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SPECTRAL ASYMPTOTICS AND QUASICLASSICAL ANALYSIS OF

SCHRÖDINGER TYPE OPERATORS∗
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Abstract. In this work we consider a general class of Schrödinger type operators, associated to
multi-quasi-elliptic symbols introduced by Buzano and Ziggioto in [9]. We develop their quasiclassical
analysis and we obtain a uniform asymptotic formula for their counting function Nǫ(τ), in the sense
that it holds as τ → +∞ and for all 0 < ǫ ≤ 1.
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1. Introduction. Quasiclassical analysis and spectral asymptotics are strictly
related to each other (this is particularly evident when dealing with homogeneous
symbols, see [6],Remark A.2.2). In both of them, the object of study is the counting
function (which we denote by N (τ) in the case of spectral asymptotics and by Nǫ(τ)
in the case of quasiclassical analysis) associated to the operators we are dealing with.

In spectral asymptotics we analyze the behavior of N (τ) as τ → +∞, while in
quasiclassical analysis we study the behavior of Nǫ(τ) as ǫ→ 0, where ǫ plays the role
of the Planck constant in Quantum Mechanics.(1)

In this paper we take into consideration multi-quasi-elliptic operators of
Schrödinger type hw , introduced by Buzano and Ziggioto in [9]. We already ob-
tained an asymptotic formula for their counting function N (τ) as τ → +∞ and in
particular we proved an estimate of the remainder term, showing that it always goes
to 0 as τ → +∞.

Now we consider quasiclassical operators associated to hw and their counting
function Nǫ(τ). Using the so called Tauberian condition (see condition 2. of Theorem
1 in Section 3), we manage to obtain a uniform asymptotic formula for Nǫ(τ), in the
sense that it is valid as τ → +∞ and for all 0 < ǫ ≤ 1.

We can make a comparison with the results obtained in one of our previous pa-
pers, see [8]. In that case we treated quasiclassical analysis of more general operators
(hypoelliptic operators), but we didn’t manage to obtain a uniform asymptotic for-
mula, holding as τ → +∞ and for all 0 < ǫ ≤ 1. Moreover, in our uniform asymptotic
formula obtained for multi-quasi-elliptic operators (see (10)) we don’t need to exclude
the critical values of the symbol h(x, ξ) (i.e. the values τ for which gradh(x, ξ) = 0
on the surface {(x, ξ) : h(x, ξ) = τ}).

We employ the following notation: given two functions f, g : X → R, and a subset
A ⊂ X , we write

f(x) ≺ g(x), ∀x ∈ A,

if there exists a constant C such that

f(x) ≤ Cg(x), ∀x ∈ A.
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2. Multi-quasi-elliptic operators of Schrödinger type. We begin by recall-
ing some basic notations and results about multi-quasi-elliptic weights and symbols.
For references see [9], [1].

A convex polyhedron P ⊂ R
n is the convex hull of a finite set of points in R

n.
One can show that P can be obtained as the convex hull of a finite subset V (P) ⊂

R
n of points, which are convex linearly independent, called the vertices of P and

univoquely determined by P . Moreover if (0, 0, . . . , 0) ∈ P , then there exists a finite
set N(P) = N0(P) ∪N1(P) ⊂ R

n such that (2)

P ={x ∈ R
n | ν · x ≥ 0, ∀ ν ∈ N0(P)}∩

∩ {x ∈ R
n | ν · x ≤ 1, ∀ ν ∈ N1(P)}.

The boundary of P is made of faces Fν which are the convex hull of the vertices of P
lying on the hyperplane Hν orthogonal to ν ∈ N(P) and of equation

ν · x = 0, if ν ∈ N0(P),

ν · x = 1, if ν ∈ N1(P).

We set

F (P) =
⋃

ν∈N1(P)

Fν .

Definition 1. A complete polyhedron is a convex polyhedron P ⊂ Rn
+

(3) with
the following properties:

1. V (P) ⊂ Rn
+;

2. (0, . . . , 0) ∈ V (P);
3. V (P) 6= {(0, . . . , 0)};
4. N0(P) = {e1, . . . , en}, with ej = (0, . . . , 0, 1

j−entry
, 0, . . . , 0), for j = 1, . . . , n;

5. N1(P) ⊂ R
n
+.

Consider now a complete polyhedron P with integer vertices:

V (P) ⊂ N
n.

