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EQUIVALENCE CLASSES OF MIXED INVARIANT
SUBSPACES OVER THE BIDISK

KEI JI IZUCHI AND MASATOSHI NAITO

Abstract. A closed subspace N of the Hardy space H2 over the bidisk is said
to be mixed invariant under Tz and T ∗

w if TzN ⊂ N and T ∗
wN ⊂ N . In this

paper, we study unitary, similar and quasi-similar module maps for mixed invariant
subspaces. We give some characterization of these maps. All unitary module
maps are multiplication operators of unimodular functions. Under the condition
dim(N ª zN) = 1, we can describe similar and quasi-similar module maps by
outer functions.

1. Introduction

Let D2 be the bidisk and Γ2 be the distinguished boundary of D2. We use z, w as

variables over Γ2. Let L2 = L2(Γ2) and H2 = H2(Γ2) be the usual Lebesgue and

Hardy spaces over Γ2. We denote by H2(z) and H2(w) the z and w variable Hardy

spaces, respectively. For ϕ ∈ L∞(Γ2), we define the Toeplitz operator Tϕ on H2 by

Tϕf = PH2(ϕf), where PH2 is the orthgonal projection from L2 onto H2.

A closed subspace M of H2 is called invariant if TzM ⊂ M and TwM ⊂ M . In

[10, 11], K. H. Izuchi and the first author studied M satisfying rank(RzR
∗
w−R∗

wRz) =

1, where Rz = Tz|M and Rw = Tw|M . It is still open to describe all M satisfying

the above condition. Let L = H2 ª M . Then T ∗
z L ⊂ L and T ∗

wL ⊂ L. The space L

is called backward shift invariant. In [12], K. H. Izuchi and the first author showed

that the form of L can be described under the condition rank(SzS
∗
w − S∗

wSz) = 1,

where Sz = PLTz|L, Sw = PLTw|L. From such a thing, the authors feel that some

problems on L are easier than same type problems on M . To overcome this thing,

in [13], K. H. Izuchi and the authors introduced the concept of “mixed invariant”

for closed subspace on H2.

A closed subspace N of H2 with N 6= {0} and N 6= H2 is called mixed invariant

under Tz and T ∗
w if TzN ⊂ N and T ∗

wN ⊂ N . We define the operators Vz and Vw on N

by Vzf = Tzf and Vwf = PNTwf . In [13], K. H. Izuchi and the authors described

the form of mixed invariant subspaces N under the condition VzVw = VwVz. This
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is a similar result for invariant and backward shift invariant subspaces. Moreover,

we showed that a wandering subspace N ª VzN has a deep connection with the de

Branges-Rovnyak spaces studied by Sarason [15]. See [13] in detail.

It is well known result due to Beurling that for every invariant subspace M of the

Hardy space over the unit circle, M = ϕH2(Γ) for an inner function ϕ. But it is easy

to see that Beurling-type characterization is not possible for invariant subspaces of

H2(Γ2) [14]. Hence this directs one’s attention to investigate equivalence classes of

invariant subspaces of H2(Γ2), naturally. See [1, 3, 4, 5, 6, 9] for the related subjects.

In [1], Agrawal, Clark and Douglas introduced the concept of unitary equivalence of

invariant subspaces. They showed that two invariant subspaces of finite codimension

are unitarily equivalent if and only if they are equal. In [9], the first author gave

a complete characterization of pairs of invariant subspaces I and J of H2(Γ2) such

that I = ϕJ for an inner function ϕ. This is a generalization of Agrawal, Clark

and Douglas’s results. In [5, 6], Guo studied unitary equivalence from a module

theoretic viewpoint.

In this paper, we study unitary, similar, and quasi-similar module maps for mixed

invariant subspaces. For mixed invariant subspaces N1 and N2 of H2 under Tz

and T ∗
w, we write V

(j)
z = Vz and V

(j)
w = Vw on Nj. Note that V

(j)
z = Tz|Nj

and

V
(j)∗
w = T ∗

w|Nj
. A bounded linear map T : N1 → N2 is called a module map with

respect to (Vz, V
∗
w), (Vz, Vw), (V ∗

z , Vw), and (V ∗
z , V ∗

w) if

TV (1)
z = V (2)

z T and TV (1)∗
w = V (2)∗

w T,

TV (1)
z = V (2)

