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GEOMETRIC REALIZATIONS OF CURVATURE
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This paper is dedicated to Professor Sekigawa

Abstract. We study geometric realization questions of curvature in the affine,
Riemannian, almost Hermitian, almost para Hermitian, almost hyper Hermitian,
almost hyper para Hermitian, Hermitian, and para Hermitian settings. We also
express questions in Ivanov–Petrova geometry, Osserman geometry, and curvature
homogeneity in terms of geometric realizations.

1. Introduction

A central area of study in Differential Geometry is the examination of the relation-

ship between purely algebraic properties of the Riemann curvature tensor and the

underlying geometric properties of the manifold. Many authors have worked in this

area in recent years. Nevertheless, many fundamental questions remain unanswered.

It is frequently convenient to work first purely algebraically and pass later to

the geometric setting; many questions in differential geometry can be phrased as

problems involving the geometric realization of curvature. Here is a brief outline to

this paper. In Section 2, we study the affine setting, in Section 3, we study pseudo

Riemannian geometry, and in Section 4, we combine these two structures and con-

sider realization problems related to affine geometry where the additional structure

of a pseudo Riemannian metric is present. In Section 5, we turn our attention to

almost Hermitian and almost para Hermitian geometry and study the scalar cur-

vature and the ?-scalar curvature. In Section 6, we examine similar questions in

hyper almost Hermitian geometry and hyper almost para Hermitian geometry. In

Section 7, we study realization questions which arise when the structures in question

are to be integrable. In Sections 8 and 9, we discuss Ivanov–Petrova geometry and
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Osserman geometry, respectively. In Section 10, we present questions of curvature

homogeneity.

The decomposition of the appropriate space of tensors into irreducible modules

under the appropriate structure group is central to our investigation and we review

the appropriate results in each section. The results in Sections 2-7, although they

involve non-linear analysis, are closely tied to the representation theory of the ap-

propriate group. In contrast, the results of Sections 8-10 are non-linear in their very

formulation since one is studying orbit spaces under the structure group which are

not linear subspaces. Throughout this paper, we shall let M be a smooth manifold

of dimension m ≥ 4; there are similar results in the 2 dimensional and 3 dimensional

settings. We shall let ∇ be a torsion free connection on the tangent bundle of M .

Let g be a pseudo Riemannian metric of signature (p, q) on M and let M := (M, g)

be the associated pseudo Riemannian manifold.

2. Affine Geometry

We refer to [38, 66] for further information concerning affine geometry. An affine

manifold is a pair (M,∇) where M is a smooth manifold and where ∇ is a torsion

free connection on M . The associated curvature operator R is defined by setting:

R(x, y) := ∇x∇y −∇y∇x −∇[x,y] .

This (1, 3) tensor satisfies the identities:

R(x, y) = −R(y, x), R(x, y)z + R(y, z)x + R(z, x)y = 0 . (2.1)

Let V be a vector space of dimension m. A tensor A ∈ ⊗2V ∗⊗End(V ) satisfying

the symmetries given in Equation (2.1) is called an affine algebraic curvature oper-

ator; let A(V ) ⊂ ⊗2V ∗ ⊗ End(V ) be the subspace of all such operators. An affine

curvature operator A ∈ A(V ) is said to be geometrically realizable if there exist an

affine manifold (M,∇), a point P of M (which is called the realizing point), and

an isomorphism φ : V → TP M so that φ∗RP = A. In either the algebraic or the

geometric setting, one defines the Ricci tensor ρ by:

ρ(x, y) := Tr{z → A(z, x)y} .

2.1. The decomposition of A(V ) as a GL(V ) module

The action of the general linear group GL(V ) on the vector space of affine algebraic

curvature operators A(V ) by pullback is not irreducible, but decomposes as the

direct sum of irreducible modules. The decomposition V ∗ ⊗ V ∗ = Λ2(V ∗) ⊕ S2(V ∗)

is a GL(V ) equivariant decomposition of V ∗ ⊗ V ∗ into irreducible GL(V ) modules;
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we let ρa and ρs be the components in Λ2(V ∗) and S2(V ∗), respectively, where

ρa(x, y) := 1
2
{ρ(x, y) − ρ(y, x)} and ρs(x, y) := 1

2
{ρ(x, y) + ρ(y, x)} .

One has the following result of Bokan [6] and of Strichartz [70]:

Theorem 2.1. Let dim(V ) ≥ 4. The Ricci tensor ρ yields a GL(V ) equivariant

short exact sequence

0 → ker(ρ) → A(V )
ρa⊕ρs−→Λ2(V ∗) ⊕ S2(V ∗) → 0

which is equivariantly split by the map σ where

{σρa}(x, y)z = −1
1+m

{2ρa(x, y)z + ρa(x, z)y − ρa(y, z)x},
{σρs}(x, y)z = 1

1−m
{ρs(x, z)y − ρs(y, z)x} .

One has a direct sum decomposition of A(V ) into irreducible GL(V ) modules:

A(V ) = ker(ρ) ⊕ Λ2(V ∗) ⊕ S2(V ∗) .

We note for the sake of completeness that:

dim{ker(ρ) ∩ A(V )} = m2(m2−4)
3

dim{Λ2(V ∗)} = m(m−1)
2

dim{S2(V ∗)} = m(m+1)
2

dim{A(V )} = m2(m2−1)
3

Definition 2.2. Let A ∈ A(V ).

(1) A is Ricci symmetric if and only if ρ ∈ S2(V ∗), i.e., ρa = 0.

(2) A is Ricci anti-symmetric if and only if ρ ∈ Λ2(V ∗), i.e., ρs = 0.

(3) A is Ricci flat if and only if ρ = 0.

(4) The Weyl projective curvature operator P is the component of A in ker(ρ),

i.e., P := A− σρ ∈ ker ρ. A is projectively flat if and only if P = 0.

