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Abstract. We present an L1
-asymptotic completeness results for relativistic kinetic equations

with short range interaction forces. We show that the uniform phase space-time bound for nonlinear

terms to the relativistic nonlinear kinetic equations yields the asymptotic completeness of the rel-

ativistic kinetic equations. For this space-time bound, we employ dispersive estimates and explicit

construction of a Lyapunov functional.

Key words. Asymptotic completeness, relativistic kinetic equation, the Vlasov-Yukawa equa-

tion, the Klein-Gordon equation.

AMS subject classifications. Primary 35L45; Secondary 70K20, 70K40

1. Introduction. The purpose of this paper is to address an L1-asymptotic
completeness for the relativistic kinetic equations (in short RKE) with short range
particle-particle or particle-field interactions. Consider an ensemble of classical par-
ticles moving with a velocity not negligible with respect to the speed of light. We
assume the speed of light and the mass of particle to be unity. In this case, hydro-
dynamic variables for classical relativistic particles can be calculated by the velocity
moments of the one-particle distribution function F = F (x, ξ, t) satisfying an integro-
differential equation:

∂tF + v(ξ) · ∇xF = N (F,∇ξF ), x, ξ ∈ R3, t ∈ R+,

F (x, ξ, 0) = F in(x, ξ),
(1.1)

where v(ξ) ≡ ξ√
1+|ξ|2

is the relativistic velocity corresponding to momentum ξ, and

N (F,∇ξF ) denotes the nonlocal collision operator registering particle-particle inter-
actions, or particle-field interactions. When the nonlinear collision term N is not
present, the resulting equation represents the free streaming of the distribution func-
tion in phase space:

∂tF0 + v(ξ) · ∇xF0 = 0, x, ξ ∈ R3, t ∈ R+,

F0(x, ξ, 0) = F̃ in(x, ξ),
(1.2)

The RKE (1.1) reveals the competitions between ”free streaming” and ”nonlinearity”.
Therefore the resulting dynamics of (1.1) is determined by the relative strength of
these two competing mechanisms.

Asymptotic completeness for the perturbed system (1.1) refers to the situation
that globally perturbed solutions to (1.1) approach to free solutions to (1.2) time-
asymptotically. Scattering theory including asymptotic completeness compares the
behavior of solutions in the distant future and past of a system evolving in time. In
last three decades, potential scattering theory has been extensively studied for classical
and quantum N -particle systems, PDEs in quantum equations such as Yang-Mill’s
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equation, Schrödinger type equations, the Klein-Gordon equation (see [17, 25, 31] for
detailed summary). For the classical and quantum N -particle system, the potential
scattering is now well established (see [11]) and happens only when the interaction
forces are short-ranged. However for particle systems with long-range forces like a
Coloumb’s force, the standard scattering does not hold. Then the natural question to
arise is whether the Vlasov type equations which correspond to the mean-field limit
of interacting particle systems show similar scattering behaviors or not. To author’s
knowledge, this issue has not been much addressed in the previous literatures. We
refer to [21, 22, 33] for the corresponding issue to the linearized Boltzmann equation.
Since the full-time rigorous derivation of the Vlasov equation from the interacting
particle system is not complete [23], the scattering picture for Vlasov type equations
is also not complete.

One of the motivation of this paper is to address the scattering issue from the
kinetic level directly without resorting to particle systems. In order to fix the idea, we
restrict ourselves to the two relativistic kinetic equations with short range interactions:
the relativistic Boltzmann equation and the relativistic Vlasov-Yukawa system.

The rest of this paper is organized as follows. In Section 2, we present an
L1-asymptotic completeness framework and provide a sufficient condition for L1-
asymptotic completeness. In Section 3, we study the asymptotic completeness for the
relativistic Vlasov-Yukawa system which is a short-range correction of the relativistic
Vlasov-Poisson system. Finally Section 4 is devoted to the relativistic Boltzmann
equation with constant cross sections. We present a relativistic counterpart for the
collision potential measuring all possible future collisions between particles, and as a
byproduct of the time-decay estimate of this functional, we obtain the L1-asymptotic
completeness of the relativistic Boltzmann equation.

