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ON REFINABLE SETS∗

XIN-RONG DAI† AND YANG WANG‡

Abstract. A refinable set is a compact set with positive Lebesgue measure whose characteristic
function satisfies a refinement equation. Refinable sets are a generalization of self-affine tiles. But
unlike the latter, the refinement equations defining refinable sets may have negative coefficients, and
a refinable set may not tile. In this paper, we establish some fundamental properties of these sets.

Key words. Hausdorff dimension, self-similar set, finite type condition

AMS subject classifications. Primary 28A78; Secondary 28A80

1. Introduction. In recent years we have seen extensive studies on self-affine
tiles, fueled in part by their ties to orthonormal wavelets, fractal geometry, number
theory, and of course, tiling itself. Let T ⊂ R

d be a compact set with µ(T ) > 0,
where µ denotes the Lebesgue measure. We say T is a self-affine tile if there exist an
expanding matrix A ∈ Md(R), i.e. all eigenvalues of A have |λ| > 1, and {dj}q

j=1 ⊂ R
d

such that

(1.1) A(T ) =

q⋃

j=1

(T + dj),

where the union on the right is essentially disjoint, namely µ((T + di)∩ (T + dj)) = 0
for i 6= j. Note that the essential disjointness implies that | det(A)| = q. It is
known that a self-affine tile must have nonempty interior with its boundary having 0
Lebesgue measure, and it is the closure of its interior. Much has been written on the
various properties of self-affine tiles as well as on their connections to other areas of
mathematics. We shall not discuss them in details here. One may refer to e.g. [1],
[11] and [14].

The set theoretic equation (1.1) can be written in the form of a refinement equa-

tion. Let f(x) = χT (x). Then f(x) satisfies

(1.2) f(x) =

q∑

j=1

f(Ax − dj) a.e.

Indeed many fundamental properties of self-affine tiles are derived from this refinement
equation, including their wavelet connection.

In general, a refinement equation in R
d is a functional equation of the form

(1.3) f(x) =
n∑

j=1

cjf(Ax − dj) a.e.

where A ∈ Md(R) is expanding, {dj} ⊂ R
d and all cj are real. We call A the dilation

and {dj} the translations of the refinement equations, respectively. The function f(x)

∗Received August 26, 2007; accepted for publication April 11, 2008.
†School of Information Science and Technology, Sun Yat-Sen University, Guangzhou, P. R. China

(Dai xinrong@hotmail.com).
‡Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, USA

(ywang@math.msu.edu). This work is supported in part by the National Science Foundation, grant
DMS-0139261.

165



166 X.-R. DAI AND Y. WANG

is called A-refinable. If in addition A ∈ Md(Z) and {dj} ⊂ Z
d then we call (1.3) an

integral refinement equation and f(x) integrally refinable.
A common misconception is that if χT is refinable then T is a self-affine tile. There

are in fact T that are not tiles, let alone self-affine tiles, such that χT are refinable.
A simple example is T = [0, 2] ∪ [3, 5] ∪ [6, 8], for which f(x) = χT (x) satisfies

f(x) = f(2x) + f(2x − 2) − f(2x − 3) − f(2x − 5) + f(2x − 6) + f(2x − 8) a.e.

Clearly T is not a tile because the gaps in T cannot be filled without overlaps.

Definition 1.1. Let T ⊂ R
d be a compact set with µ(T ) > 0. We say T is

refinable if χT is refinable. It is A-refinable if the refinement equation has dilation
matrix A.

In this paper we ask the following questions: What topological properties do
refinable sets possess? Under what conditions is a refinable set T a self-affine tile?
How do we characterize refinable sets? We shall focus almost entirely on integral
refinable sets. In the non-integral setting the study becomes much harder. This is
evident from the fact that we know very little about non-integral self-affine tiles.

Theorem 1.1. Let T be a compact set in R
d with positive Lebesgue measure.

Suppose T is refinable with f(x) = χT (x) satisfying the refinement equation

f(x) =

n∑

j=1

cjf(Ax − dj) a.e.

(a) All cj are integers.

(b) | det(A)| =
∑n

j=1 cj. Hence det(A) ∈ Z.

(c) If in addition A ∈ Md(Z) and all dj ∈ Z
d, then µ(T ) ∈ Z. Furthermore,

T o 6= ∅ and µ(∂T ) = 0. Thus T = T o up to a measure 0 set.