(5) A is flat if and only if A = 0, i.e., A is both projectively flat and Ricci flat.

2.2. Equiaffine geometry

Ricci symmetric torsion free connections are often called equiaffine; they play a

central role in many settings – see, for example, the discussion in [5, 7, 46, 50, 57].

The following result is well known [61] and motivates their investigation:

Theorem 2.3. Let (M,∇) be an affine manifold. The following assertions are

equivalent:

(1) Tr(R) = 0.

(2) ∇ is Ricci symmetric.

(3) ∇ locally admits a parallel volume form.
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2.3. Geometric realizability of affine algebraic curvature operators I

Theorem 2.1 gives rise to additional geometric realizability questions; the decomposi-

tion of A(V ) as a GL(V ) module has 3 components so there are 8 natural geometric

realization questions which are GL(V ) equivariant. We refer to the discussion in

[37, 39] for the proof of the following result which shows, in particular, that the

symmetries of Equation (2.1) generate the universal symmetries of the curvature

operator of a torsion free connection:

Theorem 2.4.

(1) Any affine algebraic curvature operator can be geometrically realized by an

affine manifold.

(2) Any Ricci symmetric affine algebraic curvature operator can be geometrically

realized by a Ricci symmetric affine manifold.

(3) Any Ricci anti-symmetric affine algebraic curvature operator can be geomet-

rically realized by a Ricci anti-symmetric affine manifold.

(4) Any Ricci flat affine algebraic curvature operator can be geometrically realized

by a Ricci flat affine manifold.

(5) Any projectively flat affine algebraic curvature operator can be geometrically

realized by a projectively flat affine manifold.

(6) Any projectively flat Ricci symmetric affine algebraic curvature operator can

be geometrically realized by a projectively flat Ricci symmetric affine mani-

fold.

(7) A projectively flat Ricci anti-symmetric affine algebraic curvature operator

which is not flat can not be geometrically realized by a projectively flat, Ricci

anti-symmetric affine manifold.

(8) If A is flat, then A is geometrically realized by a flat affine manifold.

These geometric realizability results can be summarized in the following table;

the non-zero components of A are indicated by ?.

ker(ρ) S2(V ∗) Λ2(V ∗) ker(ρ) S2(V ∗) Λ2(V ∗)

? ? ? yes 0 ? ? yes

? ? 0 yes 0 ? 0 yes

? 0 ? yes 0 0 ? no

? 0 0 yes 0 0 0 yes

3. Pseudo Riemannian Geometry

Let V be a finite dimensional real vector space of dimension m. One says that

A ∈ ⊗4(V ∗) is an algebraic curvature tensor on V if A satisfies the same symmetries
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as a Riemann curvature tensor:

A(x, y, z, w) = −A(y, x, z, w) = A(z, w, x, y),

A(x, y, z, w) + A(y, z, x, w) + A(z, x, y, w) = 0 .
(3.1)

Let R(V ) be the space of all such 4-tensors; note that 〈·, ·〉 induces a non-degenerate

inner product on R(V ). We say that M := (V, 〈·, ·〉, A) is a curvature model if

A ∈ R(V ) and if 〈·, ·〉 is a non-degenerate symmetric bilinear form of signature (p, q)

on V . M is said to be Riemannian if p = 0 and Lorentzian if p = 1. Two curvature

models M1 = (V1, 〈·, ·〉1, A1) and M2 = (V2, 〈·, ·〉2, A2) are said to be isomorphic, and

one writes M1 ≈ M2, if there is an isomorphism φ : V1 → V2 so that

φ∗〈·, ·〉2 = 〈·, ·〉1 and φ∗A2 = A1 .

3.1. The decomposition of R(V ) as an O(V, 〈·, ·〉) module

If M is a curvature model, then the associated orthogonal group O(V, 〈·, ·〉) is defined

by setting:

O(V, 〈·, ·〉) := {T ∈ GL(V ) : T ∗〈·, ·〉 = 〈·, ·〉} .

Let εij and Aijkl be the components of 〈·, ·〉 and of A relative to a basis {ei} for V :

εij := 〈ei, ej〉 and Aijkl := A(ei, ej, ek, el) .

Let εij be the inverse matrix. Adopt the Einstein convention and sum over repeated

indices. The components of the Ricci tensor ρ and the scalar curvature τ are:

ρil := εjkAijkl and τ := εilρil .

Let S2
0(V

∗, 〈·, ·〉) ⊂ S2(V ∗) be the subspace of trace free symmetric 2-tensors and

let ρ0 := ρ − 1
m

τ〈·, ·〉 be the trace free Ricci tensor. We refer to Singer and Thorpe

[69] for:

Theorem 3.1. Let dim(V ) ≥ 4. There is an O(V, 〈·, ·〉) equivariant short exact

sequence

0 → ker(ρ) → R(V )
ρ0⊕τ−→S2

0(V
∗, 〈·, ·〉) ⊕ R → 0

which is equivariantly split by the map σ where

σ(ρ)(x, y, z, w) : = 1
m−2

{ρ(x,w)〈y, z〉 + 〈x,w〉ρ(y, z)}
− 1

m−2
{ρ(x, z)〈y, w〉 + 〈x, z〉ρ(y, w)}

− τ
(m−1)(m−2)

{〈x,w〉〈y, z〉 − 〈x, z〉〈y, w〉} .

One has an orthogonal decomposition of R(V ) into irreducible O(V, 〈·, ·〉) modules:

R(V ) = ker(ρ) ⊕ S2
0(V

∗, 〈·, ·〉) ⊕ R .
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We note for the sake of completeness that:

dim{R} = 1 dim{ker(ρ) ∩ R(V )} = m(m+1)(m+2)(m−3)
12

dim{R(V )} = m2(m2−1)
12

dim{S2
0(V

∗, 〈·, ·〉)} = (m−1)(m+2)
2

3.2. Geometric realizability of algebraic curvature tensors

Assume given a pseudo Riemannian manifold M := (M, g) of signature (p, q). Let

∇ be the Levi-Civita connection of M and let R ∈ ⊗4T ∗M be the curvature tensor:

R(x, y, z, w) = g(R(x, y)z, w) .