Notations. Throughout the paper, C denotes a generic positive constant inde-
pendent of t and m, and we use simplified notations for local and global norms: For
any measurable functions h = h(x, ξ, t) and g = g(x, t) defined on R3

x × R3

ξ × Rt and

R3
x × Rt respectively, for 1 ≤ p ≤ ∞,

||h(t)||Lp

x,ξ
= ||h(·, ·, t)||Lp(R3

x×R
3

ξ
), ||h(x, t)||Lp

ξ
= ||h(x, ·, t)||Lp(R3

ξ
),

||h(t)||L∞

x (Lp

ξ
) = sup

x∈R3

||h(x, ·, t)||Lp(R3

ξ
), ||g(t)||Lp

x
= ||g(·, t)||Lp(R3

x).

2. Asymptotic completeness framework in L1
. In this section, we present

one sufficient condition to the asymptotic completeness for the RKE (1.1).
We now briefly explain several concepts for solutions and basic terminologies

in nonlinear scattering theory [25, 34]. We introduce auxiliary functions denoting
quantities evaluated along the free particle trajectory:

F ♯(x, ξ, t) ≡ F (x + tv(ξ), ξ, t),
N (F,∇ξF )♯(x, ξ, t) = N (F,∇ξF )(x + tv(ξ), ξ, t).

Then along the particle trajectory, the equation (1.1) can be rewritten as a mild form:

(2.1) F ♯(x, ξ, t) = F in(x, ξ) +

∫ t

0

N (F,∇ξF )♯(x, ξ, s)ds t ≥ 0.

The definition of mild and classical solutions can be stated as follows.

Definition 2.1. (i) Let T be a given positive number. A nonnegative function
F ∈ C([0, T ); L1

+
(R3×R3)) is a mild solution of (1.1) with a nonnegative initial datum
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F in if and only if for all t ∈ [0, T ) and a.e (x, ξ) ∈ R3 × R3, F satisfies the integral
equation (2.1) pointwise.
(ii) A function F = F (x, ξ, t) ∈ C1(R3×R3×[0, T )) is a classical solution of (1.1) with
a nonnegative initial datum F in if and only if F satisfies the equation (1.1) pointwise.

Below, we restrict ourselves to the situation where the Cauchy problem (1.1) is
globally well-posed so that we can address the question of describing and classifying
the asymptotic behavior of global-in-time solutions. We introduce solution operators
related to the equation (1.1) and (1.2):

U(t), U0(t) : solution operators for the nonlinear flow (1.1)

and free flow (1.2) respectively.

Then {U(t)} satisfies a one-parameter semi-group property of operator:

U(t)U(s) = U(t + s), U(0) = I, t, s ∈ [0,∞),

and solutions to (1.1) and (1.2) can be formally represented as follows:

F (t) = U(t)F in , F0(t) = U0(t)F̃
in , t ≥ 0.

We define the ”asymptotic completeness” to (1.1) as follows.

Definition 2.2. The nonlinear equation (1.1) satisfies ”asymptotic complete-
ness” in L1 if and only if for every global solution F to (1.1), there exists asymptotic
state F± satisfying

lim
t→±∞

||U(t)F in − U0(t)F±||L1

x,ξ
= 0.

Remark 2.3. The scattering operator S is defined as the operator F− → F+

acting between pairs of free states, and the wave operators W+ and W− are the
operators F± → F , acting from free states to interacting states.

We next present a sufficient condition for the time-forward asymptotic complete-
ness condition:

∫ ∞

0

N (F,∇ξF )♯(x, ξ, t)dt < ∞, a. e. (x, ξ) ∈ R6,

∫ ∞

0

∫

R6

|N (F,∇ξF )♯(x, ξ, t)|dξdxdt < ∞.

(2.2)

Proposition 2.1. Let F be a global mild solution in C(R+; L1(R3×R3)) to (1.1)
with initial datum F in . Suppose F satisfies the scattering condition (2.2). Then there
exists the unique L1-scattering state F+ ∈ L1

+(R6) such that

lim
t→∞

||U(t)F in − U0(t)F+||L1

x,ξ
= 0.

