-a\eta J(g^{ji}+\eta^{j}\eta^{i})=-a\eta^{j}$ ,

and transvecting (5. 8) with $\eta^{i}$ , we get

$a_{j^{-(\eta^{r}a_{\gamma})\eta J}}-2\eta^{i}X\varphi j;=0v$

from which and making use of (2. 3) and (5. 6), we get $\sigma J^{=}(\eta^{r}a_{r})\eta J$ .
Hence (5. 8) yields (5. 10). It is easily verified that $x_{\varphi j^{j}}=0v$ from (5. 2) and (5.

10). Q. E. D.
COROLLARY. In a $com$pact contact metric space, an infinitesimal $\varphi$ -transformation

is an automorphism. [7].

Proof. From (5. 2)

$xg_{ji}=\nabla_{j}v;+\nabla_{i}v_{j}=a(g_{ji}+\eta j\eta_{i})v$
$\sigma=const$ .

from which it follows that

$\nabla_{r}v^{r}=\frac{n+1}{2}a$ .

Applying Green’s theorem we have $a=0$ which means $v^{\iota}$ is an automorphism.

THEOREM 5. 2 In an Einstein contact metric space $(R\neq 0)$ , an infinitesimal $\varphi-$

transformation is an automorphism.

Proof. Substituting (5. 12) into the identity (2. 25), we have

(5. 13) $XR_{kJt^{h}}=\sigma[\nabla k(\varphi j^{h}\eta jv+\varphi i^{h}\eta j)-\nabla j(\varphi k^{h}\eta i+\varphi i^{h}\eta k)]$

from which it follows that

(5. 14) $X^{R_{J}};=\sigma\nabla_{r}(\varphi j^{r}\eta;+\varphi t^{r}\eta j)v$

(5. 15) $XR=-a(R+R_{ji}\eta^{j}\eta^{i})v$

because of (5. 2). By assumption

$R_{ji}=\frac{R}{n}g_{ji}$ .

(5. 15) reduced to

$XR=v-\frac{(n+1)\sigma}{n}R$

and we have $a=0$ .
THEOREM 5. 3 In a K-contact metric space of constant scalar curvature $R\neq-$

$(n-1)$ , an infinitesimal $\varphi$ -transformation is an automorphism.

Proof. Using (2. 17), (5. 15) becomes

3, 4) These theorem recentry have been proved for a global $\varphi$-transformation by S.
Tanno.
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$XR=-a(R+n-1)v$

which implies $\sigma=0$ if $R=const$ . and $R\neq-(n-1)$ .
THEOREM 5. 4. In an contact metric space, an infinitesimal $\varphi$ -transformation $v^{i}$

satisfies
(5. 16) $XN_{j^{i}}=-\sigma N_{j^{i}}v$

(5. 17) $XN_{kj^{j}}=0v$

where

(5. 18) $N_{j^{j}}\equiv\eta^{h}(\nabla h\varphi j^{i}-\nabla j\varphi h^{j})-\varphi j^{h}\nabla h\eta^{i}$ ,

(5. 19) $N_{kj^{i}}\equiv\varphi k^{h}(\nabla h\varphi j^{i}-\nabla j\varphi_{h^{i}})-\varphi J^{h(\nabla-\nabla_{k}\varphi h^{j})}h\varphi k^{i}$

$+(\nabla;\eta^{i})\eta k-(\nabla_{k}\eta^{i})\eta j$ .

Proof. For an infinitesimal $\varphi$ -transformation, the following equations hold good

(5. 20) $X\varphi;^{i}=0v$ $X\eta^{i}=-\sigma\eta^{i}v$

(5. 21) $xt_{ji}^{h}I=\sigma(\varphi j^{h}\eta;+\varphi t^{h}\eta J)v$
$\sigma=const$ .