An important concept in the study of integral refinable functions is the linear

independence of their integral translates, see e.g. Jia and Wang [12] and Goodman,
Jia and Zhou [10]. An integral refinable function f(x) is linearly independent if there
exist no constants {cα : α ∈ Z

d} not all 0 such that

∑

α∈Zd

cαf(x − α) = 0 a.e.

We have the following theorem:

Theorem 1.2. Let T be an integral refinable set in R
d. The following are equiv-

alent:

(a) µ(T ) = 1.
(b) T is an integral self-affine tile such that T tiles R

d translationally by the lattice

Z
d.

(c) The characteristic function f(x) = χT (x) is linearly independent.

One way to construct integral refinable sets T is to take an integral self-affine tile
T0 and let T = T0 + A where A ⊂ Z

d is a finite set. By suitably choosing A we may
make T refinable. The example T = [0, 2]∪ [3, 5]∪ [6, 8] is of this form, with T0 = [0, 2]
and A = {0, 3, 6} (or [0, 1] and A = {0, 1, 3, 4, 6, 7}).



ON REFINABLE SETS 167

Definition 1.2. We call an integral refinable set T with dilation A ∈ Md(Z)
ordinary if there exists an integral self-affine tile T0 with dilation A and a finite set
A ⊂ Z

d such that T = T0 + A.

We shall derive necessary and sufficient conditions for a compact set to be an
ordinary integral refinable set. In the special case where the dilation is 2 in R we
obtain a complete classification of integral refinable sets. Let Z

+ denote the set of all
positive integers and for each q ∈ Z

+ let Φq(z) denote the cyclotomic polynomial of
order q, i.e. the monic polynomial whose roots consist of all primitive q-th roots of
unity.

Theorem 1.3. Let T ∈ R be a compact set with µ(T ) > 1. Then the following

are equivalent:

(a) T is an integral 2-refinable set.

(b) T = [0, 1] + A for some finite A ⊂ Z with the property that the Laurent

polynomial q(z) = (z − 1)
∑

a∈A za satisfies q(z)|q(z2).
(c) T = [0, 1] + A for some finite A ⊂ Z where there exist odd integers 1 = a1 <

a2 ≤ a3 ≤ · · · ≤ am, αk ∈ Z
+ and b ∈ Z such that q(z) = (z − 1)

∑
a∈A za

satisfies

(1.4) q(z) = zb

m∏

k=1

αk−1∏

j=0

Φ2jak
(z) = zb

m∏

k=1

Φak
(z2αj−1

).

In this case, f(x) = χT (x) satisfies the refinement equation f(x) =∑
n∈Z

cnf(2x − n) in which

(1.5)
1

2

∑

n∈Z

cnzn = zb

m∏

k=1

Φ2αk ak
(z).

It should be pointed out that when a refinable set is a union of intervals (or
polytopes in higher dimensions) the characteristic function can be viewed as a refinable
spline. There have been some work on classifying refinable splines, see [16, 4, 5] in R

and [20] in higher dimensions. In particular, the polynomial property q(z)|q(z2) for
refinable splines has been established in [16] while the structure result in (c) has been
established in [5].

A λ-refinable set with |λ| > 2 do not have to be a union of intervals, as there are
many self-affine tiles with dilation λ that are not of this form. We have a classification
of all λ-refinable sets of the form T = [0, 1] + A where A ⊂ Z, as the characteristic
function can be viewed as a refinable spline. Such a classification can be obtained by
combining results from [16] and [5]. To state the result we first introduce the following
notation. Let m, n ∈ Z

+. Assume that m, n have prime factorizations m =
∏

p pαp

and n =
∏

p pβp , where p runs through all primes and αp, βp ≥ 0. We define

〈m/n〉 :=
∏

p

pγp , where γp = max{αp − βp, 0}.

Proposition 1.4. Let λ > 1 be an integer and A ⊂ Z be finite. Let T = [0, 1]+A.

The following are equivalent:

(a) T is a λ-refinable set.
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(b) A has the property that the Laurent polynomial q(z) = (z − 1)
∑

a∈A za sat-

isfies q(z)|q(zλ).
(c) A the property that

(1.6) q(z) := (z − 1)
∑

a∈A

za = zb

m∏

k=1

Φrk
ak

(z).

where 1 = a1 < a2 < · · · < am, rk ∈ Z
+ with the property r1 = 1 and b ∈ Z.

Furthermore, for any 1 ≤ k ≤ m there exists some 1 ≤ j ≤ m such that

bj = 〈bk/λ〉 and rj ≥ rk.