z T and TV (1)
w = V (2)

w T,

TV (1)∗
z = V (2)∗

z T and TV (1)
w = V (2)

w T,

TV (1)∗
z = V (2)∗

z T and TV (1)∗
w = V (2)∗

w T,

respectively. We say that N1 and N2 are unitarily equivalent (similar) if there is a

unitary (invertible) module map T : N1 → N2 for each respective type. We also say

that N1 and N2 are quasi-similar if there are one to one module maps T1 : N1 → N2

and T2 : N2 → N1 with dense range for each respective type. For a fixed N1, we

denote by orb(u,Vz ,V ∗
w)(N1), orb(s,Vz ,V ∗

w)(N1), and orb(qs,Vz ,V ∗
w)(N1) the family of mixed

invariant subspaces N which are unitarily equivalent, similar, and quasi-similar to

N1 with respect to (Vz, V
∗
w), respectively. We may consider other types of orbits of

N1. We have a characterization of unitary equivalence by unimodular functions. In

Corollary 2.2, we shall prove that the followings are equivalent;

(i) T : N1 → N2 is a unitary module map with respect to (Vz, V
∗
w).

(ii) T : N1 → N2 is a unitary module map with respect to (Vz, Vw).

(iii) T : N1 → N2 is a unitary module map with respect to (V ∗
z , V ∗

w).

(iv) T : N1 → N2 is a unitary module map with respect to (V ∗
z , Vw).

(v) There is a unimodular function ψ(z) satisfying Th = ψ(z)h for h ∈ N1.
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Under the conditon dim(N ª zN) = 1, we can describe similar and quasi-similar

module maps by outer functions.

2. Theorems

First, we prove the following theorem. The idea of the proof comes from Douglas

and Foias [4].

Theorem 2.1. Let N1 and N2 be mixed invariant subspaces of H2 under Tz and T ∗
w.

Let T : N1 → N2 be a unitary map. Then the following conditions are equivalent.

(i) T : N1 → N2 is a unitary module map with respect to (Vz, V
∗
w).

(ii) T : N1 → N2 is a unitary module map with respect to (Vz, Vw).

(iii) There is a unimodular function ψ(z) satisfying Th = ψ(z)h for every h ∈
N1.

Proof. (i) (or (ii)) ⇒ (iii): Suppose that T : N1 → N2 is a unitary module map with

respect to (Vz, V
∗
w) (or (Vz, Vw)). Let Ñj be the closed linear span of {T n

wNj : n ≥
0} = {wnNj : n ≥ 0}. Then Ñj is a mixed invariant subspace under Tz and T ∗

w,

and TwÑj ⊂ Ñj. By [13, Corollary 2.5], there are inner functions q1(z) and q2(z)

satisfying

Ñ1 = q1(z)H2 and Ñ2 = q2(z)H2. (2.1)

For F =
∑

T n
whn, hn ∈ N1, we define T̃F =

∑
T n

wThn. Since TT ∗
w = T ∗

wT (or

TV
(1)
w = V

(2)
w T ) on N1 and T : N1 → N2 is unitary, we have

‖T̃F‖2 =
∑
n,k

〈
T n

wThn, T
k
wThk

〉
=

∑
n≥k

〈
Thn, T ∗(n−k)

w Thk

〉
+

∑
n<k

〈
T ∗(k−n)

w Thn, Thk

〉
(
or =

∑
n≥k

〈
V (2)n−k

w Thn, Thk

〉
+

∑
n<k

〈
Thn, V

(2)k−n
w Thk

〉)
=

∑
n≥k

〈
Thn, TT ∗(n−k)

w hk

〉
+

∑
n<k

〈
TT ∗(k−n)

w hn, Thk

〉
(
or =

∑
n≥k

〈
TV (1)n−k

w hn, Thk

〉
+

∑
n<k

〈
Thn, TV (1)k−n

w hk

〉)
=

∑
n≥k

〈
hn, T

∗(n−k)
w hk

〉
+

∑
n<k

〈
T ∗(k−n)

w hn, hk

〉
(
or =

∑
n≥k

〈
V (1)n−k

w hn, hk

〉
+

∑
n<k

〈
hn, V

(1)k−n
w hk

〉)
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=
∑
n≥k

〈
T n

whn, T k
whk

〉
+

∑
n<k

〈
T n

whn, T k
whk

〉
= ‖

∑
T n

whn‖2 = ‖F‖2.

