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Abstract. Fast sweeping methods utilize the Gauss-Seidel iterations and alternating sweeping

strategy to achieve the fast convergence for computations of static Hamilton-Jacobi equations. They

take advantage of the properties of hyperbolic PDEs and try to cover a family of characteristics of

the corresponding Hamilton-Jacobi equation in a certain direction simultaneously in each sweeping

order. The time-marching approach to steady state calculation is much slower than the fast sweeping

methods due to the CFL condition constraint. But this kind of fixed-point iterations as time-

marching methods have explicit form and do not involve inverse operation of nonlinear Hamiltonian.

So it can solve general Hamilton-Jacobi equations using any monotone numerical Hamiltonian and

high order approximations easily. In this paper, we adopt the Gauss-Seidel idea and alternating

sweeping strategy to the time-marching type fixed-point iterations to solve the static Hamilton-Jacobi

equations. Extensive numerical examples verify at least a 2 ∼ 5 times acceleration of convergence even

on relatively coarse grids. The acceleration is even more when the grid is further refined. Moreover

the Gauss-Seidel philosophy and alternating sweeping strategy improves the stability, i.e., a larger

CFL number can be used. Also the computational cost is exactly the same as the time-marching

scheme at each time step.

Key words. fast sweeping methods, Jacobi iteration, Gauss-Seidel iteration, static Hamilton-

Jacobi equations, Eikonal equations
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1. Introduction. The steady state calculations of Hamilton-Jacobi (H-J) equa-

tions appear in many applications, such as optimal control, differential games, image

processing and computer vision, geometric optics, etc. The general form of steady

H-J equations is

{
H(φx1

, · · · , φxd
, x) = 0, x ∈ Ω \ Γ,

φ(x) = g(x), x ∈ Γ ⊂ Ω,
(1.1)

where Ω is a computational domain in Rd
and Γ is a subset of Ω. The Hamiltonian

H is a nonlinear Lipschitz continuous function. The concept of viscosity solutions for

Hamilton-Jacobi equations was introduced in [7].

For the general H-J equations (1.1), a straightforward way is the time marching

approach which turns it into a corresponding time dependent problem and evolves it
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to steady state:






φt +H(φx1
, · · · , φxd

, x) = 0, x ∈ Ω \ Γ,

φ(x, t) = g(x), x ∈ Γ ⊂ Ω,

φ(x, 0) = φ0(x).

(1.2)

Numerical schemes for time dependent Hamilton-Jacobi equations (1.2) are well de-

veloped, even for high order schemes on both structured and unstructured meshes

[23, 14, 38, 13, 22, 6, 15, 20, 24, 1, 2, 5, 4]; see a recent review on high order numerical

methods for time dependent H-J equations by Shu [33]. In [21], Osher provides a

natural link between steady and time-dependent Hamilton-Jacobi equations by using

the level-set idea. The zero-level set of the viscosity solution ψ of the time-dependent

H-J equation

ψt +H(ψx1
, · · · , ψxd

, x) = 0 (1.3)

at time t is the set of x such that φ(x) = t of (1.1), where the Hamiltonian H is

homogeneous of degree one. In the control framework, a semi-Lagrangian scheme

is obtained for Hamilton-Jacobi equations by discretizing in time using the dynamic

programming principle [9, 10]. Another approach to obtain a “time” dependent H-J

equation from the steady H-J equation is using the so called paraxial formulation

in which a preferred spatial direction is assumed in the characteristic propagation

[11, 8, 16, 26, 27]. The convergence to steady state of the solution in the entire domain

may be slow due to finite speed of propagation and CFL condition for the discrete time

step size. The other class of numerical methods for steady state calculations of H-J

equations is to treat the problem as a stationary boundary value problem: discretize

the problem into a system of nonlinear equations and design an efficient numerical

algorithm to solve the system. Among such methods are the fast marching method

[37, 30, 12, 31, 32] and the fast sweeping method [3, 41, 36, 40, 17, 18, 39, 28]. The

main idea of the fast sweeping method is to use upwind finite differences and Gauss-

Seidel iterations with alternating direction sweepings. Dividing all characteristics

into a finite number of groups according to their directions, the fast sweeping method

follows the causality along characteristics in a parallel way and covers a group of

characteristics simultaneously in each Gauss-Seidel iteration with a specific sweeping

ordering. More details of fast sweeping methods will be reviewed in the next section.

