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Abstract. In this paper, we study deformation of surfaces induced by adding one and two

extra space variables to the motions of space curves in higher-dimensional similarity geometries.

It is shown that the 2+1- and 3+1-dimensional nonlinear evolution equations including the 2+1-

dimensional mKdV equation and a generalization to the mKdV-Burgers system arise from such

motions.
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1. Introduction. Considerable effort has been made by a number of authors
to study motions of curves and surfaces in certain geometries, and many interest-
ing results have been obtained. It has been recognized that motions of curves and
surfaces in certain geometries are closely related to nonlinear evolution equations.
For examples, Mullins’s nonlinear diffusion model of groove development [1] describes
the curve shortening problem [2]. Hasimoto transformation [3] sets up a one-to-one
correspondence between the integrable Schrödinger equation and the binormal mo-
tion of a space curve driven by its curvature and torsion. Later, Lamb [4] utilized
the Hasimoto transformation to show that certain types of space curve flows can be
mapped to integrable equations such as sine-Gordon equation, Schrödinger equation
and Hirota equation etc. Langer and Perline [5, 6] further proved that the dynam-
ics of non-stretching vortex filament in R3 gives to the NLS hierarchy. To interpret
the dynamics of a nonlinear string of fixed length in R3, Lakshmanan [7] considered
the motion of an arbitrary rigid body along it, deriving the AKNS spectral problem
without spectral parameter. Doliwa and Santini [8] found that the NLS hierarchy and
complex mKdV equation arise from motions on S3(R) where the radius R plays the
role of the spectral parameter. Goldstein and Petrich [9] related the mKdV equation
and its hierarchies to motions of non-stretching closed curves on the plane in R2.
Nakayama. Segur and Wadati [10] obtained the sine-Gordon equation by considering
a nonlocal motion of curves in R2. Nakayama [11] also showed that the defocusing
nonlinear Schrödinger equation, the Regge-Lund equation, a coupled system of KdV
equations and their hyperbolic type arise from motions of curves in hyperboloids in
the Minkowski space. In [12], he realized the full AKNS scheme in a hyperboloid in
M4. An extended Harry-Dym equation and sine-Gordon equation from binormal mo-
tions of curves with constant curvature or torsion were derived by Schief and Rogers
[13]. Recently, motions of curves in Klein geometry were investigated systematically
by Chou and Qu et al. [14-20], they showed that a couple of 1+1-dimensional in-
tegrable equations arise from the curve motions. Motions of curves in Riemannian
geometry were studied by Beffa, Sanders and Wang [21]. The relationship between
invariant curve flows in conformal, Poisson, Lagrange-Finsler geometries and homoge-
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neous space and Hamiltionian structure was investigated in [21-29] by Meffa and Anco
et al. The flows of curves on adjoint orbits were studied by Terng and Thorbergsson
[30], which provided a systematic study of the construction of curve flows on adjoint
orbits from solutions of AKNS-type soliton equations.

As for the interaction between differential geometry of surfaces and nonlinear
differential equations has been studied since the 19th century. In particular, the
relationship between deformations of surfaces and integrable systems in 2+1 dimen-
sions were studied by several authors [29-44]. In [35-42], Myrzakulov et al extended
the theory of moving space curve formalism in 1+1 dimensions to 2+1 dimensions
by adding an extra space variable to the motion of curves in R3. They showed
that the 2+1-dimensional Ishimori equation, Myrzakulov I equation, Myrzakulov
III equation, 2+1-dimensional isotropic Heisenberg ferromagnet model and the 2+1-
dimensional Schrödinger equation arise from such motions. In a similar manner, the
2+1-dimensional integrable shallow water wave equation was obtained by Qu and
Zhang [43] by considering the motion of space curves in centro-affine geometry.

In this paper, we will consider motion of space curves in n-dimensional similar-
ity geometries by the approach in [35-43], which induces deformation of surfaces in
similarity geometries. The paper is organized as follows: In Subsections 2.1 and 2.2
of Section 2, we investigate respectively motion of space curves in four-dimensional
similarity geometry P4 by adding one and two extra space variables. Motion of space
curves in n-dimensional geometry Pn (n > 4) by adding one and two extra space
variables are discussed respectively in Subsections 3.1 and 3.2. Section 4 contains a
concluding remarks on this work.