For any B ⊂ Z
d define the trigonometric polynomial fB(ξ) :=

∑
b∈B e−2πi〈b,ξ〉. A

general characterization of ordinary integral refinable sets is the following theorem.

Theorem 1.5. Let A ∈ Md(Z) be expanding and T0 be an integral self-affine tile

given by A(T0) = T0 + D where D ⊂ Z
d with |D| = | det(A)|. Let T = T0 + A where

A ⊂ Z
d and {T0 + a : a ∈ A} are essentially disjoint. Then T is A-refinable if and

only if fA(ξ)|fA(AT ξ)fD(ξ).

We shall have more discussions on ordinary refinable sets later on. It should be
pointed out that so far we are unable to construct a single example of a refinable set
that is not ordinary.

2. Basic Properties of Refinable Sets. We begin with the following known
result, due to Kolountzakis [13].

Lemma 2.1. Let f(x) ∈ L1(Rd) and
∫

Rd f = c 6= 0. Suppose that f(x) satisfies

the refinement equation (1.3) in which A ∈ Md(Z) is expanding and all dj ∈ Z
d. Then∑

α∈Zd f(x − α) = c.

Proof of Theorem 1.1. (a) Clearly we may rewrite the refinement equation as

χT (A−1x) =
n∑

j=1

cjχT (x − dj).

Hence
∑n

j=1 cjχT (x − dj) ∈ Z almost everywhere. We prove the following more

general claim: If
∑n

j=1 cjχT (x − dj) ∈ Z a.e. then all cj ∈ Z. This claim is proved
via induction on n. Obviously the claim is true for n = 1. Assume it is true for all
n < k where k > 1. We prove it is also true for n = k. Consider the convex hull
of {dj}. Without loss of generality we assume that dk is a vertex of the convex hull.
Thus we may find a vector v ∈ R, |v| = 1, such that 〈dk, v〉 > 〈dj , v〉 for all j < k.
Let ε > 0 such that 〈dk, v〉 > 〈djv〉 + 2ε for all j < k. Set

r = sup
{
〈x, v〉 : x ∈ T, µ(Bε(x) ∩ T ) > 0

}
.

Thus there exists an x∗ ∈ T with 〈x∗, v〉 > r − ε and µ(Bε(x
∗) ∩ T ) > 0. Now let

Ω = Bε(x
∗)∩T . Observe that Ω+dk ⊆ T +dk, but Ω+dk is essentially disjoint from

T + dj for all j < k because for every x ∈ T we have

〈x + dj , v〉 = 〈x, v〉 + 〈dj , v〉 < r + 〈dk, v〉 − 2ε,

while for every y ∈ Ω we have

〈y + dk, v〉 = 〈y, v〉 + 〈dk, v〉 > r − 2ε + 〈dk, v〉.
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Since
∑k

j=1 cjχT (x − dj) ∈ Z almost everywhere, in particular on Ω + dk we have
∑k

j=1 cjχT (x − dj) = ckχT (x − dk) ∈ Z almost everywhere. It follows from µ(Ω) >

0 that ck ∈ Z. Thus
∑k−1

j=1 cjχT (x − dj) ∈ Z almost everywhere. The induction
hypothesis now yields all cj ∈ Z.

(b) Integrating both sides of the refinement equation yields

∫

Rd

χT =
n∑

j=1

cj | det(A)|−1

∫

Rd

χT .

Since µ(T ) > 0 by assumption, we have | det(A)| =
∑n

j=1 cj . In particular it is an
integer.

(c) By Lemma 2.1 we have
∑

α∈Zd χT (x − α) = µ(T ) almost everywhere. Hence
µ(T ) ∈ Z. This also shows that the integer translations of T gives a homogeneous
covering of R

d.
We next prove T o 6= ∅ and µ(∂T ) = 0. Set g(x) =

∑
α∈Zd χT (x − α). So

g(x) = L := µ(T ) almost everywhere. Let x0 ∈ T such that g(x0) = L. We prove that
x0 is an interior point of T . Let α1 = 0, α2, . . . , αL ∈ Z

d such that χT (x0−αj) = 1, in
other words, x0 ∈ T +αj , for these j’s. It follows from g(x0) = L that x0 6∈ T +α for all
α not in {αj}. Since T is compact, there exists an ε > 0 such that Bε(x0)∩(T +α) = ∅
for all α not in {αj}. Now

∫

Bε(x0)

g(x) dx =
∑

α∈Zd

∫

Bε(x0)

χT (x − α) dx.