While the fast sweeping method can be optimal in the sense that a finite number

of iterations is needed [40], so that the complexity of the algorithm is O(N) for a

total of N grid points; i.e., the number of iterations is independent of the grid size, it

has the framework of implicit schemes. When the high order accuracy version of fast

sweeping methods are explored, this implicit framework generates nonlinear equations

which incorporate both the nonlinearity of high order schemes and nonlinearity of

Hamiltonian. Hence it is not straightforward to solve it directly. A semi-implicit

way was introduced to simplify this procedure in [39]. On the other hand, although

the time marching approach is slow to converge to steady states, it is explicit and

has a simple form of the fixed-point iteration scheme. So it is straightforward to

apply high order approximations and different numerical Hamiltonian for the general

Hamilton-Jacobi equations.

In this paper, we generalized the idea in [39] to the time marching approach and

explored a way to accelerate the convergence to steady states for the time marching

approach. The Gauss-Seidel idea and alternating sweeping strategy are adopted to
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the time marching approach to accelerate its convergence to steady states without any

additional computational cost. Numerical experiments are performed to verify this

acceleration.

In most part of the paper, we use the standard isotropic Eikonal equation

{
|∇φ(x)| = f(x), x ∈ Ω \ Γ,

φ(x) = g(x), x ∈ Γ ⊂ Ω,
(1.4)

where f(x) is a positive function, to be the representation of static H-J equations. The

classical shape-from-shading problems [19, 29, 14, 13] are chosen to be the numerical

examples. A more complicated example will also be presented to test our methods at

the end.

In Section 2, we review the fast sweeping methods [40] for the eikonal equation

(1.4). In Section 3, the idea of fast sweeping methods is applied to the time-marching

type fixed-point iteration to accelerate its convergence to steady states. Numerical

studies are performed to verify the faster convergence speed than the usual time-

marching approach. Concluding remarks are given in Section 4.

2. Review of fast sweeping methods. In this section, we review the first order

Godunov fast sweeping methods in [40]. We consider the two dimensional problems

for simplicity. We first construct a Cartesian grid Ωh = {(i, j), 1 ≤ i ≤ I, 1 ≤ j ≤ J}
covering the computational domain Ω, denote a grid point by (i, j) and the viscosity

numerical solution of (1.1) at the grid point by φi,j . Then discretize the steady H-J

equation (1.1) directly by a monotone numerical Hamiltonian Ĥ [23]:

{
Ĥ((φx)

−
i,j , (φx)

+

i,j , (φy)
−
i,j , (φy)

+

i,j) = fi,j, (i, j) ∈ Ωh \ Γh,

φi,j = gi,j , (i, j) ∈ Γh ⊂ Ωh,
(2.1)

where fi,j and gi,j denote the value of f(x) and g(x) at grid point (i, j) respectively,

(φx)
−
i,j denotes the approximation of φx at the grid point (i, j) when the wind “blows”

from the left to the right, and (φx)
+

i,j denotes the approximation of φx at the grid

point (i, j) when the wind “blows” from the right to the left; similar for (φy)
−
i,j and

(φy)
+

i,j .

Because of the nonlinearity of general Hamiltonian H , the I×J nonlinear system

(2.1) is usually very complicated to solve, especially when the high order nonlinear

approximations for derivatives φx, φy are applied [39]. So an efficient and robust

algorithm to solve (2.1) is very desirable.

To study the convergence history and compare the convergence speed for different

iterative algorithms, we calculate the discrete L1
norm of the nonlinear residue at

every iteration step for each algorithm. The nonlinear residue at the nth iteration

step r(n)
is

r
(n)

i,j = fi,j − Ĥ(n)

((φx)
−
i,j , (φx)

+

i,j ; (φy)
−
i,j , (φy)

+

i,j), 1 ≤ i ≤ I, 1 ≤ j ≤ J. (2.2)

The notation Ĥ(n)
((φx)

−
i,j , (φx)

+

i,j ; (φy)
−
i,j , (φy)

+

i,j) denotes the left hand side of non-

linear system (2.1) Ĥ((φx)
−
i,j , (φx)

+

i,j , (φy)
−
i,j , (φy)

+

i,j) taking value at φ(n)
, where φ(n)

is the numerical solution after the nth iteration. We consider an iterative method is

convergent if

||r(n)||L1 ≤ ε, (2.3)
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where ε is chosen to be 10
−11

in our numerical experiments.