Let M = (V, 〈·, ·〉, A) be a curvature model. We say that M is geometrically realiz-

able if there exist a pseudo Riemannian manifold M, a point P of M , an isomor-

phism φ : V → TP M such that

φ∗gP = 〈·, ·〉 and φ∗RP = A .

The Weyl conformal curvature tensor W := A−σρ is the projection of A on ker(ρ);

we say a model or a pseudo Riemannian manifold is conformally flat if and only if

W = 0. The following result [11] shows, in particular, that the relations of Equation

(3.1) generate the universal symmetries of the Riemann curvature tensor. We focus

our attention on the scalar curvature:

Theorem 3.2.

(1) Any curvature model is geometrically realizable by a pseudo Riemannian

manifold of constant scalar curvature.

(2) Any conformally flat curvature model is geometrically realizable by a confor-

mally flat pseudo Riemannian manifold of constant scalar curvature.

To solve the Yamabe problem [3, 62, 74, 76], one constructs a Riemannian metric

of constant scalar curvature in a given conformal class on a compact Riemannian

manifold. The complex analogue has been also solved [21] by constructing an almost

Hermitian metric of constant scalar curvature in the conformal class of a compact

almost Hermitian manifold. Theorem 3.2 has a somewhat different flavor as we are

not fixing the conformal class but rather the curvature tensor at the realizing point.

Furthermore, our manifolds are not compact nor even complete.

4. Affine and Riemannian Geometry

We now consider mixed structures – we shall study an affine structure and a pseudo

Riemannian metric where the given affine connection is not the Levi-Civita connec-

tion of the pseudo Riemannian metric; thus the two structures are decoupled.
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Let 〈·, ·〉 be a non-degenerate symmetric inner product on V of signature (p, q).

Expand A ∈ A(V ) in the form

A(ei, ej)ek = Aijk
`e` .

The scalar curvature τ and trace free Ricci tensor ρ0 are then given, respectively,

by contracting indices

τ := εijAkij
k, ρ0(x, y) := ρs(x, y) − τ

m
〈x, y〉 .

One has an orthogonal decomposition of V ∗⊗V ∗ into irreducible O(V, 〈·, ·〉) modules

V ∗ ⊗ V ∗ = Λ2(V ∗) ⊕ S2
0(V

∗, 〈·, ·〉) ⊕ R . (4.1)

4.1. Geometric realizability of affine algebraic curvature tensors II

The decomposition of Equation (4.1) leads to several geometric realization questions

which are natural with respect to the structure group O(V, 〈·, ·〉) and which can all

be solved either in the real analytic category or in the Cs category for any s ≥ 1. As

our considerations are local, we take M = V and P = 0. The primary focus of our

investigation is on constant scalar curvature and on properties of the Ricci tensor.

We refer to [40] for the proof of the following result:

Theorem 4.1. Let g be a Cs (resp. real analytic) pseudo Riemannian metric which

is defined on an open neighborhood of 0 ∈ V . Let A ∈ A(V ). There exists a

torsion free Cs (resp. real analytic) connection ∇ which is defined on a smaller open

neighborhood of 0 in V such that:

(1) R0 = A.

(2) ∇ has constant scalar curvature.

(3) If A is Ricci symmetric, then ∇ is Ricci symmetric.

(4) If A is Ricci anti-symmetric, then ∇ is Ricci anti-symmetric.

(5) If A is Ricci traceless, then ∇ is Ricci traceless.

4.2. The decomposition of A(V ) as an O(V, 〈·, ·〉) module

The subspace ker(ρ) ⊂ A(V ) is not an irreducible O(V, 〈·, ·〉) module but decomposes

as the direct sum of 5 additional irreducible factors. We refer to Bokan[6] for the

proof of the following result:

Theorem 4.2. Let dim(V ) ≥ 4. There is an orthogonal decomposition of A(V ) into

8 irreducible O(V, 〈·, ·〉) modules A(V ) = A1 ⊕ ... ⊕ A8 where:

A1 ≈ R, A2 ≈ A5 ≈ S2
0(V

∗, 〈·, ·〉), A3 ≈ A4 ≈ Λ2(V ∗),

A6 = {Θ ∈ ⊗4V ∗ : Θijkl + Θjkil + Θkijl = 0, Θijkl = −Θjikl = Θklij,
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εilΘijkl = 0},
A7 = {Θ ∈ ⊗4V ∗ : Θkjil + Θikjl − Θljik − Θiljk = 0, Θijkl = −Θjikl = Θijlk,

εilΘijkl = 0},
A8 = {Θ ∈ ⊗4V ∗ : Θijkl = −Θjikl = −Θijlk = −Θklij, ε

ilΘijkl = 0}.

We note for the sake of completeness that:

dim{A2} = dim{W5} = (m−1)(m+2)
2

dim{A1} = 1

dim{A3} = dim{W4} = m(m−1)
2

dim{A6} = m(m+1)(m−3)(m+2)
12

dim{A7} = (m−1)(m−2)(m+1)(m+4)
8

dim{A8} = m(m−1)(m−3)(m+2)
8

5. Almost Hermitian Geometry

We refer to the discussion in [22, 24, 25, 47, 49, 60, 64] for additional information

concerning almost Hermitian geometry. We refer to [20] for further information

concerning almost para Hermitian geometry. For example, para Hermitian geometry

enters in the study of Osserman Walker metrics of signature (2, 2) [23], it is important

in the study of homogeneous geometries [28], and it is relevant to the study of Walker

manifolds with degenerate self-dual Weyl curvature operators [18].