To such a polyhedron we associate the multi-quasi-elliptic weight function:

Λ(ξ;P) =

( ∑

α∈V (P)\0

ξ2α

)1/2

.

Definition 2. Given a complete polyhedron P , we set

m(P) = sup
ν∈N1(P)

max

{
1

νj
| j = 1, . . . , n

}
.

(2) In R
n we always consider the norm |x| = |x1| + · · · + |xn|.

(3)
R+ = {x ∈ R | x > 0}.
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m(P) is called the formal order of P .

Definition 3. A multi-quasi-elliptic operator of Schrödinger type is a differential

operator hw of domain C∞
0 (Rn) and Weyl symbol

h(x, ξ) = p(x, ξ) + q(x) =
∑

α∈A

aα(x)ξα + q(x)

satisfying the following hypotheses.
1. The convex hull of A is a complete polyhedron P .
2. The potential q is real valued and

q(x) ≥ 1, for all x ∈ R
n.

3. There exists 0 ≤ δ < 1/m(P) such that for all β ∈ N
n we have

(1) |Dβq(x)| ≺ q(x)1+δ|β|, ∀x ∈ R
n.

4. The coefficients aα are real valued.
5. There exists 0 ≤ ρ < 1, such that for all α ∈ A and β ∈ N

n, we have

(2) |Dβaα(x)| ≺ q(x)(1−k(α;P))ρ+δ|β| ∀x ∈ R
n,

where

k(α;P) = inf{t > 0 | t−1α ∈ P} = max
ν∈N1(P)

ν · α.

6. There exists R0 ≥ 0 such that

(3) p0(x, ξ) ≻ Λ(ξ;P), ∀ |ξ| ≥ R0, ∀x ∈ R
n,

where

p0(x, ξ) =
∑

α∈A∩F (P)

aα(x)ξα

is the principal symbol of pw .

Remark. We can say that multi-quasi-elliptic symbols generalize elliptic and
quasi-elliptic symbols. More specifically, limiting ourselves to dimension n = 2, we can
represent the complete polyhedron P associated to a multi-quasi-elliptic symbol as a
polygon with more than one face, as it is shown in Figure 1. The complete polyhedron
P associated to an elliptic symbol can be represented instead as an isosceles triangle,
as shown in Figure 2. Finally, the complete polyhedron P associated to a quasi-elliptic
symbol can be represented as a right-angled triangle, as shown in Figure 3.

We are going to use the Weyl-Hörmander calculus with locally temperate metrics
and weights: see [2], and [4] for more details.

Let

λ(x, ξ) =
{
Λ(ξ;P)2 + q(x)2

}1/2
.

Then the Riemannian metric

(4) gx,ξ(y, η) = λ(x, ξ)2δ |y|2 + λ(x, ξ)−2/m(P)|η|2
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(where δ is the same as in (1)) is locally σ temperate with respect to the slowly varying
metric

Gx(t) = |t|2q(x)2δ .

In particular λ is locally σ, g temperate with respect to G. See [9], Proposition 3, for
further details. Moreover we can show the following result:

Proposition 1. The so called principle of indetermination is satisfied by the

metric g defined in (4), that is

sup
x,ξ

gx,ξ(y, η)

gσ
x,ξ(y, η)

< +∞.

Proof. In the case of the metric g defined in (4) it is standard to show that

sup
x,ξ

gx,ξ

gσ
x,ξ

= λ(x, ξ)2(δ− 1
m(P) ).

Then, since 0 ≤ δ < 1
m(P) and q(x) ≥ 1 for all x ∈ R

n, we have that

sup
x,ξ

gx,ξ(y, η)

gσ
x,ξ(y, η)

≤ 1.

Finally, we define the counting function associated to the operator hw :

Nh(τ) = number of eigenfunctions of the closure of hw corre-
sponding to eigenvalues less or equal to τ .
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Fig. 3. quasi-elliptic case ξ4
1 + ξ6

2

3. Quasiclassical Analysis of Multi-Quasi-Elliptic Operators of

Schrödinger Type. Consider a multi-quasi-elliptic operator of Schrödinger type
hw .