On the other hand, we also care about the accuracy of the algorithm. So we

calculate the L1
norm of the error e(n)

between the exact viscosity solution φexact
and

numerical solution φ(n)
for every iteration step. The e(n)

at each grid point is

e
(n)

i,j = φexact
i,j − φ

(n)

i,j . (2.4)

We take d = 2 in (1.4):

{√
φ2

x + φ2

y = f(x, y), (x, y) ∈ Ω ⊂ R2,

φ(x, y) = g(x, y), (x, y) ∈ Γ ⊂ Ω.
(2.5)

A first-order Godunov upwind difference scheme is used to discretize the PDE

(2.5) in [40]:

[(
φi,j − φ

(xmin)

i,j

h
)
+

]
2

+ [(
φi,j − φ

(ymin)

i,j

h
)
+

]
2

= f2

i,j , (2.6)

where φ
(xmin)

i,j = min(φi−1,j , φi+1,j), φ
(ymin)

i,j = min(φi,j−1, φi,j+1) and

(x)+ =

{
x, x > 0,

0, x ≤ 0.
(2.7)

One sided difference is used at the boundary of the computational domain.

Initialization: according to the boundary condition φ(x, y) = g(x, y) for (x, y) ∈ Γ,

assign exact values or interpolated values at grid points in or near Γ. These values

are fixed during iterations. Assign large positive values at all other grid points. These

values will be updated later.

Gauss-Seidel iterations with alternating sweeping orderings: At each grid xi,j

whose value is not fixed during the initialization, compute the solution, denoted by

ū, of (2.6) from the current values of its neighbors φi±1,j , φi,j±1 and then update φi,j

to be the smaller one between ū and its current old value, i.e., φnew
i,j = min(φold

i,j , ū).

We sweep the whole domain with four alternating directions repeatedly,

(1) i = 1 : I, j = 1 : J ;

(2) i = I : 1, j = 1 : J ;

(3) i = I : 1, j = J : 1;

(4) i = 1 : I, j = J : 1.

The unique solution to the equation (2.6) is

φnew
i,j =






min(φ
(xmin)

i,j , φ
(ymin)

i,j ) + fi,jh, |φ
(xmin)

i,j − φ
(ymin)

i,j | ≥ fi,jh,

φ
(xmin)

i,j + φ
(ymin)

i,j +

√
2f2

i,jh
2 − (φ

(xmin)

i,j − φ
(ymin)

i,j )2

2
, otherwise.

(2.8)
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Fig. 2.1. Three circles problem, the first order Godunov fast sweeping method. Mesh refinement

study. Left: residue; right: error.

The computational complexity of the algorithm is O(N) for a total of N grid

points and the number of iterations is independent of grid size. We use a simple

example, the three circles problem to verify this. In equation (1.4), we take f(x) =

1, g(x) = 0, Ω = [−1, 1] × [−1, 1], and Γ is three circles with same radius 0.125 and

centers (−0.5, 0.5), (0.5, 0.5) and (0,−0.5) respectively. The exact solution to this

problem is the distance function to these three circles. We use the first order Godunov

fast sweeping method in [40], which is reviewed above, to solve this problem. In Figure

(2.1), we plot the L1
norm of the residue (2.2) and the L1

norm of the error (2.4).

From the left picture of Figure (2.1), we can see that the residue of the first order

Godunov fast sweeping method converges to machine zero in 7 iterations for all of

different meshes in this example. The first order accuracy is verified in the right

picture of Figure (2.1). It is shown in [40] that for distance function in n dimensions

the numerical solution reaches first order accuracy after 2
n

iterations even though

a few more iterations may be needed for the iterations to converge. This is also

demonstrated by this example. The three-dimensional plot and the contour plot of

the numerical solution after 7 iterations on a 160 × 160 mesh are plotted in Figure

(2.2).