This yields

Lµ(Bε(x0)) =
∑

α∈Zd

µ(Bε(x0) ∩ (T + α))

L∑

j=1

µ(Bε(x0) ∩ (T + αj)).

Thus µ(Bε(x0)∩(T +αj)) = µ(Bε(x0)) for all j, and the compactness of T now yields
Bε(x0) ∩ (T + αj) = Bε(x0). Thus x0 is an interior point of T + αj for all j, and in
particular it is an interior point of T . Hence T o 6= ∅. Furtheremore, since g(x) = L for
almost all x ∈ T , almost all points of T are in the interior of T . Hence µ(∂T ) = 0.

3. Linear Independence. In this section we prove Theorem 1.2. To do so we
show that if µ(T ) > 1 then χT is linearly dependent. Furthermore, there exist integers
{cα : α ∈ Z

d} where not all cα = 0 such that
∑

α∈Zd cαχT (x − α) = 0 for almost all

x ∈ R
d.

For the purpose of simplicity we shall identify a sequence {cα : α ∈ Z
d} with a

function on Z
d. Let F denote the Q-vector space of all functions on Z

d whose values
are rationals.

Lemma 3.1. Let T be an integral refinable set with µ(T ) = k > 1. Then for each

R > 0 there exists a g ∈ F with g(α) ∈ Z − 1
k

for all α ∈ Z
d such that

∑

α∈Zd

g(α)χT (x − α) = 0

for a.e. x ∈ BR(0). Note that g(α) 6= 0 for all α.



170 X.-R. DAI AND Y. WANG

Proof. Since T is integrably refinable we have

(3.1) χT (x) =
∑

α∈Zd

cαχT (Ax − α)

where A ∈ Md(Z) is expanding and only finitely many cα 6= 0. (The equality here,
as well as other similar ones in the paper, should be interpreted in the a.e. sense.)
Iterating (3.1) m times yields

(3.2) χT (x) =
∑

α∈Zd

c(m)
α χT (Amx − α)

for some {c(m)}, where again only finitely many c(m) 6= 0. Hence

χAmT (x) = χT (A−mx) =
∑

α∈Zd

c(m)
α χT (x − α).

It follows from
∑

α∈Zd χT (x − α) = k that

χAmT (x) − 1 =
∑

α∈Zd

(
c(m)
α − 1

k

)
χT (x − α).

But T o is nonempty, so for sufficiently large m there exists a β0 ∈ Z
d such that

BR(β0) ⊂ AmT o. Hence χAmT (x) − 1 = 0 on BR(β0). Thus

∑

α∈Zd

(
c(m)
α − 1

k

)
χT (x − α − β0) = 0 on BR(β0).

Set g ∈ F by g(α) = c
(m)
α−β0

− 1
k
. Note that g(α) 6= 0 because all c

(m)
α−β0

∈ Z. This lead
to the desired result.

We introduce the notion of a arbitrarily extendable zero patch of T . For this we
consider functions f in F with supp (f) ⊆ Bm(0), and let ∆m denote the indicator
function of Z

d ∩ Bm(0), i.e. ∆m(α) = 1 if α ∈ Bm(0) and ∆m(α) = 0 otherwise.

Definition 3.1. A function g ∈ F with supp (g) ⊆ Bm(0) is an arbitrarily

extendable zero patch of T if for any R > 0 there exists an f ∈ F such that g = f∆m

and
∑

α∈Zd f(α)χT (x − α) = 0 on BR(0) almost everywhere. We use Fm to denote
the Q-space of all arbitrarily extendable zero patch of T .

Lemma 3.2. Let T be an integral refinable set with µ(T ) > 1. Then dim(Fm) ≥ 1
for any m > 0.

Proof. A function f ∈ F is called a Bk(0)-zero patch of T if
∑

α∈Zd f(α)χT (x −
α) = 0 on BR(0) almost everywhere. Let

N k
m := {g ∆m : g is a Bk(0)-zero patch of T .}

We have N 1
m ⊇ N 2

m ⊇ N 3
m ⊇ · · · . Clearly

Fm =
⋂

k≥1

N k
m.
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Suppose T is a refinable set with µ(T ) > 1. By Lemma 3.1 each N k
m is nonzero,

hence dim(N k
m) ≥ 1. Since they are all finite dimensional, there exists a k0 such that

N k
m = N k0

m for all k ≥ k0. Thus Fm = N k0

m and dimFm ≥ 1.