Let J be a linear map of V and let M = (V, 〈·, ·〉, A) be a curvature model. One

says that J is a Hermitian structure if

J2 = − id and J∗〈·, ·〉 = 〈·, ·〉 .

Similarly, one says that J is a para Hermitian structure if

J2 = id and J∗〈·, ·〉 = −〈·, ·〉 .

Note that Hermitian structures exist if and only if both p and q are even; para

Hermitian structures exist if and only if p = q. Let C := (V, 〈·, ·〉, J, A) be the asso-

ciated Hermitian curvature model (resp. para Hermitian curvature model). Define

the ?-Ricci tensor ρ? and the ?-scalar curvature τ ? in either case, by setting:

ρ?(x, y) :=

{
εilA(ei, x, Jy, Jel) if C is Hermitian,

−εilA(ei, x, Jy, Jel) if C is para Hermitian,

τ ? :=

{
εilεjkA(ei, ej, Jek, Jel) if C is Hermitian,

−εilεjkA(ei, ej, Jek, Jel) if C is para Hermitian .

5.1. The geometric realizability of almost Hermitian models

One says that a manifold C := (M, g, J) is an almost Hermitian manifold (resp.

almost para Hermitian manifold) if (TP M, gP , JP , RP ) is a Hermitian (resp. para
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Hermitian) curvature model for every P ∈ M . We do not assume that the struc-

ture J on M is integrable as this imposes additional curvature identities [41] as we

shall see presently. The notion of geometric realizability in this context is defined

similarly. Again, we focus our attention on the scalar curvature and the analogous

?-scalar curvature in the following theorem [11]:

Theorem 5.1. Let m ≥ 4.

(1) Any Hermitian curvature model is geometrically realizable by an almost Her-

mitian manifold of constant scalar and constant ?-scalar curvature.

(2) Any para Hermitian curvature model is geometrically realizable by an almost

para Hermitian manifold of constant scalar and constant ?-scalar curvature.

5.2. The decomposition of R(V ) as a unitary module

Let (V, 〈·, ·〉, J) be a Hermitian structure. The Kaehler form is defined by Ω(x, y) :=

〈x, Jy〉. Set

S0,+ = S2
0,+(V ∗, 〈·, ·〉, J) := {θ ∈ S2(V ∗) : J∗θ = θ, θ ⊥ 〈·, ·〉},

Λ0,+ = Λ2
0,+(V ∗, 〈·, ·〉, J) := {θ ∈ Λ2(V ∗) : J∗θ = θ, θ ⊥ Ω},

S2
− = S2

−(V ∗, J) := {θ ∈ S2(V ∗) : J∗θ = −θ},
Λ2

− = Λ2
−(V ∗, J) := {θ ∈ Λ2(V ∗) : J∗θ = −θ} .

Let U(V, 〈·, ·〉, J) be the associated unitary group:

U(V, 〈·, ·〉, J) := {U ∈ GL(V ) : UJ = JU and U∗〈·, ·〉 = 〈·, ·〉} .

We have the following decomposition of V ∗ ⊗ V ∗ as the orthogonal direct sum of

irreducible U(V, 〈·, ·〉, J) modules:

V ⊗ V ∗ = 〈·, ·〉 · R ⊕ S2
0,+ ⊕ S2

− ⊕ Ω · R ⊕ Λ2
0,+ ⊕ Λ2

−.

We let ρ0,+,S, ρ?
0,+,S, ρ−,S, and ρ?

−,Λ denote the components of ρ and ρ? with respect

to this decomposition.

We refer to [72] for the proof of Theorem 5.2 in the Riemannian setting – the

extension to the higher signature context is not difficult [12]. This result has been

used by many authors [15, 27, 29, 30, 51].

Theorem 5.2. Let (V, 〈·, ·〉, J) be a Hermitian structure.

(1) We have the following orthogonal direct sum decomposition of R(V ) into

irreducible U(V, 〈·, ·〉, J) modules:

(a) If 2n = 4, R(V ) = W1 ⊕W2 ⊕W3 ⊕W4 ⊕W7 ⊕W8 ⊕W9.

(b) If 2n = 6, R(V ) = W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5 ⊕W7 ⊕W8 ⊕W9 ⊕W10.

(c) If 2n ≥ 8, R(V ) = W1⊕W2⊕W3⊕W4⊕W5⊕W6⊕W7⊕W8⊕W9⊕W10.
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We have W1 ≈ W4 and, if 2n ≥ 6, W2 ≈ W5. The other U(V, 〈·, ·〉, J)

modules appear with multiplicity 1.

(2) We have that:

(a) τ ⊕ τ ? : W1 ⊕W4
≈−→R ⊕ R.

(b) If 2n = 4, ρ0,+,S : W2
≈−→S2

0,+.

(c) If 2n ≥ 6, ρ0,+,S ⊕ ρ?
0,+,S : W2 ⊕W5

≈−→S2
0,+ ⊕ S2

0,+.

(d) W3 = {A ∈ R(V ) : A(x, y, z, w) = A(Jx, Jy, z, w),∀ x, y, z, w}∩ker(ρ).

(e) If 2n ≥ 8, W6 = ker(ρ ⊕ ρ?) ∩ {A ∈ R(V ) : J∗A = A} ∩W⊥
3 .

(f) W7 = {A ∈ R(V ) : A(Jx, y, z, w) = A(x, y, Jz, w),∀ x, y, z, w}.
(g) ρ−,S : W8

≈−→S2
− and ρ?

−,Λ : W9
≈−→Λ2

−.

(h) If 2n ≥ 6, W10 = {A ∈ R(V ) : J∗A = −A} ∩ ker(ρ ⊕ ρ?).