To show the importance of the alternating direction sweepings, we eliminate the

alternating direction sweepings in previous computations, and the convergence history

is plotted in Figure (2.3) for different meshes. Since there are characteristics whose

directions are against the fixed sweeping order, information has to be passed one grid

by one grid during the iterations for those characteristics. That is why the number

of iterations is proportional to the number of grids in each direction, which is clearly

demonstrated by the numerical example. For convex Hamiltonian with upwind nu-

merical scheme and Gauss-Seidel iterations alternating sweeping direction is crucial.

However, it may be difficult to have a true Gauss-Seidel for more complicated Hamil-

tonian, since the non-linear equation corresponding to the numerical Hamiltonian may

be difficult to solve at each grid point.

3. Fixed-point iterative sweeping methods. The explicit time marching

schemes for (1.2), using the simple forward Euler as the time discretization can be
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Fig. 2.3. Three circles problem, the first order Godunov method, using Gauss-Seidel iterations

but without alternating direction sweepings. Mesh refinement study. Left: residue; right: error.

written in the form

φn+1

i,j = φn
i,j + ∆t

[
fi,j − Ĥ((φx)

−
i,j , (φx)

+

i,j ; (φy)
−
i,j , (φy)

+

i,j)

]
, (3.1)

where

∆t = γ

(
1

αx

hx
+

αy

hy

)
, (3.2)

γ is the CFL number, and

αx = max
A≤u≤B
C≤v≤D

|H1(u, v)|, αy = max
A≤u≤B
C≤v≤D

|H2(u, v)|. (3.3)

Here Hi(u, v) is the partial derivative of H with respect to the i-th argument, or the

Lipschitz constant of H with respect to the i-th argument. [A,B] is the value range
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for φ±x , and [C,D] is the value range for φ±y . For the isotropic Eikonal equation (1.4),

it is easy to show that αx = αy = 1.

From the point of view of iterative methods, the scheme (3.1) can be considered

as a fixed-point iterative method

φnew
i,j = φold

i,j + γ

(
1

αx

hx
+

αy

hy

)[
fi,j − Ĥ((φx)

−
i,j , (φx)

+

i,j ; (φy)
−
i,j , (φy)

+

i,j)

]
. (3.4)

φnew
i,j denotes the to-be-updated numerical solution for φ at the grid point (i, j), and

φold
i,j denotes the current old value for φ at the same grid point. Under the frame-

work of time-marching approach, the approximations of derivatives φ−x , φ
+

x , φ
−
y , φ

+

y in

(3.4) are calculated from the old values of φ at grid points. First order upwind finite

difference or high order WENO approximations ([23, 14, 39]) can be employed to

calculate those derivatives. Due to the explicit framework of (3.4), it does not involve

the inverse operations of the nonlinear Hamiltonian H and the nonlinear equations

as (2.1), so it can solve general Hamilton-Jacobi equations using any monotone nu-

merical Hamiltonian and high order nonlinear approximations easily. However, the

time-marching approach to the steady state calculation is constrained by the CFL

condition and a finite speed of propagation so the number of iterations needed is at

least proportional to the number of grids in each dimension.

In order to keep the simple explicit framework of the fixed-point iteration (3.4)

and accelerate its convergence speed, we adopt the Gauss-Seidel idea and alternating

sweeping strategy to the fixed-point iteration (3.4) in the following way. When the

first order upwind approximations or high order WENO approximations ([23, 14, 39])

for derivatives (φx)
−
i,j , (φx)

+

i,j , (φy)
−
i,j , (φy)

+

i,j in (3.4) are computed, we always use the

newest available values for φ in the interpolation stencils according to the philosophy

of Gauss-Seidel iterations. Of course, since we have not updated φi,j yet, φold
i,j is used

in calculations of (φx)
−
i,j , (φx)

+

i,j , (φy)
−
i,j , (φy)

+

i,j . Furthermore, the iterations do not
just proceed in only one direction i = 1 : I, j = 1 : J as the time-marching approach,

but in the following four alternating directions repeatedly,

(1) i = 1 : I, j = 1 : J ;

(2) i = I : 1, j = 1 : J ;

(3) i = I : 1, j = J : 1;

(4) i = 1 : I, j = J : 1.