Lemma 3.3. Let T be an integral refinable set with µ(T ) > 1. For any n ≥ m ≥ 1
and g ∈ Fm, there exists an h ∈ Fn such that g = h ∆m.

Proof. Consider the subspace Gk
n of N k

n given by

Gk
n :=

{
h ∈ N k

n : h ∆m = cg for some c ∈ Q

}
.

Since g ∈ Fn ⊆ N k
n , there exists a Bk(0)-zero patch f ∈ F of T such that f ∆m = g.

Thus

g = f ∆m = f ∆n ∆m = (f ∆n)∆m.

Set h = f ∆n we have h ∈ N k
n . Furthermore if g 6= 0 then h 6= 0. Thus dim(Gk

n) > 0.
Again, it follows from G1

n ⊇ G2
n ⊇ · · · and the fact that all are finite dimensional that

Gn :=
⋂

k≥1 Gk
n is a subspace with dim(Gn) > 0. Obviously, Gn ⊆ Fn. Thus there

exists some h ∈ Gn ⊆ Fn such that h ∆m = g.

Proposition 3.4. Let T be an integral refinable set with µ(T ) > 1. Then

{χT (x − α) : α ∈ Z
d} are linearly dependent. Furthermore, if d = 1 then there exist

integers {cα : α ∈ Z} where not all cα = 0 such that
∑

α∈Z
cαχT (x − α) = 0 almost

everywhere.

Proof. Assume that µ(T ) = k > 1. By Lemma 3.2 we may find a nonzero g1 ∈ F1.
This g1 can be extended to a g2 ∈ F2 such that g1 = g2 ∆1 by Lemma 3.3. Repeatedly
applying Lemma 3.3 yields a sequence gn ∈ Fn such that gm = gn ∆m for all m ≤ n.
Thus gn→g pointwise for some g ∈ F . Clearly g 6= 0.

Now T is bounded, and suppose that T ⊆ BL(0). Then
∑

α∈Zd gn(α)χT (x−α) = 0

a.e. on Bn−L(0). Hence
∑

α∈Zd g(α)χT (x−α) = 0 a.e. on R
d. Hence χT (x) is linearly

dependent.
Finally we prove that in the case d = 1, g can be chosen so that g(α) ∈ Z

for all α. Since g(α) ∈ Q, there exists a K ∈ Z such that Kg(α) ∈ Z for all
α ∈ BL(0) = (−L, L). Let h = Kg. We prove that h(α) ∈ Z for all α ∈ Z. Assume
it is false. Then h(α) 6∈ Z for some α ∈ Z. Without loss of generality we assume that
h(α) 6∈ Z for some α > 0. Let β be the smallest positive integer such that h(β) 6∈ Z.
Set s = ess inf(T ). So s+β = ess inf(T +β). In the interval (s+β, s+β +1) we have

∑

α∈Zd

h(α)χT (x − α) = 0.

However, besides χT (x− β), only χT (x−α) with −L < α < β have support possibly
intersecting the interval (s + β, s + β + 1). For those α we have h(α) ∈ Z. Thus
h(β) ∈ Z. This is a contradiction.

Proof of Theorem 1.2. Clearly (b) implies (a). We first prove (a) implies (b).
Since f(x) = χT (x) satisfies

∑
α∈Zd f(x−α) = 1 a.e. we know that {T +α : α ∈ Z

d}
are essentially disjoint and T tiles R

d translationally by Z
d. Next, from

f(A−1x) =
∑

α∈Zd

cαf(x − α)
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we conclude that either cα = 0 or cα = 1. Let D = {α : cα = 1}. Then |D| = | det(A)|
by integrating both sides. Now, A(T ) = T +D. So T is an integral self-affine tile that
tiles R

d by Z
d.

We now prove that (c) is equivalent to (a) and (b). The direction (c) implies (a)
is proved in Proposition 3.4. In the other direction, that (a), (b) implies (c), we notice
that {T +α : α ∈ Z

d} are essentially disjoint. Thus, if
∑

α∈Zd cαf(x−α) = 0 then we
must have all cα = 0. It follows that f(x) = χT (x) must be linearly independent.

4. Ordinary Refinable Sets. Recall that an integral refinable set T is ordinary
if it is an essenitally disjoint union of integral translates of a self-affine tile. We
establish several results characterizing ordinary refinable sets.