2. Motion of space curves in P4
.

2.1. Motion of curves in P4
by adding an extra space variable y. Mo-

tion of curves in similarity geometry and related topics have been studied by Sapiro,
Tannenbaum, Chou and Qu et al in [14,15,45,46]. In this section, we consider motion
of space curves in P4 by adding an extra space variable y.

We denote by κ1, κ2, κ3, s and τ i, i = 1, 2, 3, 4 the curvatures, arc-length and
unite frame vectors of curves in Euclidean space R4.

In the case of space curves in P4, the Serret-Frenet formula reads as









t1

t2

t3

t4









θ

=









−α1 1 0 0
−1 −α1 α2 0
0 −α2 −α1 α3

0 0 −α3 −α1

















t1

t2

t3

t4









, (1)

where α1, α2, α3, θ and ti, i = 1, 2, 3, 4, are respectively the curvatures, arc-length
and frame vectors in P4, they are related to the Euclidean’s by

α1 = κ1,s/κ2

1, α2 = κ2/κ1, α3 = κ3/κ1, dθ = κ1ds, ti = (1/κ1)τi, i = 1, 2, 3, 4.

It is readily to show that they are invariant with respect to the similarity transforma-
tion. The invariant geometric motion in P4 is governed by

γt = A1t1 + A2t2 + A3t3 + A4t4, (2)

where Ai, i = 1, 2, 3, 4, denote velocities along the frame vectors, which depend on
curvatures α1, α2, α3.
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It follows from (1) and (2) that the time evolution of the frame vectors in P4 is
given by









t1

t2

t3

t4









t

=









E F G H
−F E F1 G1

−G −F1 E H1

−H −G1 −H1 E

















t1

t2

t3

t4









, (3)

where E, F , G, H , F1, G1, H1 depend on the curvatures α1, α2, α3 too.
The compatibility condition of equations (1) and (3), i.e.









t1

t2

t3

t4









tθ

=









t1

t2

t3

t4









θt

gives rise to the following system

α1,t = −Eθ,

α2,t = G + F1,θ − α3G1,

α3,t = H1,θ + α2G1,

Fθ = α2G,

F1 = α2F + Gθ − α3H,

G1 = α3G + Hθ,

H = −α3F1 − G1,θ + α2H1.

(4)

Let’s extend the theory of moving space curve formalism in 1+1 dimension to the
case in 2+1 dimension by endowing an extra space variable y to the motion of curves
in Pn. Let’s assume that the y-evolution of the frame vectors is determined by









t1

t2

t3

t4









y

=









e f g h
−f e f1 g1

−g −f1 e h1

−h −g1 −h1 e

















t1

t2

t3

t4









, (5)

where e, f , g, h, f1, g1, h1 are functions of curvatures α1, α2 and α3, to be determined.
The compatibility condition between equations (1) and (5) yields

α1,y = −eθ,

α2,y = g + f1,θ − α3g1,

α3,y = h1,θ + α2g1,

fθ = α2g,

f1 = α2f + gθ − α3h,

g1 = α3g + hθ,

h = α2h1 − α3f1 − g1,θ.

(6)

Similarly, the compatibility condition








t1

t2

t3

t4









ty

=









t1

t2

t3

t4









yt
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leads to the following equations

et = Ey,

ft = Fy + gF1 + hG1 − f1G − g1H,

gt = Gy + f1F − fF1 + hH1 − h1H,

ht = Hy + g1F + h1G − fG1 − gH1,

f1,t = F1,y + fG + g1H1 − gF − h1G1,

g1,t = G1,y + fH + h1F1 − f1H1 − hF,

h1,t = H1,y + gH + f1G1 − hG − g1F1.