Since the strategy of alternating direction sweepings utilizes the characteristics prop-

erty of hyperbolic PDEs, combining with the Gauss-Seidel philosophy, we will ob-

serve the acceleration of convergence speed for time-marching approach, which will

be shown in the following numerical experiments. However, since this is not a true

Gauss-Seidel algorithm we will not have a finite number of iterations independent

of mesh size for convergence in general. The Godunov and Lax-Friedrichs numeri-

cal Hamiltonians are chosen to be the representatives of typical monotone numerical

Hamiltonians. Godunov numerical Hamiltonian is pure upwind, and Lax-Friedrichs

numerical Hamiltonian is not pure upwind, hence it has bigger numerical viscosity
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than Godunov numerical Hamiltonian. On the other hand, Lax-Friedrichs numerical

Hamiltonian is simpler and easier to implement than the Godunov numerical Hamil-

tonian. A complete list and detailed discussion of monotone numerical Hamiltonians

can be found in [33].

Basically, in the following numerical experiments we will compare the conver-

gence behavior of the original time-marching type fixed-point iteration and the one

with Gauss-Seidel philosophy and alternating direction sweepings. When we apply

high order approximations to derivatives, we always use the third order WENO ap-

proximations [14]. On the boundary of computational domain, the extrapolation

boundary conditions are applied [39]. For the simplicity of expression, from now on

the original time-marching type fixed-point iteration (3.4) will be called “the time-

marching method”, the fixed-point iteration (3.4) combining with the Gauss-Seidel

philosophy and alternating sweepings will be called “GS with sweeping method”, and

the fixed-point iteration (3.4) combining with the Gauss-Seidel philosophy but without

alternating sweepings will be called “GS w/o sweeping method” The typical problem

we select to study is the classical shape-from-shading problem [29]:

shape-from-shading 1. Eikonal equation (2.5) with

f(x, y) = 2π
√

[cos(2πx) sin(2πy)]2 + [sin(2πx) cos(2πy)]2. (3.5)

Γ = {(1

4
, 1

4
), (3

4
, 3

4
), (1

4
, 3

4
), (3

4
, 1

4
), (1

2
, 1

2
)}, consisting of five isolated points. The com-

putational domain Ω = [0, 1] × [0, 1]. φ(x, y) = 0 is prescribed at the boundary of

the unit square. The solution for shape-from-shading problem is the shape function,

which has the brightness I(x, y) = 1/
√

1 + f(x, y)2 under vertical lighting. See [29]

for details. If we specify

g(
1

4
,
1

4
) = g(

3

4
,
3

4
) = g(

1

4
,
3

4
) = g(

3

4
,
1

4
) = 1, g(

1

2
,
1

2
) = 2,

then the exact solution for this case is

φ(x, y) =






max(| sin(2πx) sin(2πy)|, 1 + cos(2πx) cos(2πy)),

if |x+ y − 1| < 1

2
and |x− y| < 1

2
;

| sin(2πx) sin(2πy)|, otherwise;

this solution is not smooth. In [14], high order time marching WENO schemes are

used to calculate the solution for this problem.

3.1. Godunov numerical Hamiltonian. In this subsection, we use the Go-

dunov numerical Hamiltonian. Godunov numerical Hamiltonian for the general

Hamiltonian H(u, v) has the form

ĤG
(u−, u+

; v−, v+

) = extu∈I(u−,u+
)
extv∈I(v−,v+

)
H(u, v), (3.6)

where

I(a, b) = [min(a, b),max(a, b)] (3.7)

and the function ext is defined by

extu∈I(a,b) =

{
mina≤u≤b if a ≤ b,

maxb≤u≤a if a > b.
(3.8)
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Fig. 3.1. Study on different γ’s. Shape-from-shading 1, Godunov numerical Hamiltonian, the

third order GS with sweeping method on 80 × 80 mesh. γ = 0.4, 1, 1.6, 1.8. Left: residue r(n); right:

error e(n).

For the Eikonal equation case, it is simplified to

ĤG
(u−, u+

; v−, v+

) =

√
max{(u−)+, (u+)−}2 + max{(v−)+, (v+)−}2, (3.9)

where x+
= max(x, 0), x− = −min(x, 0).