Let m = dim(V ) = 2n. We note for the sake of completeness that:

m = 4 m = 6 m ≥ 8 m = 4 m = 6 m ≥ 8

W1 1 1 1 W2 3 8 n2 − 1

W3 5 27 n2(n−1)(n+3)
4

W4 1 1 1

W6 0 0 n2(n+1)(n−3)
4

W5 0 8 n2 − 1

W7 2 12 n2(n2−1)
6

W8 6 12 n2 + n

W10 0 30 2n2(n2−4)
3

W9 2 6 n2 − n

(5.1)

5.3. The decomposition of R(V ) as a para unitary module

We change the signs appropriately to obtain a corresponding decomposition in

the para Hermitian context. Let (V, 〈·, ·〉, J̃) be a para Hermitian structure. Let

Ω̃(x, y) := 〈x, J̃y〉 be the para Kaehler form. We have

J̃∗Ω̃ = −Ω̃ and J̃∗〈·, ·〉 = −〈·, ·〉 .

Set

S2
+ = S2

+(V ∗, J̃) := {θ ∈ S2(V ∗) : J̃∗θ = θ},
Λ2

+ = Λ2
+(V ∗, J̃) := {θ ∈ Λ2(V ∗) : J̃∗θ = θ},

S2
0,− = S2

0,−(V ∗, 〈·, ·〉, J̃) := {θ ∈ S2(V ∗) : J̃∗θ = −θ, θ ⊥ 〈·, ·〉},
Λ2

0,− = Λ2
0,−(V ∗, 〈·, ·〉, J̃) := {θ ∈ Λ2(V ∗) : J̃∗θ = −θ, θ ⊥ Ω̃},

Ũ(V, 〈·, ·〉, J) := {Ũ ∈ GL(V ) : Ũ J̃ = J̃ Ũ and Ũ∗〈·, ·〉 = 〈·, ·〉}.

Theorem 5.3. Let (V, 〈·, ·〉, J̃) be a para Hermitian structure.

(1) We have the following orthogonal direct sum decomposition of R(V ) into

irreducible Ũ(V, 〈·, ·〉, J) modules:
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(a) If 2n = 4, R(V ) = W̃1 ⊕ W̃2 ⊕ W̃3 ⊕ W̃4 ⊕ W̃7 ⊕ W̃8 ⊕ W̃9.

(b) If 2n = 6, R(V ) = W̃1 ⊕W̃2 ⊕W̃3 ⊕W̃4 ⊕W̃5 ⊕W̃7 ⊕W̃8 ⊕W̃9 ⊕W̃10.

(c) If 2n ≥ 8, R(V ) = W̃1⊕W̃2⊕W̃3⊕W̃4⊕W̃5⊕W̃6⊕W̃7⊕W̃8⊕W̃9⊕W̃10.

We have W̃1 ≈ W̃4 and, if 2n ≥ 6, W̃2 ≈ W̃5. The other Ũ(V, 〈·, ·〉, J)

modules appear with multiplicity 1.

(2) We have that:

(a) τ ⊕ τ ? : W̃1 ⊕ W̃4
≈−→R ⊕ R.

(b) If 2n = 4, ρ0,−,S : W̃2
≈−→S2

0,−(V ∗, J̃).

(c) If 2n ≥ 6, ρ0,−,S ⊕ ρ?
0,−,S : W̃2 ⊕ W̃5

≈−→S2
0,−(V ∗, J̃) ⊕ S2

0,−(V ∗, J̃).

(d) W̃3 = {Ã ∈ R(V ) : Ã(x, y, z, w) = −Ã(J̃x, J̃y, z, w),∀ x, y, z, w}
∩ ker(ρ).

(e) If 2n ≥ 8, W̃6 = ker(ρ ⊕ ρ?) ∩ {Ã ∈ R(Ṽ ) : J̃∗Ã = Ã} ∩ W̃⊥
3 .

(f) W̃7 = {Ã ∈ R(V ) : Ã(J̃x, y, z, w) = Ã(x, y, J̃z, w),∀ x, y, z, w}.
(g) ρ+,S : W̃8

≈−→S2
+(V ∗, J̃), ρ?

+,Λ : W̃9
≈−→Λ2

+(V ∗, J̃).

(h) If 2n ≥ 6, W̃10 = {Ã ∈ R(V ) : J̃∗Ã = −Ã} ∩ ker(ρ ⊕ ρ?).

We note for the sake of completeness that dim(W̃ν) = dim(Wν) is given in Equa-

tion (5.1).

6. Almost hyper Hermitian Geometry

6.1. Hyper Hermitian and hyper para Hermitian geometry

Fix a curvature model M = (V, 〈·, ·〉, A). Let J := {J1, J2, J3} be a triple of linear

maps of V . We say that J is a hyper Hermitian structure if J1, J2, J3 are Hermitian

structures and if we have the quaternion identities:

J2
1 = J2

2 = J2
3 = − id and J1J2 = −J2J1 = J3 .

Similarly, we say that J is a hyper para Hermitian structure if J1 is a Hermitian

structure, if J2 and J3 are para Hermitian structures, and if we have the para

quaternion identities:

J2
1 = −J2

2 = −J2
3 = − id and J1J2 = −J2J1 = J3 .

Let Q := (V, 〈·, ·〉,J , A) be the associated hyper Hermitian curvature model (resp.

hyper para Hermitian curvature model). We refer to [43, 44, 48] for further details

concerning such structures. We define:

τ ?
Q := τ ?

J1
+ τ ?

J2
+ τ ?

J3
.

The structure group of a hyper Hermitian structure J is SO(3) and of a hyper

para Hermitian structure is SO(2, 1) since we must allow for reparametrizations;
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τ ?
Q is invariant under this structure group and does not depend on the particu-

lar parametrization chosen. We say that (M, g,J ) is an almost hyper Hermitian

manifold or an almost hyper para Hermitian manifold if JP defines the appropriate

structure on (TP M, gP ) for all points P of M ; we impose no integrability condition.

Theorem 6.1. Let m ≥ 8.