Hence T̃ : Ñ1 → Ñ2 is well defined and a unitary map.

We shall prove that

T̃ Tw = TwT̃ and T̃ Tz = TzT̃ on Ñ1. (2.2)

Since TTz = TzT on N1, we have

T̃ TzF = T̃
( ∑

T n
wTzhn

)
=

∑
T n

wTTzhn = TzT̃F.

We also have

T̃ TwF = T̃
( ∑

T n+1
w hn

)
=

∑
T n+1

w Thn = TwT̃F.

Thus we get (2.2).

By (2.1), we can define the operator
˜̃
T on H2 by˜̃

T : H2 = q1(z)Ñ1 3 q1(z)F → q2(z)T̃F ∈ H2.

Since T̃ : Ñ1 → Ñ2 is unitary,
˜̃
T : H2 → H2 is unitary. By (2.2), it is easy to see

that
˜̃
TTz = Tz

˜̃
T and

˜̃
TTw = Tw

˜̃
T on H2. Hence we get

˜̃
T = cI for some c ∈ C with

|c| = 1. Thus we get q2(z)T̃F = cq1(z)F for F ∈ Ñ1. Therefore T̃F = cq1(z)q2(z)F

for every F ∈ Ñ1. Since T̃ |N1 = T , Th = cq1(z)q2(z)h for every h ∈ N1. Thus we

get (iii).

(iii) ⇒ (i) and (ii): Suppose that Th = ψ(z)h for h ∈ N1, where ψ(z) is a

unimodular function. It is trivial that TV
(1)
z = V

(2)
z T . We have

TV (1)∗
w h = ψ(z)T ∗

wh = T ∗
w(ψ(z)h) = V (2)∗

w Th.

Hence TV
(1)∗
w = V

(2)∗
w T .

We write wh = h1⊕g1 ∈ N1⊕(H2ªN1). Since ψ(z)N1 = N2 ⊂ H2, ψ(z)g1 ∈ H2.

Since g1 ⊥ N1, we have ψ(z)g1 ⊥ ψ(z)N1 = N2. Thus

ψ(z)wh = ψ(z)h1 ⊕ ψ(z)g1 ∈ N2 ⊕ (H2 ª N2).

Hence PN2(ψ(z)wh) = ψ(z)h1 and

TV (1)
w h = Th1 = ψ(z)h1 = PN2(ψ(z)wh) = V (2)

w Th.

Therefore we get TV
(1)
w = V

(2)
w T . ¤

Corollary 2.2. Let N1 and N2 be mixed invariant subspaces of H2 under Tz and T ∗
w.

Let T : N1 → N2 be a unitary map. Then the following conditions are equivalent.

(i) T : N1 → N2 is a unitary module map with respect to (Vz, V
∗
w).

(ii) T : N1 → N2 is a unitary module map with respect to (Vz, Vw).

(iii) T : N1 → N2 is a unitary module map with respect to (V ∗
z , V ∗

w).
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(iv) T : N1 → N2 is a unitary module map with respect to (V ∗
z , Vw).

(v) There is a unimodular function ψ(z) satisfying Th = ψ(z)h for h ∈ N1.

Proof. Conditions (iii) and (iv) are equivalent to that T ∗ : N2 → N1 are unitary

module maps with respect to (Vz, Vw) and (Vz, V
∗
w), respectively. By Theorem 2.1,

(iii) and (iv) are equivalent, and also they are equivalent to that T ∗h = ϕ(z)h, h ∈
N2, for a unimodular function ϕ(z). Hence Th1 = ϕ(z)h1 for every h1 ∈ N1. ¤

Corollary 2.3. Let N1 be a mixed invariant subspace of H2 under Tz and T ∗
w. Then

orb(u,Vz ,V ∗
w)(N1) = orb(u,Vz ,Vw)(N1) = orb(u,V ∗

z ,V ∗
w)(N1) = orb(u,V ∗

z ,Vw)(N1)

and this family consists of mixed invariant subspaces N of H2 such that N = ψ(z)N1

for some unimodular function ψ(z).