Substituting (5. 20) and (5. 21) into the identity

$X\nabla_{h\varphi j^{j}}-\nabla hx\varphi j^{i}=\varphi J^{r}X\{ihr\}vvv-\varphi r^{i}Xt_{hj}^{r}\}v$

$X\nabla h\eta^{i}-\nabla hX\eta^{i}=\eta^{r}X\{ihr\}vvv$

we obtain

(5. 22) $X\nabla h\varphi J^{i}=\sigma(\delta_{h^{i}}-\eta^{i}\eta_{h})\eta jv$

$(5.23)$ $X\nabla h\eta^{i_{-=}}\sigma(\varphi h^{j}-\nabla h\eta^{i})v$

Operating
$Xv$

to (5. 18) and (5. 19) and making use of (5. 20), (5. 22) and (5. 23),

we obtain (5. 16) and (5. 17).

This theorem shows that in a contact metric space, $Nji^{h}$ is an invariant tensor
by an infinitesimal $\varphi$ -transformation. From now on, we shall seek for other
invariant tensors by this transformation. In the first place we shall give the
following.

LEMMA. In a K-contact metric space, for an infinitesimal $\varphi$ -transformation $v^{j}$ , the
following equations hold good.

(5. 24) $XR_{kji^{h}}=\sigma v\left\{\begin{array}{l}(\nabla k\varphi j^{h}-\nabla j\varphi k^{h})\eta_{i}+(\nabla k\varphi i^{h})\eta j-(\nabla_{J}\varphi i^{h})\eta_{k}\\+2_{\varphi kj\varphi i^{h}}+\varphi j^{h}\varphi ki-\varphi k^{h}\varphi ji\end{array}\right\}$

,
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(5. 25) $XR_{J^{j}}=2_{\sigma}(-g_{ji}+n\eta j\eta\oint)v$

(5. 26) $XH_{j};=-n\sigma\varphi j;v$

Proof. (5. 24) follows from (5. 13). (5. 25) is obtained from (5. 24) and (2.

11). Transvecting (5. 24) with $\varphi^{k_{h}}$ we get (5. 26).
Now, by virtue of (5. 13), (5. 22) and the relation

$X\nabla j\eta;=\sigma\nabla j\eta iv$

which is analogous to (5. 23), we can verify that, after some computation, in a
contact metric space

(5. 27) $X^{P_{hji^{h}}=0}v$

holds good, where $P_{kji^{h}}$ is defined by

(5. 28) $P_{kji^{h}}=R_{kji^{h}}-\frac{1}{\sigma}XR_{kji^{h}}+v(\delta_{k^{h}\eta j}-\delta_{j^{h}}\eta_{k})\eta;$ .

We can obtain easily the following identities

(5. 29) $P_{(kj)i^{h}}=0$ , $P_{(kji)^{h}}=0$ . $P_{hjr^{\gamma}}=0$ ,

(5. 30) $P_{ji}\equiv P_{rji^{\gamma}}=R_{ji}-\frac{1}{\sigma}XR_{ji}v+(n-1)\eta j\eta i$ ,

(5. 31) $Q_{ji}\equiv\varphi^{i_{h}}P_{kji^{h}}=H_{ji}-\frac{1}{\sigma}X^{H_{ji}}v$

In a K-contact metric space, by virtue of (5. 25) and (5. 26), we see

(5. 32) $P_{ji}=R_{ji}+2gj;-(n+1)\eta j\eta;$ ,

(5. 33) $Q_{J^{j}}=H_{ji}+n\varphi jj$ .

Moreover we have

$\eta^{k}\eta {}_{h}P_{kji^{h}}=0$ , $\varphi h^{i}P_{kji^{h}}=2Q_{k1}$ .

In a normal contact metric space we see that

$\eta_{h}P_{kji^{h}}=0$ ,

(5. 34) $P_{j;=\varphi j^{r}}Q_{ir}$ , $Q_{J;=\varphi j^{r}}P_{j\gamma}$ .

because of (2. 20) and (2. 21).

In a normal contact metric space (5. 28) reduces to

(5. 35) $P_{kji^{h}}=R_{kji^{h}}+(g_{kt\eta j}-gjt\eta_{k})\eta^{h}-(\delta_{k^{h}\eta j}-\delta_{j^{h}}\eta_{k})\eta$ ;

$-\varphi j^{h}\varphi k;+\varphi k^{h}\varphi j;-2\varphi i^{h}\varphi kj$ .