(1) Any hyper Hermitian curvature model is geometrically realizable by an almost

hyper Hermitian manifold of constant scalar and constant ?-scalar curvature.

(2) Any hyper para Hermitian curvature model is geometrically realizable by an

almost hyper para Hermitian manifold of constant scalar and constant ?-

scalar curvature.

7. Hermitian Geometry

We refer to [2, 4, 45, 59, 75] for additional material on Hermitian geometry. We say

an almost Hermitian manifold M = (M, g,J ) is Hermitian if J is an integrable

almost complex structure, i.e., the Nijenhuis tensor

NJ (x, y) := [x, y] + J [J x, y] + J [x,J y] − [J x,J y]

vanishes or, equivalently, in a neighborhood of any point of the manifold there are

local coordinates (x1, . . . , xn, y1, . . . , yn) so that

J ∂xi
= ∂yi

and J ∂yi
= −∂xi

.

Similarly [19], we say that (M, g, J̃ ) is a para Hermitian manifold if J̃ is an inte-

grable almost para complex structure, i.e., if the para Nijenhuis tensor NJ̃

NJ̃ (x, y) := [x, y] − J̃ [J̃ x, y] − J̃ [x, J̃ y] + [J̃ x, J̃ y]

vanishes or, equivalently, there exist local coordinates (x1, . . . , xn, y1, . . . , yn) cen-

tered at any given point of M so that

J̃ ∂xi
= ∂yi

and J̃ ∂yi
= ∂xi

.

Gray [41] showed that the curvature tensor of a Hermitian manifold has an addi-

tional symmetry given below in Equation (7.1); it is quite striking that a geometric

integrability condition imposes an additional algebraic symmetry on the curvature

tensor.
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Theorem 7.1.

(1) If a Hermitian curvature model C = (V, 〈·, ·〉, J, A) is geometrically realizable

by a Hermitian manifold, then

0 = A(x, y, z, w) + A(Jx, Jy, Jz, Jw)

+ A(Jx, Jy, z, w) + A(x, y, Jz, Jw) + A(Jx, y, Jz, w) (7.1)

+ A(x, Jy, z, Jw) + A(Jx, y, z, Jw) + A(x, Jy, Jz, w)} .

(2) If a para Hermitian curvature model C̃ = (V, 〈·, ·〉, J̃ , Ã) is geometrically re-

alizable by a para Hermitian manifold, then

0 = Ã(x, y, z, w) + Ã(J̃x, J̃y, J̃z, J̃w)

− Ã(J̃x, J̃y, z, w) − Ã(x, y, J̃z, J̃w) − Ã(J̃x, y, J̃z, w) (7.2)

− Ã(x, J̃y, z, J̃w) − Ã(J̃x, y, z, J̃w) − Ã(x, J̃y, J̃z, w)} .

We refer to [41] for the proof of the first assertion in Theorem 7.1, and to [12] for

the proof of the second assertion. The following result provides a useful converse

to Theorem 7.1. Again we shall focus on the scalar curvature and the ?-scalar

curvature:

Theorem 7.2.

(1) If a Hermitian curvature model C satisfies Equation (7.1), then C is geo-

metrically realizable by a Hermitian manifold with constant scalar curvature,

with constant ?-scalar curvature, and with dΩ vanishing at the realizing point

P .

(2) If a para Hermitian curvature model C̃ satisfies Equation (7.2), then C̃ is

geometrically realizable by a para Hermitian manifold with constant scalar

curvature, with constant ?-scalar curvature, and with dΩ̃ vanishing at the

realizing point P .

We refer to [10] for the proof of the first assertion in Theorem 7.2, and to [12] for

the proof of the second assertion.

Equation (7.1) is called the Gray identity and Equation (7.2) is called the para

Gray identity. The universal symmetries of the curvature tensor of a Hermitian

manifold (resp. a para Hermitian manifold) are generated by the Gray (resp. para

Gray) identity and the usual curvature symmetries (see Equation (3.1)). This result

emphasizes the difference between almost Hermitian and Hermitian manifolds.

Remark 7.3. Since the Hermitian geometric realization can be chosen so that

dΩ(P ) = 0, imposing the Kaehler identity dΩ(P ) = 0 at a single point imposes no

additional curvature restrictions. If dΩ = 0 globally, then the manifold is said to be

almost Kaehler. This is a very rigid structure, see for example the discussion in [71],
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and there are additional curvature restrictions. Thus Theorem 7.2 also emphasizes

the difference between dΩ vanishing at a single point and dΩ vanishing globally.

Remark 7.4. The space of vectors satisfying the Gray condition (resp. the para

Gray condition) is exactly W⊥
7 (resp. W̃⊥

7 ) of Theorem 5.2 (resp. Theorem 5.3).

Furthermore, either the complex Jacobi operator or the complex curvature operator

completely determine the components in W⊥
7 of a curvature tensor [8]; the algebraic

condition determining W7 also plays a role in the study of Jacobi–Ricci commuting

curvature tensors [36].

8. Ivanov–Petrova Geometry

To simplify the discussion, we work in the Riemannian setting; there are analogous

results in arbitrary signatures. Let M = (V, 〈·, ·〉, A) be a Riemannian curvature

model. Let {x, y} be a basis for an oriented 2-plane π. The skew-symmetric curva-

ture operator R(π) is defined by setting

R(π) := {〈x, x〉〈y, y〉 − 〈x, y〉2}−1/2R(x, y) .

This skew-symmetric operator is independent of the particular basis chosen. We

say that M is Ivanov–Petrova if the eigenvalues of R(π) are constant on the Grass-

mannian of oriented 2-planes in V . Similarly we say that a Riemannian manifold

M = (M, g) is Ivanov–Petrova if the curvature model (TP M, gP , RP ) is Ivanov–

Petrova for all points P of the manifold.