Now, we first use the third order GS with sweeping method to solve the shape-

from-shading problem 1 (3.5). The initial guess is the solution from the first order

Godunov fast sweeping method [40] reviewed in Section 2. Numerical study on the

parameter γ in (3.4) shows that if γ ≤ 1.6, the third order GS with sweeping method

can converge for this problem. Figure (3.1) shows the residue r(n)
(2.2) and the error

e(n)
(2.4) for the third order GS with sweeping method with different γ on 80 × 80

mesh. From Figure (3.1) we can see that if γ ≤ 1.6, the method converges and the

nonlinear residue r(n)
decreases to be less than 10

−11
. And with bigger γ, the method

converges faster. But when γ is increased to 1.8, the method fails to converge in 2000

iterations. The methods with different γ’s generate same numerical error once they

converge. An interesting observation is that at this grid size, even though the method

with γ = 1.8 fails to converge, it has the same numerical error as other γ’s since the

truncation error from the discretization of the PDE on this grid is more dominant

than the error introduced by the final residue. In terms of convergence speed, γ = 1.6

is optimal for the third order GS with sweeping method on the 80× 80 mesh for this

problem. Next we fix γ = 1.6 and do the mesh refinement study for the third order

GS with sweeping method. The results are plotted in Figure (3.2), and we can see

that from the coarsest mesh 80×80 to the finest mesh 640×640, the iteration number

for the method to converge is only increased from 180 to 250, which shows that the

computational complexity is much better than O(N3/2
), which is the complexity for

the time-marching method. And after the method converges, the second order L1

accuracy is obtained if the error is measured on the whole region, which is reasonable

because the exact solution of this problem is not smooth [14, 39].

Next we compare the time-marching method, the GS with sweeping method and

the GS w/o sweeping method, for different γ’s on the 80 × 80 mesh. We still use the

third order WENO approximations for derivatives. Results of convergence history are

plotted in Figure (3.3). In this case, the time-marching method can only converge
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Fig. 3.2. Mesh refinement study. Shape-from-shading 1, Godunov numerical Hamiltonian, the

third order GS with sweeping method with γ = 1.6. Left: residue r(n); right: error e(n).

when γ is as small as 0.4. It fails to converge at bigger γ and blows up if γ is

increased to 1.6. Both GS with sweeping and GS w/o sweeping can converge at a

much bigger γ, although GS with sweeping can converge at a slightly bigger γ than

GS w/o sweeping (GS with sweeping fails to converge at γ = 1.8 from Figure (3.1),

while GS w/o sweeping fails to converge at γ = 1.6). A bigger γ can lead to smaller

iteration numbers if the method does converge under this γ. When γ = 0.4, all of three

methods converge, but both GS with sweeping and w/o sweeping converge three times

faster than the time-marching method. And when γ = 1.6, GS with sweeping method

can converge in 200 iterations, but the other two methods diverges. The comparison

here shows that the GS with sweeping method converges to steady states three times

faster than time-marching approach under the same γ, if the time-marching method

converges at this γ. And another advantage of the GS with sweeping method is that

it has the biggest γ among those three methods. The γ actually represents the CFL

number in the time-marching framework, and bigger γ can make the method converge

faster if the method does converge under this γ.

So far the initial guess we used is the solution from the first order Godunov fast

sweeping method. In [14], the time evolution is initialized by function

φ(x, y, 0) = 4 min(min(x, 1 − x),min(y, 1 − y)). (3.10)

Next, we use this initial guess in the GS with sweeping method and investigate its

convergence history. The picture of L1
norm of the residue r(n)

(2.2) vs. iteration

numbers is plotted in Figure (3.4) for successively refined meshes. The convergence

pattern with initial guess (3.10) is similar to that with initial guess from first order

fast sweeping solution, although more iterations are needed on the N = 640 × 640

mesh for the initial guess (3.10). We also plot the three-dimensional pictures of the

initial function and the convergent numerical solution in Figure (3.5).

In the previous discussion, we only considered the time-marching method which

is evolved by the forward Euler scheme. More often, the TVD Runge-Kutta schemes

[35, 34] are used to evolve the high order schemes for HJ equations (1.2). Next we will

show that the Gauss-Seidel philosophy and alternating direction sweepings can also

be applied to Runge-Kutta schemes to accelerate the convergence to steady states.

We use the second order TVD Runge-Kutta scheme [35, 34] as an example, then the
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time-marching method is

φ
(1)

i,j = φn
i,j + ∆t

[
fi,j − Ĥ((φx)

n,−
i,j , (φx)

n,+

i,j ; (φy)
n,−
i,j , (φy)

n,+

i,j )

]
, (3.11)

φn+1

i,j =
1

2
φn

i,j +
1

2
φ

(1)

i,j +
1

2
∆t
[
fi,j − Ĥ((φx)

(1),−
i,j , (φx)

(1),+

i,j ; (φy)
(1),−
i,j , (φy)

(1),+

i,j )

]
.