In the above argument, the condition of unitarity of the module map T is impor-

tant. It seems difficult to describe similar-orbits of N1 generally, so we study for a

special case of N1 with dim (N1 ª zN1) = 1, which is studied in [13].

Let Φ be the family of pairs (a(z), b(z)) in H∞(z) satisfying |a(z)| < 1 a.e. on Γ

and |a(z)|2 + |b(z)|2 = 1 a.e. on Γ. For (a(z), b(z)) ∈ Φ, we write

N = N(a,b) = GH2(z), where G =
b(z)

1 − wa(z)
.

By [13, Theorems 2.4 and 3.2], N is a mixed invariant subspace of H2 under Tz and

T ∗
w with N ª zN = C · G, and a(z) is constant if and only if [Vz, Vw] = 0. We note

that ‖G‖ = 1,

‖ξ(z)G‖ = ‖ξ(z)‖ and 〈ξ(z)G, η(z)G〉 = 〈ξ(z), η(z)〉, (2.3)

V ∗
w(ξ(z)G) = a(z)ξ(z)G, (2.4)

and V ∗
z (ξ(z)G) = (T ∗

z ξ(z))G for every ξ(z), η(z) ∈ H2(z). Moreover by [13, Lemma

5.1] we have

Vw(ξ(z)G) = (T ∗
a ξ(z))G. (2.5)

Lemma 2.4. Let

N1 = N(a1,b1) = G1H
2(z), G1 =

b1(z)

1 − wa1(z)

for some (a1(z), b1(z)) ∈ Φ and N2 be a mixed invariant subspace of H2 under Tz

and T ∗
w. Let T : N1 → N2 be a one to one bounded linear map with dense range. If

TV
(1)
z = V

(2)
z T , then

N2 = N(a2,b2) = G2H
2(z), G2 =

b2(z)

1 − wa2(z)

for some (a2(z), b2(z)) ∈ Φ and there is an outer function h(z) in H∞(z) satisfying

T (ξ(z)G1) = h(z)ξ(z)G2 ξ(z) ∈ H2(z) and T ∗(η(z)G2) = (T ∗
hη(z))G1 for every

ξ(z), η(z) ∈ H2(z).
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Proof. We have T (zN1) = zTN1 ⊂ zN2. Since C · TG1 + zTN1 is dense in N2,

C ·TG1 + zN2 is dense in N2. Hence dim (N2 ª zN2) = 1. When [V
(2)
z , V

(2)
w ] = 0, by

[13, Theorem 2.4] there exist an inner function q(z) and c ∈ D satisfying

N2 = G2H
2(z), where G2 =

√
1 − |c|2q(z)

1 − cw
.

Here we used condition dim (N2 ª zN2) = 1. Write a2(z) = c and b2(z) =√
1 − |c|2q(z). Then (a2(z), b2(z)) ∈ Φ and N2 = N(a2,b2).

Suppose that [V
(2)
z , V

(2)
w ] 6= 0. By [13, Theorem 3.2], there exists (a2(z), b2(z)) ∈ Φ

such that a2(z) is nonconstant and

N2 = N(a2,b2) = G2H
2(z), where G2 =

b2(z)

1 − wa2(z)
.

Since TG1 ∈ N2, there is h(z) ∈ H2(z) with TG1 = h(z)G2. For ξ(z) ∈ H2(z), we

have T (ξ(z)G1) = h(z)ξ(z)G2. By (2.3), it is not difficult to see that h(z)H2(z) is

dense in H2(z), so h(z) is an outer function in H∞(z). For η(z) ∈ H2(z), we have〈
T ∗(η(z)G2), ξ(z)G1

〉
=

〈
η(z)G2, h(z)ξ(z)G2

〉
=

〈
h(z)η(z)G2, ξ(z)G2

〉
=

〈
(T ∗

hη(z))G2, ξ(z)G2

〉
by (2.5).