The study of such manifolds was initiated by Ivanov and Petrova in [42] for dimen-

sion 4. The notation “Ivanov–Petrova” was later adopted by other authors, following

the mentioned seminal paper. Let φ be a self-adjoint map, i.e., 〈φx, y〉 = 〈x, φy〉 for

all x, y. We consider the algebraic curvature tensor defined by

Aφ(x, y, z, w) = {〈φx, z〉〈φy, zw〉 − 〈φx,w〉〈φy, z〉} . (8.1)

8.1. Ivanov-Petrova curvature models

We have the following examples [33, 34, 42] in the algebraic context:

Example 8.1.

(1) Let φ be a self-adjoint map of (V, 〈·, ·〉) with φ2 = id. Adopt the notation of

Equation (8.1). Then (V, 〈·, ·〉, CAφ) is Ivanov–Petrova for any constant C.

Note that if φ = ± id, then Aφ has constant sectional curvature C.

(2) Let {e1, e2, e3, e4} be the standard normalized orthonormal basis for R4. Let

a1 and a2 be non-zero constants such that 2a1 + a2 = 0. We consider the
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algebraic curvature tensor A such that its non-zero components, up to the

usual symmetries, are:

A1212 = a1, A1234 = a2, A1313 = a2, A1324 = −a1,

A1414 = a2, A1423 = a1, A2323 = a2, A2314 = a1,

A2424 = a2, A2413 = −a1, A3434 = a1, A3412 = a2 .

This tensor is Ivanov–Petrova. In [33], the tensor A is described in terms of

quaternions.

One has a complete classification. The 4 dimensional case is exceptional and is

covered by Ivanov and Petrova [42]. The cases m ≥ 5 and m 6= 7, 8 are dealt with by

the work of [34]. The case m = 8 is treated in [33] and the case m = 7 is presented

by Nikolayevsky in [53].

Theorem 8.2. Any Ivanov–Petrova curvature model of dimension m ≥ 4 is iso-

morphic to one of the models of Example 8.1.

8.2. Ivanov-Petrova manifolds

When we pass to the geometric setting, we have the following examples [34, 42] of

Ivanov–Petrova manifolds:

Example 8.3.

(1) Any manifold of constant sectional curvature is Ivanov–Petrova.

(2) Let (N, h) be a Riemannian manifold of constant sectional curvature K 6= 0.

Consider f(t) = Kt2 +At+B and let O be an open subset of R where f > 0.

Let M = O × N with the metric

g = dt2 + f(t)h .

If A2−4KB 6= 0, this metric does not have constant sectional curvature and

is Ivanov-Petrova.

We then have the following geometric classification Theorem [33, 34, 42, 53]:

Theorem 8.4. Any Ivanov–Petrova manifold of dimension m ≥ 4 is locally isomet-

ric to one of the manifolds of Example 8.3.

8.3. Ivanov-Petrova curvature models which are not geometrically real-

izable by Ivanov-Petrova manifolds

If φ is a self-adjoint map of (V, 〈·, ·〉) with φ2 = id, we can find an orthonormal basis

{ei} for V so that φei = ±ei. Let p be the number of +1 eigenvalues and q the
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number of −1 eigenvalues; the modified inner product 〈x, y〉φ := 〈φx, y〉 has signa-

ture (p, q). The curvature tensors of the manifolds of Example 8.3 (1) correspond

to φ with 〈·, ·〉φ having signature (0,m) or (m, 0) (i.e., φ = ± id) and the curvature

tensors of Example 8.3 (2) correspond to φ with 〈·, ·〉φ having signature (1,m − 1)

or (m − 1, 1). Thus we may combine Theorems 8.2 and Theorem 8.4 to see:

Theorem 8.5. Any Ivanov–Petrova curvature model of dimension m ≥ 4 is geo-

metrically realizable by an Ivanov–Petrova manifold if and only if it has the form

given in Example 8.1 (1) where 〈·, ·〉φ has signature (0, m), (m, 0), (1,m − 1), or

(m − 1, 1).

Note that the exceptional Ivanov-Petrova model of Example 8.1 (2) in dimension

4 is not geometrically realizable by an Ivanov–Petrova manifold.

9. Osserman Geometry

Fix a curvature model M = (V, 〈·, ·〉, A); again, we restrict to the Riemannian

setting. Let S be the unit sphere in (V, 〈·, ·〉). The Jacobi operator

J(x) : y → R(y, x)x

is a self-adjoint operator which appears in the study of geodesic sprays. We say

that a Riemannian curvature model or a Riemannian manifold is Osserman if the

eigenvalues of J are constant on S.

9.1. Osserman curvature models

Let ψ be a skew-adjoint map of (V, 〈·, ·〉). Motivated by the splitting σρa of Theorem

2.1, we consider the algebraic curvature tensor defined by

Aψ(x, y, z, w) := 〈ψy, z)〈ψx,w〉 − 〈ψx, z〉〈ψy,w〉 − 2〈ψx, y〉〈ψz,w〉 .

The following examples appear first in [32]:

Example 9.1. Let {ψ1, . . . , ψ`} be a family of skew-adjoint endomorphisms defined

on (V, 〈·, ·〉) which satisfy the Clifford commutation relations:

ψiψj + ψjψi = −2δij .

Let {λ0, λ1, . . . , λ`} be real constants where λi 6= 0 if i > 0. Set

A = λ0Aid + λ1Aψ1 + · · · + λ`Aψ`
.

Then (V, 〈·, ·〉, A) is an Osserman curvature model. If ` = 0, then A = λ0Aid has

constant sectional curvature.

— 16 —



Remark 9.2. The family {ψi} is said to define a Clifford module structure on V .