(7)

From (4) and (6), one obtains

F = ∂−1

θ (α2G),

F1 = α2∂
−1

θ (α2G) + Gθ − α3H,

G1 = α3G + Hθ,

H1 = α−1

2
[Hθθ + (1 − α2

3
)H + 2α3Gθ + α3,θG + α2α3∂

−1

θ (α2G)],

f = ∂−1

θ (α2g),

f1 = α2∂
−1

θ (α2g) + gθ − α3h,

g1 = α3g + hθ,

h1 = α−1

2
[hθθ + (1 − α2

3
)h + 2α3gθ + α3,θg + α2α3∂

−1

θ (α2g)],

(8)

and that the curvatures fulfill the following equations

α1,t = − Eθ,

α2,t =(∂2

θ + α2

2 − α2

3 + 1 + α2,θ∂
−1

θ α2)G − 2α3Hθ − α3,θH,

α3,t =2α2α3G + α3,θ∂
−1

θ (α2G) + α2Hθ

+ [α−1

2
(Hθθ − α2

3
H + H + 2α3Gθ + α3,θG)]θ,

α1,y = − eθ,

α2,y =(∂2

θ + α2

2 − α2

3 + 1 + α2,θ∂
−1

θ α2)g − 2α3hθ − α3,θh,

α3,y =2α2α3g + α3,θ∂
−1

θ (α2g) + α2hθ + [α−1

2
(hθθ − α2

3h + h + 2α3gθ + α3,θg)]θ.

(9)

Substituting equations (8) into (7), we obtain

gt =Gy + gθ∂
−1

θ (α2G) − Gθ∂
−1

θ (α2g) + α−1

2
h(Hθθ + 2α3Gθ + α3,θG)

− α−1

2
H(hθθ + 2α3gθ + α3,θg),

ht =Hy + hθ∂
−1

θ (α2G) − Hθ∂
−1

θ (α2g) + α−1

2
G[hθθ + (1 − α2

3)h + 2α3gθ]

− α−1

2
g[Hθθ + (1 − α2

3)H + 2α3Gθ].

(10)

Setting

G = −α2,y,

and assuming that H satisfies 2α3Hθ − α2
3
α2,y + α3,θH = 0, i.e.

H = (α3∂θ + ∂θα3)
−1α2

3
α2,y,
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one deduces from (9) that

α2,t + α2,θθy + α2,θ∂
−1

θ (α2α2,y) + α2

2α2,y + α2,y = 0,

α3,t = −2α2α3α2,y − α3,θ∂
−1

θ (α2α2,y) − [α−1

2
(α3∂θ + ∂θα3)α2,y ]θ

+ [α−1

2
(∂2

θ + α2

2 − α2∂
−1

θ α2,θ − α2

3 + 1)(α3∂θ + ∂θα3)
−1α2

3α2,y]θ.

(11)

Using the compatibility condition γtθ = γθt, we arrive at the following system

E = A1,θ − α1A1 − A2,

F = A1 + A2,θ − α1A2 − α2A3,

G = α2A2 + A3,θ − α1A3 − α3A4,

H = α3A3 + A4,θ − α1A4.

From F = ∂θ(α2G), we also have

A1 = − A2,θ + α1A2 + α2A3 + ∂−1

θ [α2(A3,θ + α2A2 − α1A3 − α3A4)],

α1,t =[(∂θ − α1 − α1,θ∂
−1

θ )(∂2

θ − ∂θα1 − α2

2
) + ∂θ]A2 − (∂θ − α1 − α1,θ∂

−1

θ )

∗ (∂θα2 + α2∂θ − α1α2)A3 + (∂θ − α1 − α1,θ∂
−1

θ )α2α3A4.

(12)

Letting A2 = −α1 in (12), one obtains the following equation for the curvatures α1

α1,t = − α1,θθθ + 3α2

1,θ + 3α1α1,θθ + 3α2,θα2,y + 2α2α2,θy − 3α2

1
α1,θ − α1,θ∂

−1

θ (α2α2,y)

− α1α2α2,y − α1,θ − α1,θα
2

2 − 3α1α2α2,θ − α2α3(∂θα3 + α3∂θ)
−1α2

3α2,y

− (α2,θθ + α1α2,θ − α2α
2

3)[(∂θ − α1)
−1(α1α2 − α2,y) + (∂θ − α1)

−1[α3(∂θ − α1

+ α3(∂θ − α1)
−1α3)

−1[(α3∂θ + ∂θα3)
−1α2

3α2,y − α3(∂θ − α1)
−1(α1α2 − α2,y)]]

− (2α3α2,θ + α2α3,θ + α1α2α3)[∂θ − α1 + α3(∂θ − α1)
−1α3]

−1

∗ [(α3∂θ + ∂θα3)
−1α2

3
α2,y − α3(∂θ − α1)

−1(α1α2 − α2,y)].
(13)

It is noted that the first equation in (11) is the 2+1-dimensional mKdV equa-
tion, which is integrable [47]. The equations (11) and (13) can be regarded as a
generalization of the mKdV-Burgers system [15].