Proof. Let F be a global mild solution in C(R+; L1(R3×R3)) to (1.1) with initial
datum F in . Then we have

(2.3) F ♯(x, ξ, t) = F in(x, ξ) +

∫ t

0

N (F,∇ξF )♯(x, ξ, s)ds t ≥ 0.
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We set the asymptotic scattering state F+ by

(2.4) F+(x, ξ) ≡ F in(x, ξ) +

∫ ∞

0

N (F,∇ξF )♯(x, ξ, s)ds.

Then it follows from (2.2) that the asymptotic state F+ is well-defined a.e. We now
subtract (2.4) from (2.3), and take an L1-norm to find

(2.5) ||F ♯(t) − F+||L1

x,ξ
≤

∫ ∞

t

∫

R6

|N (F,∇ξF )♯(x, ξ, s)|dξdxds.

We let t → +∞ and use the scattering condition (2.2) to conclude

lim
t→+∞

||F ♯(t)−F+||L1

x,ξ
= 0, or equivalently lim

t→+∞
||U(t)F in−U0(t)F+||L1

x,ξ
= 0.

Remark 2.4. 1. For the non-relativistic Boltzmann equation, asymptotic com-
pleteness in L∞ and L1-norms are well studied in previous literatures [18, 22, 26, 32,
35].
2. For the relativistic Vlasov-Poisson system, the L1

x,ξ-norm of the nonlinear term
N (F,∇ξF ) = ∇xϕ ·∇ξF is not integrable in t. More precisely, for small and decaying
classical solutions in [3, 4, 8], we have

||∇xϕ(t)||L∞

x,ξ
≤ C(1 + t)−2, ||∇ξF (t)||L1

x,ξ
≤ C(1 + t),

These estimates yield

∣

∣

∣

∫

R6

∇xϕ · ∇ξF (x, ξ, t)dξdx
∣

∣

∣ ≤ C||∇xϕ(t)||L∞

x,ξ
||∇ξF (t)||L1

x,ξ
≤ C(1 + t)−1.

Hence Proposition 2.1 is not applicable for the Vlasov-Poisson system in three dimen-
sions.

In the following two sections, as an application of Proposition 2.1, we consider
two relativistic kinetic equations with short-range interactions: the Vlasov-Yukawa
system and the Boltzmann equation. For the Vlasov-Yukawa system, we use direct
dispersion estimates to prove that small classical solutions satisfy the asymptotic
completeness condition (2.2). In contrast, for the relativistic Boltzmann equation,
since the pointwise estimates for solutions are not available yet, we instead employ a
detour route to get (2.2) via a Lyapunov functional in a priori setting.

3. The relativistic Vlasov-Yukawa equation. In this section, we consider
the ensemble of classical particles moving with a velocity not negligible with respect
to the speed of light and interacting with a scalar Yukawa field [36]. In this case
the dynamics of the distribution function F is well described by relativistic Vlasov
equation coupled with the scalar Yukawa equation [7, 20]:

∂tF + v(ξ) · ∇xF −∇xϕY · ∇ξF = 0, x, ξ ∈ R3, t > 0,

ϕY (x, t) =
ν

4π

∫

R3

e−m|x−y|

|x − y| ρ(y, t)dy, ρ ≡
∫

R3

fdξ,
(3.1)

with initial datum

F (x, ξ, 0) = F in(x, ξ), x, ξ ∈ R3,
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where ν is a constant representing the nature of interaction force, say ν = 1 for
repulsive force, ν = −1 for attractive force, and m denotes the mass of a force carrier
particle (e.g. pions in proton-neutron interactions).

The global existence of classical solutions to the non-relativistic system (3.1)
with unbounded mass was first considered by Caprino, Marchioro and Pulvirenti [7]
in two dimensions, whereas the small global classical solutions with finite mass in
three dimensions was recently studied by Ha and Lee [20] employing the standard
arguments in Vlasov theory [30]. The system (3.1) can be viewed as a short-range
correction of the relativistic Vlasov-Poisson system:

∂tF + v(ξ) · ∇xF −∇xϕC · ∇ξF = 0, x, ξ ∈ R3, t > 0,

ϕC(x, t) =
ν

4π

∫

R3

ρ(y, t)

|x − y|dy, ρ ≡
∫

R3

fdξ,
(3.2)

As m → 0, classical solutions of the Vlasov-Yukawa system converge to the corre-
sponding solutions of the Vlasov-Poisson system a.e. (see [20] for detailed proof).
Below, we cite the global existence theorem in [20] for classical solutions with small
data without a proof.