The maximal ` possible is called the Adams number and is denoted by ν(m). If m

is odd, such a structure is not possible and ν(m) = 0. If m ≡ 2 mod 4, then ` = 1

is only possible. If m ≡ 4 mod 8, then ` = 3 is possible; this case can be realized by

a quaternion structure (although, if m > 4, there are other possible structures). We

refer to Adams [1] for further details as this number is closely related to the number

of linearly independent vector fields on spheres. If m = a2s where a is odd, then

ν(m) = ν(2s). We have

ν(1) = 0, ν(2) = 1, ν(4) = 3, ν(8) = 7, ν(16 · 2k) = 8 + ν(2k) .

Theorem 9.3. Let M be an Osserman curvature model of dimension m 6= 16. Then

M is isomorphic to one of the curvature models of Example 9.1.

Theorem 9.3 was proved by Chi [17] for m ≡ 1 mod 2, m ≡ 2 mod 4, and m = 4.

Later Nikolayevsky in [52, 54, 55] established Theorem 9.3 for the remaining values.

The result fails in dimension 16; the curvature model of the Cayley plane is not given

by a Clifford module structure and the classification is unknown in that dimension.

9.2. Osserman manifolds

Osserman [56] conjectured that any Riemannian manifold whose Jacobi operator

had constant eigenvalues on the set of unit tangent vectors was necessarily a local

2-point homogeneous space, i.e., either is flat or is a rank one symmetric space.

This conjecture became known as the Osserman conjecture by subsequent authors

and the condition that the Jacobi operator has constant eigenvalues is known as the

Osserman condition. The Osserman conjecture in the Riemannian setting has been

settled for any dimension different to 16. In dimension 16 the conjecture remains

open [17, 52, 54, 55]:

Theorem 9.4. If M is a Riemannian Osserman manifold of dimension m 6= 16,

then either M is flat or M is locally isometric to a rank one symmetric space.

Remark 9.5. Theorem 9.4 fails in the indefinite setting. There are Walker mani-

folds of signature (2, 2) which are Osserman but not locally homogeneous [9, 31].

9.3. Osserman curvature models which are not geometrically realizable

by Osserman manifolds

Here we follow the notation used in Example 9.1. If M is the curvature model of

a rank one symmetric space ot dimension m 6= 16, then one of the following cases

holds:
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(1) ` = 0 and M has constant sectional curvature. Thus, in this case, M is

locally isometric to a rescaled sphere or hyperbolic space.

(2) ` = 1 and λ1 = λ0. Thus, in this case, M is locally isometric to a rescaled

complex projective space or the negative curvature dual.

(3) ` = 3 and λ0 = λ1 = λ2 = λ3. Thus, in this case, M is locally isometric to

a rescaled quaternionic projective space or the negative curvature dual.

Now the following result is derived from the discussion above:

Theorem 9.6. Let M be an Osserman curvature model of dimension m 6= 16.

Adopt the notation of Example 9.1. Assume ` ≥ 1. If ` 6= 1, 3 or if λi 6= λj for some

i 6= j, then M is not geometrically realizable by an Osserman manifold.

10. Curvature Homogeneity

Let M = (V, 〈·, ·〉) be a curvature model. We say that a pseudo Riemannian manifold

M = (M, g) is curvature homogeneous with model M if every point of M realizes

M geometrically. In this situation, M is said to be curvature homogeneous. Equiv-

alently, this means that given any two points P and Q of M , there is an isometry

ΦP,Q : TP M → TQM such that Φ∗
P,QRQ = RP . More generally, if Φ∗

P,Q∇iRQ = ∇iRP

for i ≤ k, then M is said to be k curvature homogeneous. One has the following

result of Singer [68] in the Riemannian setting and the one of Podesta and Spiro [58]

in the pseudo Riemannian setting:

Theorem 10.1. There exists an integer kp,q so that if M is any complete simply

connected pseudo Riemannian manifold of signature (p, q) which is kp,q curvature

homogeneous, then M is homogeneous.

One has rigidity results of Tricerri and Vanhecke [73] and of Cahen, Leroy, Parker,

Tricerri, and Vanhecke [16]:

Theorem 10.2.

(1) A Riemannian curvature homogeneous manifold which is 0 curvature modeled

on an irreducible symmetric space is locally symmetric.

(2) A Lorentzian curvature homogeneous manifold which is 0 curvature modeled

on an irreducible symmetric space has constant sectional curvature.

In the Riemannian setting, there are curvature homogeneous manifolds which are

not locally homogeneous [26, 67]. However, there are no known examples which are

1 curvature homogeneous but not locally homogeneous. In [63, 65] it is shown that

any 1 curvature homogeneous complete simply connected Riemannian manifold of

dimension m ≤ 5 is homogeneous. In the Lorentzian setting (p = 1), there exist
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1 curvature homogeneous Lorentzian manifolds which are not locally homogeneous

[13, 14]. On the other hand, given any k, one can construct neutral signature pseudo

Riemannian manifolds which are complete. They are modeled on a symmetric space,

k curvature homogeneous, and not locally homogeneous [35].

From the results of Sections 8 and 9 it is immediately derived:

Theorem 10.3. There exist Riemannian curvature models which are not geometri-

cally realizable by curvature homogeneous manifolds.
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J. 26 (1974), 581–585.

[68] I. M. Singer, Infinitesimally homogeneous spaces, Commun. Pure Appl. Math.

13 (1960), 685–697.

[69] I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces,

1969 Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press,

Tokyo, 355–365.

[70] R. Strichartz, Linear algebra of curvature tensors and their covariant deriva-

tives, Can. J. Math, XL (1988), 1105–1143.

[71] Z. Tang, Curvature and integrability of an almost Hermitian structure, Internat.

J. Math. 17, (2006), 97–105.

[72] F. Tricerri, and L. Vanhecke, Curvature tensors on almost Hermitian manifolds,

Trans. Amer. Math. Soc. 267 (1981), 365–397.

[73] F. Tricerri and L. Vanhecke, Variétés riemanniennes dont le tenseur de courbure

est celui d’un espace symétrique riemannien irréductible, C. R. Acad. Sci. Paris,
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