2.2. Motion of curves in P4
by adding two extra space variables y and z.

On the basis of Section 2.1, we introduce another one more space variable z. Assume
that the z-evolution is governed by









t1

t2

t3

t4









z

=









ẽ f̃ g̃ h̃

−f̃ ẽ f̃1 g̃1

−g̃ −f̃1 ẽ h̃1

−h̃ −g̃1 −h̃1 ẽ

















t1

t2

t3

t4









, (14)

where ẽ, f̃ , g̃, h̃, f̃1, g̃1, h̃1 are functions of curvatures α1, α2 and α3, to be determined.
The compatibility condition









t1

t2

t3

t4









zθ

=









t1

t2

t3

t4









θz
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leads to the following system

α1,z = −ẽθ,

α2,z = g̃ + f̃1,θ − α3g̃1,

α3,z = h̃1,θ + α2g̃1,

f̃1 = α2f̃ + g̃θ − α3h̃,

g̃1 = α3g̃ + h̃θ, f̃θ = α2g̃,

h̃ = −α3f̃1 − g̃1,θ + α2h̃1.

(15)

On the other hand, the compatibility condition









t1

t2

t3

t4









zt

=









t1

t2

t3

t4









tz

leads to the following equations

ẽt = Ez,

f̃t = Fz + g̃F1 + h̃G1 − f̃1G − g̃1H,

g̃t = Gz + f̃1F − f̃F1 + h̃H1 − h̃1H,

h̃t = Hz + g̃1F + h̃1G − f̃G1 − g̃H1,

f̃1,t = F1,z + f̃G + g̃1H1 − g̃F − h̃1G1,

g̃1,t = G1,z + f̃H + h̃1F1 − f̃1H1 − h̃F,

h̃1,t = H1,z + g̃H + f̃1G1 − h̃G − g̃1F1.

(16)

One can easily verify that the compatibility condition ti,zy = ti,yz, i = 1, 2, 3, 4, can
be obtained by the other compatibility conditions.

Thus from the compatibility conditions, one obtains the following equations

A1 = − A2,θ + α1A2 + α2A3 + ∂−1

θ [α2(A3,θ + α2A2 − α1A3 − α3A4)],

E =A1,θ − α1A1 − A2,

F =A2,θ + A1 − α1A2 − α2A3,

G =A3,θ + α2A2 − α1A3 − α3A4,

H =A4,θ + α3A3 − α1A4,

F1 =A3,θθθ + 2α2A2,θ − α1A3,θ − 2α3A4,θ + α2A1 + (α2,θ − α1α2)A2

− (α1,θ + α2

2 + α2

3)A3 − (α3,θ − α1α3)A4,

G1 =A4,θθ + 2α3A3,θ − α1A4,θ + α2α3A2 + (α3,θ − α1α3)A3 − (α1,θ + α2

3)A4,

H1 =α−1

2
[α3A3,θθθ + A4,θθθ + 2α3A3,θθ − α1A4,θθ + 3α2α3A2,θ

+ (3α3,θ − 2α1α3)A3,θ − (2α1,θ + 3α2

3
− 1)A4,θ

+ α2α3A1 + (2α2,θα3 − α1α
2

3
+ α2α3,θ)A2

+ [α3,θθ − α1α3,θ − α3(2α1,θ + α2

2
+ α2

3
− 1)]A3

− (α1,θθ + 3α3α3,θ + α1 − α1α2α3)A4],

(17)
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f =∂−1

θ (α2g), f̃ = ∂−1

θ (α2g̃),

f1 =α2∂
−1

θ (α2g) + gθ − α3h,

g1 =α3g + hθ, g̃1 = α3g̃ + h̃θ,

h1 =α−1

2
[hθθ + (1 − α2

3)h + 2α3gθ + α3,θg + α2α3∂
−1

θ (α2g)],

f̃1 =α2∂
−1

θ (α2g̃) + g̃θ − α3h̃,

h̃1 =α−1

2
[h̃θθ + (1 − α2

3)h̃ + 2α3g̃θ + α3,θg̃ + α2α3∂
−1

θ (α2g̃)],

(18)

and the equations for α1, α2 and α3

α1,t =[(∂θ − α1 − α1,θ∂
−1

θ )(∂2

θ − ∂θα1 − α2

2
) + ∂θ]A2 − (∂θ − α1 − α1,θ∂

−1

θ )