Thus we get T ∗(η(z)G2) = (T ∗
hη(z))G2. ¤

Theorem 2.5. Let

N1 = N(a1,b1) = G1H
2(z), G1 =

b1(z)

1 − wa1(z)

for some (a1(z), b1(z)) ∈ Φ and N2 be a mixed invariant subspace of H2 under Tz

and T ∗
w. Let T : N1 → N2 be a one to one bounded linear map with dense range. If T

is a module map with respect to (Vz, V
∗
w), then there exists b2(z) ∈ H∞(z) satisfying

(a1(z), b2(z)) ∈ Φ and

N2 = N(a1,b2) = G2H
2(z), where G2 =

b2(z)

1 − wa1(z)
,

and there exists an outer function h(z) ∈ H∞(z) satisfying

T (ξ(z)G1) = h(z)ξ(z)G2 =
h(z)b2(z)

b1(z)
ξ(z)G1

for every ξ(z) ∈ H2(z).

Proof. By Lemma 2.4, we have

N2 = N(a2,b2) = G2H
2(z), G2 =

b2(z)

1 − wa2(z)

— 150 —



for some (a2(z), b2(z)) ∈ Φ, and there is an outer function h(z) ∈ H∞(z) satisfying

T (ξ(z)G1) = h(z)ξ(z)G2 for every ξ(z) ∈ H2(z). By (2.4),

TV (1)∗
w G1 = T (a1(z)G1) = h(z)a1(z)G2.

Also we have

V (2)∗
w TG1 = V (2)∗

w (h(z)G2) = h(z)a2(z)G2.

Since TV
(1)∗
w = V

(2)∗
w T , we get a1(z) = a2(z). Hence

T (ξ(z)G1) = h(z)ξ(z)
b2(z)

1 − wa2(z)
=

h(z)b2(z)

b1(z)
ξ(z)G1.

¤

Theorem 2.6. Let

N1 = N(a1,b1) = G1H
2(z), G1 =

b1(z)

1 − wa1(z)

for some (a1(z), b1(z)) ∈ Φ and N2 be a mixed invariant subspace of H2 under Tz

and T ∗
w. Let T : N1 → N2 be a one to one bounded linear map with dense range. If T

is a module map with respect to (Vz, Vw), then there exists b2(z) ∈ H∞(z) satisfying

(a1(z), b2(z)) ∈ Φ and

N2 = N(a1,b2) = G2H
2(z), where G2 =

b2(z)

1 − wa1(z)
,

and there exists an outer function h(z) ∈ H∞(z) satisfying

T (ξ(z)G1) = h(z)ξ(z)G2 =
h(z)b2(z)

b1(z)
ξ(z)G1

for every ξ(z) ∈ H2(z). Moreover if a1(z) is nonconstant, then h(z) is a nonzero

constant function.

Proof. By Lemma 2.4,

N2 = N(a2,b2) = G2H
2(z), where G2 =

b2(z)

1 − wa2(z)

for some (a2(z), b2(z)) ∈ Φ, and T (ξ(z)G1) = h(z)ξ(z)G2, ξ(z) ∈ H2(z) for an outer

function h(z) ∈ H∞(z). By (2.5), we have TV
(1)
w (ξ(z)G1) = h(z)(T ∗

a1
ξ(z))G2 and

V (2)
w T (ξ(z)G1) = V (2)

w (h(z)ξ(z)G2) =
(
T ∗

a2
(h(z)ξ(z))

)
G2.

Since TV
(1)
w = V

(2)
w T , we have h(z)T ∗

a1
ξ(z) = T ∗

a2
(h(z)ξ(z)) for every ξ(z) ∈ H2(z).

Hence ThT
∗
a1

= T ∗
a2

Th on H2(z). Therefore ThTa1 = Ta2h on H2(z). By the Brown-

Halmos theorem (see [7]), either h(z) ∈ H∞(z) or a1(z) ∈ H∞(z), so either h(z) or

a1(z) is constant.

If h(z) = c for some c ∈ C, since T has dense range, c 6= 0 and Tca1 = Tca2 . Hence

a1(z) = a2(z).
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If a1(z) = d, d ∈ C, then Tdh = Ta2h. Moreover if d = 0, then a2(z) = 0 and this

is a contradiction. If d 6= 0, then a2(z) = d, so a1(z) = a2(z). Thus we get the

assertion. ¤

Theorem 2.7. Let

N1 = N(a1,b1) = G1H
2(z), G1 =

b1(z)

1 − wa1(z)

for some (a1(z), b1(z)) ∈ Φ and N2 be a mixed invariant subspace of H2 under Tz

and T ∗
w. Let T : N1 → N2 be an invertible bounded linear map. If T is a module map

with respect to (V ∗
z , Vw), then there exists b2(z) ∈ H∞(z) satisfying (a1(z), b2(z)) ∈ Φ

and

N2 = N(a1,b2) = G2H
2(z), where G2 =

b2(z)

1 − wa1(z)
,

and there exists an invertible outer function h(z) ∈ H∞(z) satisfying T (ξ(z)G1) =

(T ∗
hξ(z))G2 for every ξ(z) ∈ H2(z).