Lemma 3.1. [20] Suppose the nonnegative initial datum F in ∈ C1(R6) has a
compact support in x and ξ, and is small in W 1,∞-norm, more precisely,

∑

0≤|α|+|β|≤1

||∇α
x∇β

ξ f in ||L∞

x,ξ
< δ ≪ 1,

Then the Vlasov-Yukawa system (3.1) has a global-in-time classical solution, and the
solution and force FY = −∇xϕY satisfy the following uniform estimates.

||F (t)||L∞

x,ξ
≤ δ, ||F (t)||L1

x,ξ
≤ Cδ, ||F (t)||L∞

x (L1

ξ
) ≤

Cδ

(1 + t)3
,

||∇ξF (t)||L1

x,ξ
≤ Cδ(1 + t), ||∇ξF (t)||L∞

x (L1

ξ
) ≤

Cδ

(1 + t)2
,

||∇k+1

x ϕY (t)||L∞

x
+ ||∂t∇xϕY (t)||L∞

x
≤ Cδ

m(1 + t)3
. k = 0, 1, 2.

Remark 3.2. For the dispersion type estimates for the Vlasov-Poisson system,
we refer to [9, 10, 29].

The asymptotic completeness of the Vlasov-Yukawa system follows from Lemma
3.1 and Proposition 2.1.

Theorem 3.3. Let F be a classical solution to (3.1) with initial datum F in .
Then there exists the unique scattering state F+ such that

lim
t→∞

||U(t)F in − U0(t)F+||L1

x,ξ
= 0.

Proof. It suffices to show that F satisfies the asymptotic completeness condition
(2.2).
(i) Since N (F,∇ξF ) = −∇xϕY · ∇ξF ,

|N (F,∇ξF )|(x, ξ, t) ≤ ||∇xϕY ||L∞

x,ξ
||∇ξF ||L∞

x,ξ
≤ Cδ2

m(1 + t)2
.
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This verifies the first condition in (2.2).
(ii) Note that

∫

R6

|∇xϕY (x, t) · ∇ξF (x, ξ, t)|dξdx ≤ ||∇xϕY (t)||L∞

x
||∇ξF (t)||L1

x,ξ
≤ Cδ2

m(1 + t)2
.

We now integrate the above inequality to get

∫ ∞

0

∫

R6

|∇xϕY (x, t) · ∇ξF (x, ξ, t)|dξdxdt ≤ Cδ2

m
< ∞.

Hence Proposition 2.1 yields the desired result.

4. The relativistic Boltzmann equation. In this section, we consider the
relativistic Boltzmann equation dealing with the spatial-temporal evolution of the
distribution function F of identical dilute relativistic classical particles undergoing
binary collisions. In the absence of external forces, F satisfies

∂tF + v(ξ) · ∇xF = Q(F, F ), x, ξ ∈ R3, t > 0,

F (x, ξ, 0) = F in(x, ξ),
(4.1)

where Q(F, F ) denotes a collision operator which takes binary collisions between par-
ticles into account.

Let (ξ, ξ∗) and (ξ′, ξ′∗) be pairs of pre-collisional and post-collisional momentum
respectively, and they satisfy conservation of momentum and energy

ξ + ξ∗ = ξ′ + ξ′∗, ξ0 + ξ∗0 = ξ′0 + ξ′∗0, ξ0 =
√

1 + |ξ|2.

The above relations yield the following collision transformation:

ξ′ = ξ − a(ξ, ξ∗, ω)ω, ξ′∗ = ξ∗ + a(ξ, ξ∗, ω)ω, ω ∈ S
2,

where

a(ξ, ξ∗, ω) =
2(ξ0 + ξ∗0)[(v(ξ) − v(ξ∗)) · ω]ξ0ξ∗0

(ξ0 + ξ∗0)2 − [(ξ + ξ∗) · ω]2
.