Let us introduce the operator hw

ǫ whose Weyl symbol is

hǫ(x, ξ) = h(ǫx, ǫξ) = p(ǫx, ǫξ) + q(ǫx),

where ǫ is a real parameter such that 0 < ǫ ≤ 1.
Starting from the metrics defined in (4), let us define the following new Rie-

mannian metrics ǫgx,ξ(y, η) and ǫGx(t) in this way:

ǫgx,ξ(y, η) = gǫx,ǫξ(ǫy, ǫη) = ǫ2
(
λ(ǫx, ǫξ)2δ |y|2 + λ(ǫx, ǫξ)−

2
m(P) |η|2

)

and

ǫGx(t) = Gǫx(ǫt) = ǫ2|t|2q(ǫx)2δ .

We know that gx,ξ(y, η) is locally σ temperate with respect to Gx(t) and that λ is
locally σ, g temperate with respect to Gx(t). Therefore, it follows that also ǫgx,ξ is
slowly varying, locally σ temperate with respect to ǫGx(t) for all 0 < ǫ ≤ 1 and that
also λ(ǫx, ǫξ) is locally σ, g temperate with respect to ǫGx(t), for all 0 < ǫ ≤ 1 (see
[3], [8]).

Let us analyze the principle of indetermination in the case of the metric ǫg.

Proposition 2. We have that the principle of indetermination is satisfied by the

new metric ǫg , for all 0 < ǫ ≤ 1.

Proof. We have

sup
x,ξ

ǫgx,ξ

(ǫg)σ
x,ξ

= ǫ4λ(ǫx, ǫξ)2(δ− 1
m(P) ) =

=
(
λ(ǫx, ǫξ)ǫ

2m(P)
δm(P)−1

)2(δ− 1
m(P) )

=

= λǫ(x, ξ)
2(δ− 1

m(P) ),

for all 0 < ǫ ≤ 1. Therefore, repeating the same arguments of the proof of Proposition
1, we obtain that the principle of indetermination is satisfied also by ǫg.

Due to this proposition, from now on we will work with the following symbol:

Hǫ(x, ξ) = ǫ
2m(P)

δm(P)−1 hǫ(x, ξ).
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Now we formulate Proposition 4 of [9] in this new context:

Proposition 3. Consider a multi-quasi-elliptic operator of Schrödinger type

hw = pw + q. If q(x) → +∞ then the operator Hw

ǫ , corresponding to the new symbol

Hǫ, is semi-bounded from below and essentially self-adjoint in L2(Rn), for all 0 < ǫ ≤
1.

Moreover its closure in L2(Rn) has discrete spectrum diverging to +∞.

Proof. Thanks to Proposition 2 of [9] (which is trivially satisfied also by Hǫ and
λǫ), there exists c0 > 0 such that

λǫ(x, ξ) ≺ c0ǫ
2m(P)

1−δm(P) +Hǫ(x, ξ) ≺ λǫ(x, ξ), ∀(x, ξ) ∈ R
n × R

n,

for all 0 < ǫ ≤ 1. Then H̃ǫ = c0ǫ
2m(P)

1−δm(P) +Hǫ is locally temperate for all 0 < ǫ ≤ 1.
Thanks to Proposition 2 of [9] again, it is easy to check that H̃ǫ belongs to the class

of Weyl-Hörmander S(H̃ǫ,
ǫg) for all 0 < ǫ ≤ 1 and the result is a special case of

Proposition 6.1 of [2].

Remark. Thanks to Proposition 3 we can define the counting function of the
closure of the operator Hw

ǫ :

NHǫ
(τ) = number of eigenfunctions of the closure of Hw

ǫ , cor-
responding to eigenvalues less than or equal to τ .

It is clear that Proposition 3 also applies to

H0,ǫ = h0,ǫǫ
2m(P)

δm(P)−1 ,

where h0,ǫ is the symbol of the principal part of hw

ǫ , that is

h0,ǫ(x, ξ) = p0(ǫx, ǫξ) + q(ǫx).

In particular we have that Hw

0,ǫ is essentially self-adjoint and that its closure has a
discrete spectrum diverging to +∞ (see also Proposition 4 of [9]).