Proof. Since TV
(1)∗
z = V

(2)∗
z T , we have V

(2)∗
z TG1 = 0, so TG1 ∈ N2 ª zN2. Suppose

that N2 ª zN2 6= C · TG1. Then there exists a nonzero F2 ∈ N2 ª zN2 with

F2 ⊥ C · TG1. Since T is invertible, there is F1 ∈ N1 with TF1 = F2. Then

TV
(1)∗
z F1 = V

(2)∗
z TF1 = 0, so V

(1)∗
z F1 = 0. Thus we get F1 ∈ N1 ª zN1. Since

N1 ª zN1 = C · G1, we have F1 = cG1, and F2 = TF1 = cTG1. But this is a

contradiction. Thus dim (N2 ª zN2) = 1. By [13, Theorems 2.4 and 3.2], there

exists (a2(z), b2(z)) ∈ Φ satisfying

N2 = N(a2,b2) = G2H
2(z), where G2 =

b2(z)

1 − wa2(z)
.

We have V
(1)
z T ∗ = T ∗V

(2)
z and V

(1)∗
w T ∗ = T ∗V

(2)∗
w . By Theorem 2.5, we have

a1(z) = a2(z) and there is an outer function h(z) ∈ H∞(z) satisfying

T ∗(η(z)G2) =
h(z)b1(z)

b2(z)
η(z)G2

for every η(z) ∈ H2(z). Note that |b1(z)| = |b2(z)| a.e. on Γ. For ξ(z) ∈ H2(z), we

have 〈
T (ξ(z)G1), η(z)G2

〉
=

〈
ξ(z)G1, T

∗(η(z)G2)
〉

=
〈
ξ(z)G1,

h(z)b1(z)

b2(z)
η(z)G2

〉
=

〈
h(z)ξ(z)

b2(z)

b1(z)
G1, η(z)G2

〉
=

〈
h(z)ξ(z)G2, η(z)G2

〉
=

〈
(T ∗

hξ(z))G2, η(z)G2

〉
.
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Thus we get T (ξ(z)G1) = (T ∗
hξ(z))G2. Since T is invertible, T ∗

h is invertible on

H2(z). By [7, p. 140], h(z) is invertible in H∞(z). ¤

Theorem 2.8. Let

N1 = N(a1,b1) = G1H
2(z), G1 =

b1(z)

1 − wa1(z)

for some (a1(z), b1(z)) ∈ Φ and N2 be a mixed invariant subspace of H2 under Tz

and T ∗
w. Let T : N1 → N2 be an invertible bounded linear map. If T is a module map

with respect to (V ∗
z , V ∗

w), then there exists b2(z) ∈ H∞(z) satisfying (a1(z), b2(z)) ∈ Φ

and

N2 = N(a1,b2) = G2H
2(z), where G2 =

b2(z)

1 − wa1(z)
,

and there exists an invertible outer function h(z) ∈ H∞(z) satisfying T (ξ(z)G1) =

(T ∗
hξ(z))G2 for every ξ(z) ∈ H2(z). Moreover if a1(z) is nonconstant, h(z) is a

nonzero constant function.

Proof. As the first paragraph of the proof of Theorem 2.7,

N2 = N(a2,b2) = G2H
2(z), where G2 =

b2(z)

1 − wa2(z)
.

By the assumption, T ∗ : N2 → N1 is an invertible bounded module map with

respect to (Vz, Vw). Then by Theorem 2.6, a1(z) = a2(z) and there is an outer

function h(z) ∈ H∞(z) satisfying

T ∗(η(z)G2) =
h(z)b1(z)

b2(z)
η(z)G2

for every η(z) ∈ H2(z). By the second paragraph of the proof of Theorem 2.7, we

have T (ξ(z)G1) = (T ∗
hξ(z))G2 for every ξ(z) ∈ H2(z). ¤
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