The relativistic collision operator Q(f, f) takes the form of

(4.2) Q(F, F )(x, ξ, t) ≡
∫

R3×S
2

+

ξMσ(g, θ)(F ′F ′
∗ − FF∗)dωdξ∗,

with the standard handy notations:

F∗ = F (x, ξ∗, t), F ′ = F (x, ξ′, t) and F ′
∗ = F (x, ξ′∗, t).

Here σ = σ(g, θ) and ξM denote the scattering cross section and the Møller velocity
respectively. We now introduce some quantities employed in the collision integral.
We set

s ≡ 2(
√

1 + |ξ∗|2
√

1 + |ξ|2 − ξ∗ · ξ + 1),

4g2 ≡ 2(
√

1 + |ξ∗|2
√

1 + |ξ|2 − ξ∗ · ξ − 1)

= s − 4.
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The Møller velocity ξM is defined as

ξ2

M ≡ |v(ξ) − v(ξ∗)|2 − |v(ξ) × v(ξ∗)|2.

This implies

ξ2

M =
s(s − 4)

4ξ2
0
ξ2
∗0

and ξM ≤ |v(ξ) − v(ξ∗)|.

The local existence of mild solutions to (4.1) was studied in [1, 2, 5, 6], and
the global existence for space homogeneous problem was treated in [28]. In a close-
to-a global Maxwellian regime, the existence theory for the space inhomogeneous
relativistic Boltzmann equation is now well established in [15, 16], whereas in a close-
to-vacuum regime, we do not have satisfactory results yet for the existence of global
mild solutions, even if we have some partial results [5, 12, 13, 27]. Recently, Glassey
[14] obtained global mild solutions to the relativistic Boltzmann equation near vac-
uum data employing an interesting function space and the standard Kaniel-Shinbrot
argument [22, 24] under the rather strong assumption on the collisional cross section
σ(g, θ).

Below we define a set Spq(ε, T ), where we look for a priori asymptotic completeness
estimates, and list main framework and assumptions A. For positive constants p, q, ε,

Spq(ε, T ) ≡
{

g ∈ C
(

R3 × R3 × [0, T )
)

∣

∣

∣‖g‖ ≡ sup
x,ξ,t

|g♯(x, ξ, t)|ep|x|2eq
√

1+|ξ|2 < ε

}

,

and main assumptions are as follows.
• A1 : The differential cross section σ(g, θ) in (4.2) is bounded, i.e.,

σ(g, θ) ≤ σ∗ < ∞.

• A2 : The size ε of classical solutions satisfies

0 < ε <
q3

32π2σ∗

√

p

π
.

Remark 4.1. (1) For the non-relativistic Boltzmann equation with the velocity-
momentum relation v(ξ) = ξ, the existence of global mild solutions to the non-
relativistic Boltzmann equation:

∂tF + ξ · ∇xF = Q(F, F ),

is well established in the set Spq(ε,∞) with ε ≪ 1 (see Glassey’s book [14]). In
fact, the non-relativistic Boltzmann equation is globally well-posed in the class of
algebraically decaying solutions (see [18, 22, 32]). In contrast for the relativistic
Boltzmann equation, it is not known whether we can find the global mild solutions in
the set Spq(ε,∞).
(2) The bounded differential cross section in A1 has been employed in previous liter-
atures [5, 6].

We next explicitly construct a Lyapunov functional which yields the scattering con-
dition (2.2). Define the relativistic collision potential D and the collision production
rate Λ along the classical solution F :

D(F (t)) ≡
∫

R6

F ♯(x, ξ, t)
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×
[

∫

R3

∫ ∞

0

|v(ξ) − v(ξ∗)|F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)dτdξ∗

]

dξdx,

Λ(F (t)) ≡
∫

R9

|v(ξ) − v(ξ∗)|F ♯(x, ξ, t)F ♯(x + t(v(ξ) − v(ξ∗)), ξ∗, t)dξ∗dξdx.