Thus we have obtained three invariant tensors $P_{kji^{h}},$ $P_{ji}$ and $Qji$ . We shall
call $P_{kji^{h}}$ the $\varphi$ -curvature tensor.
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In a K-contact metric space, if $P_{kji^{h}}=0$ , then we get $P_{ji}=0$ , that is, the Ricci
tensor takes the form

$ R_{ji}=-2g_{j};+(n+1)\eta j\eta$ ;

which implies the space is an $\eta$-Einstein one with $R=-(n-1)$ .
Conversely if an $\eta$-Einstein K-space admits an infinitesimal $\varphi$ -transformation, then
taking the Lie derivative of

$R_{j};=ag_{j;}+b\eta j\eta_{i}$

and making use of (5. 25), (5. 1) and (5.2) we obtain $P_{ji}=0$ . Thus we have

THEOREM 5. 5. In order that a K-contact metric space be an $\eta$ -Einstein one it is
necessary and sufficient that the tensor $P_{ji}$ vanishes identically.

Next, in a normal contact metric space, we can verify $H_{ji}$ is a closed tensor by

means of (2. 10), (2. 18) and Bianchi’s identity. So $Q_{ji}=H_{j};+n\varphi jj$ is also closed.
On the other hand from (5. 33) and (5. 34), we find

$\nabla^{i}Q_{ji}=\nabla^{i}(\varphi J^{rP_{ir})}$

$=()\eta jr$ .
Thus, if $R=-(n-1)$ , then we have $\nabla^{i}Q_{ji}=0$ which shows that $Q_{ji}$ is a harmonic
tensor. Conversely, if $Q_{ji}$ be harmonic, we get $R=-(n-1)$ . Hence we have

THEOREM 5. 6. In a normal contact metric space, we have $R=-(n-1)$ if and
$mly$ if the tensor $Q_{ji}$ is harmopnic.

Combining Theorem 5. 3 and 5. 6, we have the following

THEOREM 5. 7. If a normal contact metric space of constant scalar curvature has
no harmonic tensor $Q_{ji}$ , then an infinitesimal $\varphi$ -transformation is an automorphism.

\S 6. Infinitesimal affine transformations.

We shall prove the following

THEOREM 6. 1. In a K-contact metric space, if an infinitesimal contact transfor-
matiopn $v^{j}$ is affine, then $v^{j}$ is an automorphism.

Proof. By assumption, we shall put

(6. 1) $A\{jhi\}=0v$

(6. 2) $X\eta;=\sigma\eta;v$

Substituting (6. 1) and (6. 2) into the identity (2. 24), we get

(6. 3) $\sigma j\eta;+\sigma\varphi ji-X\varphi jiv=0$ , $\sigma_{J}=\partial_{j}\sigma$ ,
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from which we have

$\sigma_{j\eta_{i}+\sigma t\eta j}=0$ .

If we transvect this with $\eta^{i}$ and $gii$ respectively, then we get

$\sigma_{j^{=0}}$ .
Hence (6. 3) turns to

(6. 4)
$X\varphi 1;=\sigma\varphi jiv$

$\sigma=const$ .

from which we have

(6. 5) $X\eta^{j}=-\sigma\eta^{i}v$

Next, from (2. 16) it follows that

$R_{kjt^{h}\eta^{k}\eta_{h}=g_{ji}-\eta j\eta i}$ .
Operating

$Xv$
to the last equation and using (6. 2) and (6. 5), we get

(6. 6) $xg_{ji}=2\sigma\eta J\eta;v$

because of $XR_{kji^{h}}=0v$

On the other hand, taking the Lie derivative of (2. 7) and using (6. 2), (6. 4) and

(6. 6), it follows that

$\varphi ri(\sigma\varphi j^{r}+X\varphi J^{r})=0v$

from which we obtain

$x\varphi j^{j}=-\sigma\varphi j^{j}v$

By virtue of Lemma 4. 4, we have $\sigma=0$ , so $v^{j}$ is an automorphism.
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