Theorem 4.1. Let T be an integral refinable set in R, a = ess inf(T ). Suppose

that [a, a + ε] ⊂ T for some ε > 0. Then T is ordinary. In fact,

T =
m⋃

j=1

([a, a + 1] + kj)

for some k1, k2, . . . , km ∈ N.

Proof. Let T be λ-refinable. Since it is also λ2-refinable we may without loss of
generality assume that λ > 0. Furthermore, by a simple translation we may without
loss of generality assume that a = ess inf(T ) = 0. In this case χT satisfies

χT (x) =
n∑

j=0

cjχT (λx − dj)

where 0 = d0 < d1 < · · · < dn are in Z.
We claim that [0, 1] ⊂ T . If not, set ε∗ = sup{ε : [0, ε] ⊂ T }. We have ε∗ < 1

and [0, ε∗] ⊂ T since T is closed. The refienment equation can be rewritten as

χλT (x) =

n∑

j=0

cjχT (x − dj).

Since dj ≥ 1 for j > 0, we clearly have χλT (x) = c0χT (x) on [0, 1]. This yields c0 = 1
and [0, δ] ⊂ T where δ = min(1, λε∗), a contradiction. Hence [0, 1] ⊂ T .

Next we prove µ(T ∩ [k, k + 1]) = 1 or 0 for all k ∈ Z. This clearly holds for
all k < 0, where T does not intersect (−∞, 0). We prove that for k ≥ 0, χT (x) is
constant on the interval [k, k + 1]. Observe that c0 = 1 and the refinement equation
yields

χT (x) = χλT (x) −
l∑

j=1

cjχT (x − dj)

where dl ≤ k + 1 < dl+1. The fact that χT is a constant on [k, k + 1] now follows
easily from induction on k ≥.

Lemma 4.2. Let T be an integral 2-refinable set in R, a = ess inf(T ). Then a ∈ Z

and [a, a + 1] ⊂ T .

Proof. It is well known that a = min{dj}, where χT satisfies

χT (x) =

n∑

j=0

cjχT (2x − dj)
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with {dj} ⊂ Z. Hence a ∈ Z. Again, without loss of generality we may assume that
0 = d0 < d1 < · · · < dn are in Z. We now only need to show that [0, 1] ⊂ T .

By a result of Ron [17] there exists an integral 2-refinable compactly supported
distribution φ(x) with linearly independent integer translates {φ(x−k) : k ∈ Z} such
that

χT (x) =
∑

k∈N

αkφ(x − k)

for some real {αk} with finitely many αk 6= 0. Assume that φ(x) is given by

φ(x) =

m∑

j=0

ajχT (2x − bj)

with 0 = b0 < b1 < · · · < bm in Z. Now a result of Sun [18] (see also Bi, Huang and
Sun [21]) states that suppφ = [0, bm], i.e. φ does not vanish on any open interval in
[0, bm]. Thus the support of χT contains [0, 1], proving the lemma.

Proof of Theorem 1.3. First, by Theorem 4.1 and Lemma 4.2, if T is 2-refinable
then T = [0, 1] + A for some finite A ⊂ Z. This means χT (x) is actually a refinable
spline of degree 0. Conversely, if χT (x) is a 2-refinable spline then it is 2-refinable,
and hence T is a 2-refinable set. Thus characterizing all 2-refinable set T is equivalent
to characterizing all 2-refinable splines of the form f(x) =

∑
α∈A B0(x − α) with

A ⊂ Z, where B0(x) := χ[0,1]. The characterization of refinable splines in R are
already given in Dai, Feng and Wang [5]. Theorem 1.3 follows directly from [5],
Theorem 2.1. (Observe that using the terminology in [5] χT is a rational refinable
spline because the refinement equation defining χT has rational coefficients – in fact
integer coefficients.)

Proof of Theorem 1.4. The proof of this theorem is virtually identical to that of
Theorem 1.3. The set T = [0, 1] + A is λ-refinable for some finite A ⊂ Z if and only
if χT (x) =

∑
α∈A B0(x − α) is a λ-refinable spline of degree 0, where B0(x) := χ[0,1].

Thus characterizing all λ-refinable set T in R is equivalent to characterizing all λ-
refinable splines of the form f(x) =

∑
α∈A B0(x−α) with A ⊂ Z. The characterization

of refinable splines in R are give by Theorem 2.2 in Dai, Feng and Wang [5], which
immediately yields this theorem.