Before claiming our main result, we have to state the following theorem, which is
a direct consequence of Proposition 5 of [9]:

Proposition 4. Consider a multi-quasi-elliptic operator of Schrödinger type hw

and assume that q(x) → +∞ as |x| → +∞. If there exists k > 0 such that

(5) h−k
0 ∈ L1(R2n),

then there exists τ0 such that

NH0,ǫ
(τ) = W(τ ;H0,ǫ){1 +O(Rǫ,µ0 )},

for all τ ≥ τ0, uniformly with respect to 0 < ǫ ≤ 1, where

W(τ ;H0,ǫ) = (2π)−n

∫∫

H0,ǫ≤τ

dx dξ,

Rǫ,µ0(τ) =
W(τ + τ1−µ0 ;H0,ǫ) −W(τ − τ1−µ0 ;H0,ǫ)

W(τ ;H0,ǫ)
,
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and

0 < µ0 <
2

3

1 − δm(P)

m(P)
.

Proof. By means of a change of coordinates we immediately obtain that

‖H−k
0,ǫ ‖L1 = ǫ

2km(P)
1−δm(P)

∫
|h0,ǫ(x, ξ)|

−k dx dξ =

= ǫ
2km(P)

1−δm(P)

∫
|h0(ǫx, ǫξ)|

−k dx dξ =

= ǫ
2km(P)

1−δm(P)
−2n

∫
|h0(x, ξ)|

−k dx dξ ≤

≤

∫
|h0(x, ξ)|

−k dx dξ = ‖h−k
0 ‖L1 ,

if we take 2km(P)
1−δm(P) − 2n ≥ 0, that is

1

m(P)
−
k

n
≤ δ <

1

m(P)
.

Therefore we obtain that the integrability of h−k
0 (x, ξ) implies the integrability of

H−k
0,ǫ (x, ξ) and that the L1 norm of H−k

0,ǫ is uniformly bounded with respect to 0 <
ǫ ≤ 1. The remaining part of the proof is an immediate consequence of Proposition 5
in [9].

Now we can state and prove our main result.

Theorem 1. Let Nǫ(τ) be the counting function associated to the operator hw

ǫ .

Assume that

1. q(x) → +∞, as |x| → +∞,

2. there exists τ0 ≥ 0, such that

V(2τ) ≺ V(τ), ∀ τ ≥ τ0,

where

V(τ) =

∫

q(x)≤τ

dx.

3. for all r > 0 we have

(6) inf
x∈R

n

|ξ|≥r

p0(x, ξ) > 0,

4. there exist t0 > 0, ω ∈ R
n
+ and C0 > 0, such that

p0(x, (1 + t)ωξ) ≥ (1 + C0t)p0(x, ξ),

for all 0 < t < t0 and all (x, ξ) ∈ R
n × R

n, where

(1 + t)ωξ = ((1 + t)ω1ξ1, . . . , (1 + t)ωnξn) .
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Then for

0 < d <
4

3

|ν|

1 + |ν|
(7)

0 < µ <
2

3

1 − δm(P)

m(P)

|ν|

1 + |ν|
,(8)

µ ≤ (1 − ρ)(1 − ζ)
|ν|

1 + |ν|
,(9)

with

|ν|

1 + |ν|
= max

ν̃∈N1(P)

|ν̃|

1 + |ν̃|

and

ζ = max
α∈A\F (P)

k(α;P),

we have that

(10) Nǫ(τ) = ǫ−2nW(τ ;h0){1 +O(ǫdτ−µ)},

as τ → +∞ and for all 0 < ǫ ≤ 1, where

W(τ ;h0) = (2π)−n

∫

h0≤τ

dx dξ.

Remark. As already remarked in the introduction, in order to obtain the result
of Theorem 1, we don’t need to avoid the critical values of the symbol h(x, ξ) from
our asymptotic formula, as instead we are compelled to do in the case of hypoelliptic
operators (see [10]). Moreover, in the case of hypoelliptic operators we don’t have a
uniform asymptotic formula, in the sense that it holds only as ǫ→ 0 (see [8]).

4. Proof of Theorem 1. In order to prove Theorem 1, let us begin to estimate
the remainder term Rǫ,µ0(τ) for the counting function associated to hw

0,ǫ, as τ → +∞
and for all 0 < ǫ ≤ 1.