The positive quantity inside the bracket in D(F (t)) denotes the total number of par-
ticles to collide with test particles F ♯(x, ξ, t) in future. Note that

∫

R6

Q♯
−(F, F )(x, ξ, t)dξdx

=

∫

R9×S
2

+

ξMσF (x + tv(ξ), ξ, t)F (x + tv(ξ), ξ∗, t)dωdξ∗dξdx

≤ 2πσ∗

∫

R9

|v(ξ) − v(ξ∗)|F ♯(x, ξ, t)F ♯(x + t(v(ξ) − v(ξ∗)), ξ∗, t)dξ∗dξdx

= 2πσ∗Λ(F (t)).

Since
∫

Q♯(F, F )dξdx = 0, we have

∫

R6

Q♯
+
(F, F )(x, ξ, t)dξdx =

∫

R6

Q♯
−(F, F )(x, ξ, t)dξdx ≤ 2πσ∗Λ(F (t)).

Next lemma establishes that the collision potential in Spq(ε,∞) is well-defined.

Lemma 4.2. Suppose the main assumptions A1−A2 hold, and let F be a classical
solution satisfying ‖F‖ ≤ ε. Then we have

∫

R3

∫ ∞

0

|v(ξ) − v(ξ∗)|F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)dτdξ∗ ≤ 8π

q3

√

π

p
ε.

Proof. Since ‖F‖ ≤ ε, we have

F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t) ≤ εe−p|x+(t+τ)(v(ξ)−v(ξ∗))|2e−q
√

1+|ξ∗|2 .

Hence we use the above inequality to see

∫

R3

∫ ∞

0

|v(ξ) − v(ξ∗)|F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗)dτdξ∗

≤ ε

∫

R3

|v(ξ) − v(ξ∗)|e−q
√

1+|ξ∗|2
(

∫ ∞

0

e−p|x+(t+τ)(v(ξ)−v(ξ∗))|
2

dτ
)

dξ∗

≤ ε

√

π

p

∫

R3

e−q
√

1+|ξ∗|2dξ∗

≤ ε

√

π

p

∫

R3

e−q|ξ∗|dξ∗

≤ 8πε

q3

√

π

p
,

where we used
∫

R+

e−p|x+(t+τ)(v(ξ)−v(ξ∗))|2dτ ≤
√

π

p

1

|v(ξ) − v(ξ∗)|
.
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Remark 4.3. The collision potential D(F (t)) is a priori bounded by the total
mass.

|D(F (t))| ≤ 8πε

q3

√

π

p
||F in ||L1

x,ξ
.

We next show the collision potential is a Lyapunov functional.

Lemma 4.4. Suppose the main assumptions A1−A2 hold, and let F be a classical
solution in Spq(ε,∞) corresponding initial datum F in . Then the collision potential
D(F ) satisfies

D(F (t)) + C0

∫ t

0

Λ(F (s))ds ≤ D(F in ), t ≥ 0,

where C0 is a positive constant independent of time t.

Proof. It follows from (4.1) that

∂tF
♯(x, ξ, t) = Q♯(F, F )(x, ξ, t),(4.3)

∂t[F
♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)](4.4)

= ∂t[F (x + tv(ξ) + τ(v(ξ) − v(ξ∗)), ξ∗, t)]

= (∂tF + v(ξ) · ∇xF )(x + tv(ξ) + τ(v(ξ) − v(ξ∗)), ξ∗, t)

= (v(ξ) − v(ξ∗)) · ∇xF ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)

+ Q♯(F, F )(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t).

The first term in the right hand side of (4.4) can be rewritten as

(v(ξ) − v(ξ∗)) · ∇xF ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)
= ∂τ [F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)].

We use the above relation to see

∂t

(

|v(ξ) − v(ξ∗)|F ♯(x, ξ, t)F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)
)

= ∂τ

(

|v(ξ) − v(ξ∗)|F ♯(x, ξ, t)F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)
)

+ |v(ξ) − v(ξ∗)|Q♯(F, F )(x, ξ, t)F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)

+ |v(ξ) − v(ξ∗)|F ♯(x, ξ, t)Q♯(F, F )(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t).