Proof of Theorem 1.5. It is well known that χ̂T0
(Bξ) = fD(ξ)χ̂T0

(ξ), where
B = AT . Now χ̂T (ξ) = fA(ξ)χ̂T0

(ξ). Again, it is known that χT (x) is integrally
refinable with dilation A if and only if there exists a trigonometric polynomial H(ξ)
such that χ̂T (Bξ) = H(ξ)χ̂T (ξ). In other words,

fA(Bξ)χ̂T0
(Bξ) = H(ξ)fA(ξ)χ̂T0

(ξ).

Now, it follows from χ̂T0
(Bξ) = fD(ξ)χ̂T0

(ξ) that

fA(Bξ)fD(ξ)χ̂T0
(ξ) = H(ξ)fA(ξ)χ̂T0

(ξ).

Hence the trigonometric polynomial H(ξ) exists if and only if fA(ξ)|fA(Bξ)fD(ξ).

So far the results in this section have focused on when T = T0 + A is a refinable
set, where T0 is an integral self-affine tile and A ⊂ Z

d is a finite set. But an equally
important questions is: Given a refinement equation, when will its solution be a
characteristic function. It appears that this question is difficult in general. However
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for dilation 2 in R we have a complete classification. To state the result we first revisit
a well-known method in the study of 2-refinable functions. Starting with the integral
2-refinement equation

(4.1) f(x) =

N∑

j=0

cjf(2x − j) a.e.

where c0, cN 6= 0, we know that up to scalar multiples it has a unique distribution
solution that is supported in [0, N ]. Corresponding to the refinement equation (4.1)
are two N × N companion matrices

A0 = [c2i−j ]0≤i,j<N , A1 = [c2i−j+1]0≤i,j<N

as well as a vector valued function

vf (t) = [f(t), f(t + 1), . . . , f(t + N − 1)]T , t ∈ [0, 1).

(Note that in A0, A1 the indices go from 0 to N − 1 instead of the more traditional 1
to N . Also, we set ck = 0 if k < 0 or k > N .) It is well-known that the refinement
equation (4.1) is equivalent to the vector equation

(4.2) vf (x) = Aτ(t)vf (σ(t)) a.e.

where τ(t) := ⌊2t⌋ and σ(t) = {2t} are the integer and fractional parts of 2t, respec-
tively. This vector equation was originally introduced in Daubechies and Lagarias
[8, 9], and it is a powerful tool for studying many different properties of 2-refinable
functions, see e.g. Wang [22].

Theorem 4.3. Let f(x) be a nonzero distribution in R satisfying the refinement

equation

f(x) =

N∑

j=0

cjf(2x − j) a.e.

where c0, cN 6= 0. The following are equivalent:

(a) f(x) = aχT (x) a.e. for some constant a 6= 0 and compact set T ⊂ R.

(b) The companion matrices A0 = [c2i−j ]0≤i,j<N and A1 = [c2i−j+1]0≤i,j<N have

a common eigenvector v with eigenvalue 1 whose entries are 0 or 1.

(c) The polynomial P (z) =
∑N

j=0 cjz
j has the form

(4.3) P (z) =

m∏

k=1

Φ2αk ak
(z),

where all αk > 0 and 1 = a1 < a2 ≤ a3 ≤ · · · ≤ am are all odd. Furthermore
q(z)
z−1 is a 0-1 polynomial, where

q(z) :=
m∏

k=1

αk−1∏

j=0

Φ2jak
(z) =

m∏

k=1

Φak
(z2αj−1

).
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Proof. (a) ⇒ (b). In this case T is an integral refinable set. By Theorem 1.3 we
know that T = [0, 1] + A for some finite set A ⊂ Z. Since T ⊆ [0, N ] it is clear that
A ⊆ {0, 1, . . . , N − 1}. Now it follows that vf (t) = v a.e. for some constant vector
v ∈ R

N whose entries are 0 or 1. Thus by (4.2) v is a 1-eigenvector for both A0 and
A1.

(b) ⇒ (a). Let v = [v0, v1, . . . , vN−1]
T be the common 1-eigenvector for A0 and A1

whose entries are 0 or 1. Let T = [0, 1] + A where A is defined by A = {j : 0 ≤ j ≤
N − 1, vj = 1}. For f(x) = χT (x) we clearly have vf (t) = v a.e. and furthermore,
vf (t) satisfies the equation (4.2). It follows that f(x) satisfies the refinement equation.