∗ (∂θα2 + α2∂θ − α1α2)A3 + (∂θ − α1 − α1,θ∂
−1

θ )α2α3A4,

α2,t =(∂2

θ + α2,θ∂
−1

θ α2 + α2

2
− α2

3
+ 1)α2A2 + [(∂2

θ + α2,θ∂
−1

θ α2 + α2

2
− α2

3
+ 1)

∗ (∂θ − α1) − (∂θα3 + α3∂θ)α3]A3 − [(∂2

θ + α2,θ∂
−1

θ α2 + α2

2 − α2

3 + 1)α3

+ (∂θα3 + α3∂θ)(∂θ − α1)]A4,

α3,t =[∂θ(α
−1

2
∂θ(α2α3) + α−1

2
α3∂θα2 + α3∂

−1

θ α2

2
) + α2

2
α3]A2

+ [∂θ[α
−1

2
(∂2

θ − α2

3
+ 1)α3 + α−1

2
(∂θα3 + α3∂θ)(∂θ − α1) + α3∂

−1

θ α2(∂θ − α1)]

+ α2(∂θα3 + α3∂θ − α1α3)]A3 + [∂θ[α
−1

2
(∂2

θ − α2

3
+ 1)(∂θ − α1)

− α−1

2
(∂θα3 + α3∂θ)α3 − α3∂

−1

θ α2α3] + α2(∂θ(∂θ − α1) − α2

3
)]A4,

(19)

α1,y = − eθ,

α2,y =(∂2

θ + α2,θ∂
−1

θ α2 + α2

2 − α2

3 + 1)g − 2α3hθ − α3,θh,

α3,y =2α2α3g + α3,θ∂
−1

θ (α2g) + α2hθ + [α−1

2
(hθθ − α2

3h + h + 2α3gθ + α3,θg)]θ,

α1,z = − ẽθ,

α2,z =(∂2

θ + α2,θ∂
−1

θ α2 + α2

2 − α2

3 + 1)g̃ − 2α3h̃θ − α3,θh̃,

α3,z =2α2α3g̃ + α3,θ∂
−1

θ (α2g̃) + α2h̃θ + [α−1

2
(h̃θθ − α2

3
h̃ + h̃ + 2α3g̃θ + α3,θg̃)]θ,

(20)
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as well as the following equations

gt =(A3,θ + α2A2 − α1A3 − α3A4)y + gθ∂
−1

θ [α2(A3,θ + α2A2 − α1A3 − α3A4)]

− (A3,θ + α2A2 − α1A3 − α3A4)θ∂
−1

θ (α2g) + α−1

2
h[(A4,θ + α3A3 − α1A4)θθ

+ 2α3(A3,θ + α2A2 − α1A3 − α3A4)θ + α3,θ(A3,θ + α2A2 − α1A3 − α3A4)]

− α−1

2
(A4,θ + α3A3 − α1A4)(hθθ + 2α3gθ + α3,θg),

ht =(A4,θ + α3A3 − α1A4)y + hθ∂
−1

θ [α2(A3,θ + α2A2 − α1A3 − α3A4)] − (A4,θ

+ α3A3 − α1A4)θ∂
−1

θ (α2g) + α−1

2
(A3,θ + α2A2 − α1A3 − α3A4)[hθθ

+ (1 − α2

3
)h + 2α3gθ] − α−1

2
g[(A4,θ + α3A3 − α1A4)θθ + (1 − α2

3
)(A4,θ + α3A3

− α1A4) + 2α3(A3,θ + α2A2 − α1A3 − α3A4)θ],

g̃t =(A3,θ + α2A2 − α1A3 − α3A4)z + g̃θ∂
−1

θ [α2(A3,θ + α2A2 − α1A3 − α3A4)]