Proposition 5. Under the same hypotheses of Theorem 1 we have that

(11) Nh0,ǫ
(τ) = ǫ−2nW(τ ;h0){1 +O(ǫdτ−µ)},

as τ → ∞ and for all 0 < ǫ ≤ 1, where

0 < µ <
2

3

1 − δm(P)

m(P)

|ν|

1 + |ν|

and

0 < d <
4

3

|ν|

1 + |ν|
.
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Proof. Since Nh0,ǫ
(τ) is the counting function associated to the operator hw

0,ǫ,

then it is clear that Hw

0,ǫ has exactly Nh0,ǫ
(ǫ

2m(P)
1−δm(P) τ) eigenvalues less than or equal

to τ and that

W(τ ;H0,ǫ) = (2π)−n

∫∫

h0(ǫx,ǫξ)ǫ
2m(P)

δm(P)−1 ≤τ

dx dξ = ǫ−2nW(ǫ
2m(P)

1−δm(P) τ ;h0).

Thanks to Proposition 4, we obtain that for all 0 < µ0 <
2
3

1−δm(P)
m(P) there exists a real

number Cµ0 > 0 such that

∣∣Nh0,ǫ
(ǫ

2m(P)
1−δm(P) τ) − ǫ−2nW(ǫ

2m(P)
1−δm(P) τ ;h0)

∣∣ ≤

≤ Cµ0ǫ
−2n

(
W(ǫ

2m(P)
1−δm(P) (τ + τ1−µ0 );h0) −W(ǫ

2m(P)
1−δm(P) (τ − τ1−µ0);h0)

)
,

as τ → +∞, for all 0 < ǫ ≤ 1.

Letting ǫ
2m(P)

1−δm(P) τ = λ and provided that also λǫ
2m(P)

δm(P)−1 is sufficiently large, we
obtain:

(12)
|Nh0,ǫ

(λ) − ǫ−2nW(λ;h0)| ≤

≤ Cµ0ǫ
−2n

(
W(λ(1 + ǫ

2m(P)µ0
1−δm(P) λ−µ0);h0) −W(λ(1 − ǫ

2m(P)µ0
1−δm(P) λ−µ0 ;h0))

)

for λ large enough, 0 < µ0 <
2
3

1−δm(P)
m(P) and 0 < ǫ ≤ 1.

Recalling Lemma 2 of [9] and letting θ = ǫ
2m(P)µ0
1−δm(P) λ−µ0 we obtain that

W(λ(1 + ǫ
2m(P)µ0
1−δm(P)λ−µ0 );h0)−W(λ(1 − ǫ

2m(P)µ0
1−δm(P) λ−µ0);h0) ≺

≺ λ−µ0
|ν|

1+ν| ǫ
2m(P)µ0
1−δm(P)

|ν|
1+|ν|W(λ;h0),

for all ǫ and λ such that λ ≥ τ1 and 0 < ǫ ≤ θ
1−δm(P)
2m(P)µ0
0 (we can suppose τ1 ≥ 1 without

any restriction). Therefore, if we let

µ = µ0
|ν|

1 + |ν|
,

d =
2m(P)µ0

1 − δm(P)

|ν|

1 + |ν|
,

we have that formula (11) holds with

0 < µ <
2

3

1 − δm(P)

m(P)

|ν|

1 + |ν|
,

0 < d <
4

3

|ν|

1 + |ν|
.

We still need the following result:

Proposition 6. Under the same hypotheses of Theorem 1, there exist C2 ≥ 1
and τ2 ≥ 0 such that

(13) Nh0,ǫ
(τ − C2τ

1−(1−ζ)(1−ρ)) ≤ Nǫ(τ) ≤ Nh0,ǫ
(τ + C2τ

1−(1−ζ)(1−ρ)),
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for all τ ≥ τ2, for all 0 < ǫ ≤ 1.

Proof. The operators hw

ǫ and hw

0,ǫ have the same domain D, because they have
the same principal symbol. Then we have the following variational characterizations
of the counting function. If L is the set of all linear subspaces of D, then

(14) Nǫ(τ) = inf{codimL|L ∈ L : (hw

ǫ u, u) > τ‖u‖L2 , ∀u ∈ L}

and

(15) N0,ǫ(τ) = inf{codimL|L ∈ L : (hw

0,ǫu, u) > τ‖u‖L2 , ∀u ∈ L}.