Applying the Gauss-Seidel philosophy, we obtain the following fixed-point iterative

method, written in the pseudo-code form:

do i = 1 : I, j = 1 : J ,

φ
(1)

i,j = φn
i,j + γ

(
1

αx

hx
+

αy

hy

)[
fi,j − Ĥ((φx)

−
i,j , (φx)

+

i,j ; (φy)
−
i,j , (φy)

+

i,j)

]
; (3.12)

enddo.
do i = 1 : I, j = 1 : J ,

φn+1

i,j = φ
(1)

i,j +
1

2
γ

(
1

αx

hx
+

αy

hy

)[
fi,j − Ĥ((φx)

−
i,j , (φx)

+

i,j ; (φy)
−
i,j , (φy)

+

i,j)

]
; (3.13)

enddo.
Again, we always use the newest available values of φ in the interpolation stencils

to compute the approximations for derivatives (φx)
−
i,j , (φx)

+

i,j , (φy)
−
i,j , (φy)

+

i,j in (3.12)

and (3.13). From the point of view of implementation, we just use one array for all

of these φn, φ(1)
and φn+1

. Also four alternating direction sweepings

(1) i = 1 : I, j = 1 : J ;

(2) i = I : 1, j = 1 : J ;

(3) i = I : 1, j = J : 1;
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Fig. 3.6. Mesh refinement study. Shape-from-shading 1, Godunov numerical Hamiltonian,

Third order GS-RK2 sweeping method with γ = 1.6, using the initial guess (3.10). Left: residue

r(n); right: error e(n).

(4) i = 1 : I, j = J : 1.

are applied repeatedly for both (3.12) and (3.13), and note that the sweeping direction

of (3.12) and (3.13) should be same during one sweeping. Now since one sweeping

includes both iterations of φ(1)
and φn+1

, it should be counted as 2 iterations when we

count the iteration numbers. We name this method as “GS-RK2 sweeping method” in

this paper. We applied this method with γ = 1.6 to the shape-from-shading problem

1, using Godunov numerical Hamiltonian, third order WENO approximations for

derivatives and the initial guess (3.10). The convergence history and accuracy are

plotted in Figure (3.6). Basically the convergence history is similar as the forward

Euler cases in Figure (3.4), and the second order L1
accuracy is obtained if the error

is measured on the whole region, due to the non-smoothness of the exact solution of

this problem.

Next we compare the convergence history of GS-RK2 sweeping method and the

original time-marching method using TVD-RK2 (3.11). We plot the picture of residue

vs. iteration numbers for both methods on the 320 × 320 and 640 × 640 meshes in

Figure (3.7). This Figure shows that the GS-RK2 sweeping method converges to

steady states twice faster than the time marching RK2 method.

To make the comparison complete, we also use the first order upwind approxi-

mations for derivatives in the GS sweeping method and in the time-marching method

(3.4, 3.1). The convergence history for both of the methods on the 320 × 320 and

640 × 640 meshes is plotted in Figure (3.8). From the Figure, we see that the first

order GS sweeping method converges to steady states more than 1.6 times faster than

the first order time marching method.

3.2. Lax-Friedrichs numerical Hamiltonian. We use the Lax-Friedrichs nu-

merical Hamiltonian in this subsection. The Lax-Friedrichs numerical Hamiltonian

for a Hamiltonian H(u, v) has the form

ĤLF
(u−, u+

; v−, v+

) = H(
u− + u+

2
,
v− + v+

2
) −

1

2
αx(u+ − u−) −

1

2
αy(v+ − v−)

(3.14)

where αx and αy are same as the definition in (3.3).
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Fig. 3.7. Comparison between the third order GS-RK2 sweeping method and the time marching
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Now, we first solve the shape-from-shading problem 1 (3.5) by using the third or-

der GS with sweeping method, with the Lax-Friedrichs numerical Hamiltonian (3.14).