− (A3,θ + α2A2 − α1A3 − α3A4)θ∂
−1

θ (α2g̃) + α−1

2
h[(A4,θ + α3A3 − α1A4)θθ

+ 2α3(A3,θ + α2A2 − α1A3 − α3A4)θ + α3,θ(A3,θ + α2A2 − α1A3 − α3A4)]

− α−1

2
(A4,θ + α3A3 − α1A4)(h̃θθ + 2α3g̃θ + α3,θ g̃),

h̃t =(A4,θ + α3A3 − α1A4)z + h̃θ∂
−1

θ [α2(A3,θ + α2A2 − α1A3 − α3A4)] − (A4,θ

+ α3A3 − α1A4)θ∂
−1

θ (α2g̃) + α−1

2
(A3,θ + α2A2 − α1A3 − α3A4)[h̃θθ + (1 − α2

3)h̃

+ 2α3g̃θ] − α−1

2
g̃[(A4,θ + α3A3 − α1A4)θθ + (1 − α2

3)(A4,θ + α3A3 − α1A4)

+ 2α3(A3,θ + α2A2 − α1A3 − α3A4)θ].

(21)

Choosing A2, A3 and A4 properly so that the equations (19), (20) and (21) are com-
patible, we can obtain a system of 3+1-dimensional evolution equations for curvatures
α1, α2 and α3.

3. Motion of space curves in Pn
.

3.1. Motion of curves in Pn
by adding an extra space variable y. Denote

by κ1, κ2, · · · , κn−1, s and τi, i = 1, 2, · · · , n respectively the Euclidean curvatures,
Euclidean arc-length and Euclidean frame vectors of a curve. One can readily verify
that α1 = κ1,s/κ2

1
, αj = κj/κ1, ti = (1/κ1)τi and dθ = κ1ds, i = 1, 2, · · · , n,

j = 2, 3, · · · , n − 1 are invariant with respect to the isometry group of the similarity
geometry Pn. We define them to be the curvatures, frame vectors and arc-length
element of the curve in Pn.

The Serret-Frenet formulas in Pn read as [15]











t1

t2

...
tn











θ

=



















−α1 1 0

−1 −α1 α2

. . .

0 −α2 −α1

. . . 0
. . .

. . .
. . . αn−1

0 −αn−1 −α1





























t1

t2

...
tn











, (22)

The geometric motion flow in Pn is specified by

γt = A1t1 + A2t2 + · · · + Antn, (23)

where Ai, i = 1, 2, · · · , n, are velocities depending on the curvatures αj , j =
1, 2, 3, · · · , n − 1.
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From γθt = γtθ, we deduce that the time evolution for the frame vectors ti is
given by

ti,t = (A1,θ − A2 − α1A1)ti +

n
∑

j=1

Mijtj , i = 1, 2, · · · , n, (24)

where the n × n matrix Mij are determined recursively by

Mij = −Mji,

M1j = Aj,θ − α1Aj + α̂j−1Aj−1 − αjAj+1, 2 ≤ j ≤ n − 1,

M1n = An,θ − α1An + αn−1An−1,

Mi+1,j = 1/αi(Mij,θ + α̂i−1Mi−1,j − αjMi,j+1 + α̂j−1Mi,j−1), j > i + 1,

with

α̂j =

{

1, j = 1

αj , j 6= 1.

The compatibility condition of equations (22) and (24) i.e.










t1

t2

...
tn











tθ

=











t1

t2

...
tn











θt

,

leads to the equations

(A2,θ − α1A2 + A1 − α2A3)θ = α2(A3,θ − α1A3 + α2A2 − α3A4),

α1,t = −(A1,θ − α1A1 − A2)θ,

αi,t = Mi,i+1,θ − αi+1Mi,i+2 + α̂i−1Mi−1,i+1, i = 2, 3, · · · , n − 1.