In the proof of Proposition 5.1 of [5], it is shown that (14) and (15) together with
Proposition 7 in [9] imply (13) and the constant C2 can be chosen uniformly with
respect to 0 < ǫ ≤ 1.

Now we are ready to prove our main theorem.

Proof of Theorem 1. From (11) we have

Nh0,ǫ
(τ + C2τ

1−(1−ζ)(1−ρ)) ≤

≤ ǫ−2nW(τ + C2τ
1−(1−ζ)(1−ρ);h0)

{
1 +O(ǫdτ−µ)

}
,

as τ → +∞ and for all 0 < ǫ ≤ 1. From (42) in Lemma 2 of [9], we have

W(τ + C2τ
1−(1−ζ)(1−ρ);h0) ≤

≤ W(τ ;h0)
{
1 +O(τ−(1−ζ)(1−ρ) |ν|

1+|ν| )
}

and therefore

Nh0,ǫ
(τ + C2τ

1−(1−ζ)(1−ρ)) ≤

≤ ǫ−2nW(τ ;h0)
{
1 +O(ǫdτ−µ)

} {
1 +O(τ−(1−ζ)(1−ρ) |ν|

1+|ν| )
}

≤ ǫ−2nW(τ ;h0)
{
1 +O(ǫdτ−µ)

}
,

(16)

with d satisfying (7) and µ satisfying (8) and (9). Using (43) in Lemma 2 of [9], we
obtain in the same way the other estimate:

(17) Nh0,ǫ
(τ − C2τ

1−(1−ζ)(1−ρ)) ≥ ǫ−2nW(τ ;h0)
{
1 +O(ǫdτ−µ)

}
.

Formula (10) now follows from (16), (17) and (13). The proof of Theorem 1 is com-
plete.

5. An example: the quasi-elliptic case. At the end of our paper we take
into exam the special case in which p0(x, ξ) is quasi-elliptic with respect to ξ, that is

(18) p0(x, t
ωξ) = tp0(x, ξ) ∀ t ∈ R+, ∀x, ξ ∈ R

n,

where ω ∈ R
n
+ is defined in assumption 4 of Theorem 1.

In the quasi-elliptic case, (42) and (43) in Lemma 2 of [9] become (see [9], Section
6)

W((1 + θ)τ ;h0) ≤ (1 +Kθ)W(τ ;h0),(19)

W((1 − θ)τ ;h0) ≥ (1 −Kθ)W(τ ;h0),(20)
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for a suitable K > 0. Then, repeating the same arguments as in the proof of Propo-
sition 5 and of Theorem 1, we obtain the following result:

Theorem 2. Let p0 be quasi-elliptic with respect to ξ. Let Nǫ(τ) be the counting

function associated to the operator hw

ǫ . Under the hypotheses of Theorem 1, for

0 < d <
4

3
,

0 < µ <
2

3

1 − δm(P)

m(P)
,

µ ≤ (1 − ρ)(1 − ζ),

with

ζ = max
α∈A\F (P)

k(α;P),

we have that

(21) Nǫ(τ) = ǫ−2nW(τ ;h0){1 +O(ǫdτ−µ)},

as τ → +∞ and for all 0 < ǫ ≤ 1.

Remark. From Theorem 2 it is clear that estimates (7),(8) and (9) can be
improved with the following ones:

0 < d <
4

3
,

0 < µ <
2

3

1 − δm(P)

m(P)
,

µ ≤ (1 − ρ)(1 − ζ).

Moreover, in the quasi-elliptic case, the Weyl term W(τ ;h0) can be expressed in a
more explicit form:

W(τ ;h0) = (2π)−n

∫
(τ − q(x))

|ω|
+ σω(x) dx

where (τ − q(x))+ is the positive part of τ − q(x),

(22) σω(x) =
1

|ω|

∫

Ψ

p0(x, ζ(ψ))−|ω||Jω(ψ)| dψ,

and |Jω(ψ)| is the Jacobian of a suitable matrix (see [9], Section 4, for further details).
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