(4.5)

Since the integrand and its ∂t derivative inside D(F (t)) are continuous, and
∫

∂t(· · · )
exists, we can interchange time-derivative and integral, when we perform time-
derivative of D(F (t)). We integrate (4.5) over R3 × R3 × R3 × R+ with respect
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to (x, ξ, ξ∗, τ) to get

dD(F (t))

dt
= −

∫

R9

|v(ξ) − v(ξ∗)|F ♯(x, ξ, t)F ♯(x + t(v(ξ) − v(ξ∗)), ξ∗, t)dξ∗dξdx

+

∫

R9×R+

|v(ξ) − v(ξ∗)|Q♯(F, F )(x, ξ, t)

× F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)dτdξ∗dξdx

+

∫

R9×R+

|v(ξ) − v(ξ∗)|Q♯(F, F )(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)

× F ♯(x, ξ, t)dτdξ∗dξdx

≡ −Λ(F (t)) + I1(t) + I2(t).

(4.6)

By the change of variable (x + (t + τ)(v(ξ) − v(ξ∗)) → x̄), we have I1 = I2. Now we
use Lemma 2 to estimate I1

I1(t) ≤
∫

R6

Q♯
+(F, F )(x, ξ)

×
[

∫

R3×R+

|v(ξ) − v(ξ∗)|F ♯(x + (t + τ)(v(ξ) − v(ξ∗)), ξ∗, t)dτdξ∗

]

dξdx

≤ 16π2σ∗

q3

√

π

p
εΛ(F (t)).

(4.7)

In (4.6), we use (4.7) and I1 = I2 to see

dD(F (t))

dt
≤

(

− 1 +
32π2σ∗

q3

√

π

p
ε
)

Λ(F (t))

≤ −C0Λ(F (t)),

(4.8)

where C0 is a positive constant independent of time t. Finally we integrate (4.8) with
respect to t to get the desired result.

Proposition 4.1. Let F be a classical solution in Spq(ε,∞) with initial datum
F in , moreover assume that F satisfies

∫ ∞

0

Q♯
+
(F, F )(x, ξ, t)dt < ∞, (x, ξ) ∈ R6.

Then there exists the unique scattering state F+ such that

lim
t→∞

||U(t)F in − U0(t)F+||L1

x,ξ
= 0.

Proof. Let F be a classical solution in Spq(ε,∞) with initial datum F in satisfying

(4.9)

∫ ∞

0

Q♯
+
(F, F )(x, ξ, t)dt < ∞, (x, ξ) ∈ R6.

We now need to check scattering condition (2.2) to prove the main result.

(i) We follows the procedure of the pointwise estimate of Q♯
−(F, F ) given in [18, 19]

to get

|Q♯
−(F, F )|(x, ξ, t) ≤ C(ε, σ∗, q)e−p|x|2e−q

√
1+|ξ|2

(1 + t)3
.
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This yields

(4.10)

∫ ∞

0

Q♯
−(F, F )(x, ξ, t)dt < ∞.

On the other hand, the pointwise estimate for Q♯
+(F, F ) is not available yet. This is

one of the main reason that we do not have a global existence in Spq(ε,∞). We now
combine the assumption (4.9) and (4.10) to check the first condition in (2.2).

(ii) We now check the second condition in asymptotic completeness criterion (2.2).
The second condition follows from the Lemma 4.4:

∫ ∞

0

∫

R6

|Q♯(F, F )(x, ξ, t)|dxdξdt ≤ 4πσ∗

∫ ∞

0

Λ(F (t))dt ≤ 4πσ∗

C0

D(F in) < ∞.

Then Proposition 2.1 implies the desired result.

5. Conclusion. In this paper, we have presented a sufficient condition for the
L1-asymptotic completeness to the relativistic kinetic equations with short-range in-
teractions, and as a direct application of this condition, we showed that the relativistic
Vlasov-Yukawa system and the relativistic Boltzmann equation with a bounded dif-
ferential cross section satisfy asymptotic-completeness in suitable solution spaces. To
the authors’ knowledge, the L1-asymptotic completeness problem for Vlasov equations
with long-range interaction forces have not been not addressed in previous literatures,
and we think that this problem is an interesting open problem in kinetic scattering
theory.
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