(25)

We now introduce the extra space variable y to the curve motion flow. It follows
from (24) that the y-evolution for the frame vectors ti is

ti,y = (a1,θ − a2 − α1a1)ti +

n
∑

j=1

mijtj, i = 1, 2, · · · , n, (26)

where ai, i = 1, 2, · · · , n, are velocities depending on the curvatures αj , j =
1, 2, 3, · · · , n − 1, and n × n matrix mij are determined recursively by

mij = −mji,

m1j = aj,θ − α1aj + α̂j−1aj−1 − αjaj+1, 2 ≤ j ≤ n − 1,

m1n = an,θ − α1an + αn−1an−1,

mi+1,j = 1/αi(mij,θ + α̂i−1mi−1,j − αjmi,j+1 + α̂j−1mi,j−1), j > i + 1.

The compatibility condition between equations (22) and (26) gives rise to the
following equations

(a2,θ − α1a2 + a1 − α2a3)θ = α2(a3,θ − α1a3 + α2a2 − α3a4),

α1,y = −(a1,θ − α1a1 − a2)θ,

αi,y = mi,i+1,θ − αi+1mi,i+2 + α̂i−1mi−1,i+1, i = 2, 3, · · · , n − 1.

(27)
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On the other hand, the compatibility condition










t1

t2

...
tn











ty

=











t1

t2

...
tn











yt

,

leads to the following equations for 2 ≤ j ≤ n

m1j,t = M1j,y +

j−1
∑

l=2

(mljM1l − m1lMlj) +

n−j
∑

k=1

(m1,j+kMj,j+k − mj,j+kM1,j+k). (28)

We note that the equations satisfied by m11,t, mij,t, i = 2, 3, · · · , n, j =
1, 2, · · · , n, can be represented by (25), (27) and (28).

Choosing Aj , j = 2, 3, · · · , n, properly so that equations (25), (27) and (28) are
compatible, one can obtain 2+1-dimensional evolution equations for curvatures αi

i = 1, 2, · · · , n − 1.

3.2. Motion of curves in Pn
by adding two extra space variables y and

z. We assume that the z-evolution is governed by

ti,z = (ã1,θ − ã2 − α1ã1)ti +

n
∑

j=1

m̃ijtj , i = 1, 2, · · · , n,

where α̃i, i = 1, 2, · · · , n, are some functions to be determined, and n× n matrix m̃ij

are governed recursively by

m̃ij = −m̃ji,

m̃1j = ãj,θ − α1ãj + α̂j−1ãj−1 − αj ãj+1, 2 ≤ j ≤ n − 1,

m̃1n = ãn,θ − α1ãn + αn−1ãn−1,

m̃i+1,j = 1/αi(m̃ij,θ + α̂i−1m̃i−1,j − αjm̃i,j+1 + α̂j−1m̃i,j−1), j > i + 1.

From










t1

t2

...
tn











zθ

=











t1

t2

...
tn











θz

,

we have

(ã2,θ − α1ã2 + ã1 − α2ã3)θ = α2(ã3,θ − α1ã3 + α2ã2 − α3ã4),

α1,z = −(ã1,θ − α1ã1 − ã2)θ,

αi,z = mi,i+1,θ − αi+1mi,i+2 + α̂i−1mi−1,i+1, i = 2, 3, · · · , n − 1.

(29)

The compatibility condition










t1

t2

...
tn











zt

=











t1

t2

...
tn











tz
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gives the following system 2 ≤ j ≤ n,

m̃1j,t = M1j,z +

j−1
∑

l=2

(m̃ljM1l − m̃1lMlj) +

n−j
∑

k=1

(m̃1,j+kMj,j+k − m̃j,j+kM1,j+k). (30)

One can readily verify that ti,yz = ti,zy , i = 1, 2, · · · , n, can be represented by
the other compatibility conditions.

Thus we can obtain 3+1-dimensional evolution equations for curvatures αi, i =
1, 2, · · · , n−1, by choosing properly Aj , j = 2, 3, · · · , n, subject to that the equations
(25), (27), (28), (29) and (30) are compatible.

4. Concluding remarks. In this paper, we have discussed integrable defor-
mation of surfaces induced by adding one and two extra space variables to the mo-
tions of space curves in higher-dimensional similarity geometries. The 2+1- and 3+1-
dimensional evolution equations including the 2+1-dimensional mKdV equation and a
generalization of the mKdV-Burgers system [15] were obtained. Similarly, we can dis-
cuss motions of curves by endowing one and two additional space variables in other
Klein geometries, and we believe that there will be some new integrable equations
associated with such motions.
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