(c) ⇒ (a). By Theorem 2.1 in Dai, Feng and Wang [5], (4.3) implies that f(x) is an
integral refinable spline of degree 0. Hence f(x) =

∑
k≥0 bkχ[0,1](x− k) a.e. where all

but finitely many bk 6= 0. In addition, up to a constant multiple

∑

k≥0

bkzk =
q(z)

z − 1
.

Since q(z)
z−1 is a 0-1 polynomial, up to a constant multiple f(x) = χT (x) a.e. where

T = [0, 1] + {k : bk = 1}.
(a) ⇒ (c). Again by Theorem 2.1 in Dai, Feng and Wang [5], since f(x) is an
integral refinable spline of degree 0 the polynomial P (z) must be of the form (4.3).
Furthermore, Write T = [0, 1] + A and f(x) = χT (x) =

∑
k≥0 bkχ[0,1](x − k) where

bk = 1 if and only if k ∈ A. Theorem 2.1 in [5] also states that

∑

k≥0

bkzk =
q(z)

z − 1
.

Hence q(z)
z−1 is a 0-1 polynomial.

Example 1. We consider the refinement equation

f(x) = f(2x) + f(2x − 2) − f(2x − 3) − f(2x − 5) + f(2x − 6) + f(2x − 8).

In this case P (z) =
∑

k≥0 ckzk = 1 + z2 − z3 − z5 + z6 + z8. One may verify that
P (z) = Φ4(z)Φ18(z). It satisfies the hypothesis in (c) of Theorem 4.3 with a1 = 1,
a2 = 9, α1 = 2, α2 = 1. The corresponding q(z) = Φ1(z

2)Φ9(z), yielding

q(z)

z − 1
= (1 + z)(1 + z3 + z6) = 1 + z + z3 + z4 + z6 + z7,

which is a 0-1 polynomial. Hence we know the solution to the refinement equation is
the charcteristic function of T = [0, 1] + {0, 1, 3, 4, 6, 7}.

Alternatively we may also use the companion matrices in part (b) of Theorem 4.3,
which are

A0 =




1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 −1 1 0 1 0 0 0
1 −1 0 −1 1 0 1 0
1 0 1 −1 0 −1 1 0
0 0 1 0 1 −1 0 −1
0 0 0 0 1 0 1 −1
0 0 0 0 0 0 1 0




, A1 =




0 1 0 0 0 0 0 0
−1 1 0 1 0 0 0 0
0 0 −1 1 0 1 0 0
0 1 −1 0 −1 1 0 1
0 1 0 1 −1 0 −1 1
0 0 0 1 0 1 −1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1






176 X.-R. DAI AND Y. WANG

It is easy to check that the vector v = [1, 1, 0, 1, 1, 0, 1, 1]T is a common 1-eigenvector
of both A0 and A1. This yields the same conclusion as by part (c) of Theorem 4.3

Example 2. The coefficients of the refinement equation satisfied by a refinable set
do not have to be in the set {0, 1,−1}. Set T = [0, 3] + {0, 5, 10, 14, 19, 24, 28, 33, 38}.
Then T is a 4-refinable set. The function f(x) = χT (x) satisfies the refinement
equation

f(x) =
∑

j

cjf(4x − j)

where the mask polynomial p(z) =
∑

j cjz
j is given by p(z) = Q(z4)/Q(z), with

Q(z) = (z − 1)(z2 + z + 1)(z10 + z5 + 1)(1 + z14 + z28).

One may check with Mathematica that c14 = −2 and c39 = 2.

5. Some Open Questions. (1) Although a refinable set may not tile in the
ordinary sense, it is natural to speculate that it may have a signed tiling of R

d. In
a signed tiling one is allowed to add as well as subtract. This concept was first
introduced in Conway and Lagarias [3]. Here we use a broader definition of a signed
tiling 1.

Definition 5.1. Let T be a compact set in R
d with positive Lebesgue measure.

We say T is a signed tile of R
d if there exist translations {dj} in R

d and integers {rj}
such that

(5.1)
∑

j

rj χT (x − dj) = 1 a.e.

We call (5.1) a signed tiling of R
d by T .

This leads to the following open question: Is it true that all integral refinable sets are

signed tiles?

(2) We have proved that an integral refinable set T has nonempty interior. Is this
true for all refinable sets?

(3) As mentioned in the introduction, we have not been able to find a refinable set
that is not ordinary. This leads to the following question: Is it true that all integral

refinable sets are ordinary?
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