The initial guess is the function (3.10) as in the previous subsection. Numerical study

on the parameter γ in (3.4) shows that if γ ≤ 1.3, the third order GS with sweeping

method can converge to the steady states. It fails to converge to the steady states

when γ increases to 1.4. We do the mesh refinement study for the third order GS

with sweeping method for γ = 1.3, and the results are plotted in Figure (3.9). From

the Figure we can see that the pattern of convergence history is similar as that of

the Godunov numerical Hamiltonian in Figure (3.2), from the coarsest mesh 80 × 80
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Fig. 3.9. Mesh refinement study. Shape-from-shading 1, Lax-Friedrichs numerical Hamil-

tonian, the third order GS with sweeping method with γ = 1.3, using the initial guess (3.10). Left:

residue r(n); right: error e(n).

to the refinest mesh 640 × 640, the iteration number for the method to converge to

steady states is only increased from 150 to 330, which shows that the computational

complexity is much better than O(N3/2
). And after the method converges, the sec-

ond order L1
accuracy is obtained if the error is measured on the whole region due

to the non-smoothness of the exact solution. Comparing the error values in Figure

(3.9) and Figure (3.2), we see that the numerical error by the Lax-Friedrichs numer-

ical Hamiltonian is bigger than that by the Godunov numerical Hamiltonian, which

is reasonable because the Lax-Friedrichs numerical Hamiltonian has bigger numerical

viscosity.

Again we compare the time-marching method, the GS with sweeping method

and the GS w/o sweeping method, for different γ’s on the 80 × 80 mesh. Results of

convergence history are plotted in Figure (3.10). We see that the pattern is similar

to that of the Godunov numerical Hamiltonian in Figure (3.3). Again, the time-

marching method can only converge when γ is as small as 0.4. It fails to converge at

bigger γ and blows up if γ is increased to 1.3. Both GS with sweeping and GS w/o

sweeping can converge at a much bigger γ till γ = 1.3. A bigger γ can lead to smaller

iteration numbers if the method does converge under this γ. When γ = 0.4, all of the

three methods converge, but both GS with sweeping and w/o sweeping converge three

times faster than the time-marching method. And when γ = 1.3, GS with sweeping

method can converge in 200 iterations, GS w/o sweeping method can converge in

300 iterations, but the time-marching method blows up. The comparison here shows

that the GS with sweeping method has the fastest convergence speed to steady states

among these three methods and converges three times faster than the time-marching

approach under the same γ, if the time-marching method does converge under this γ.

The acceleration is even more when the grid is further refined. Another advantage of

the GS with sweeping method is that it has much bigger γ to guarantee convergence

than the time-marching method. The γ actually represents the CFL number in the

time-marching framework, and bigger γ can make the method converge to steady

states faster if the method does converge under this γ.

Studies so far show that the fixed-point iterative sweeping methods with either the

Godunov numerical Hamiltonian or the Lax-Friedrichs numerical Hamiltonian have
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Fig. 3.10. Comparison between the third order time marching, Gauss-Seidel w/o sweeping and

Gauss-Seidel with sweeping methods. Shape-from-shading 1, Lax-Friedrichs numerical Hamiltonian,

using the initial guess (3.10), 80 × 80 mesh. Top left: γ = 0.4; top right: γ = 1; bottom: γ = 1.3.

similar convergence pattern. But we want to show that although the Godunov numer-

ical Hamiltonian is more complicated than the Lax-Friedrichs numerical Hamiltonian,

it is pure upwind and has smaller numerical viscosity. We applied the third order GS

sweeping method with both of numerical Hamiltonians to another shape-from-shading

problem [29, 13]:

shape-from-shading 2. Eikonal equation (2.5) with

f(x, y) =

√
(1 − |x|)2 + (1 − |y|)2. (3.15)

The computational domain Ω = [−1, 1] × [−1, 1]. φ(x, y) = 0 is prescribed at the

boundary of the square for both cases. The exact solution for the problem is

φ(x, y) = (1 − |x|)(1 − |y|). (3.16)

The numerical results by the third order GS sweeping method with these two numer-

ical Hamiltonians are plotted in Figure (3.11). We use the initial guess φ = 0 as in

[13]. From Figure (3.11), we can see that the result by Godunov numerical Hamil-

tonian has a much better resolution on shocks than that by Lax-Friedrichs numerical

Hamiltonian. Actually, in the 80 × 80 mesh, the L1
error is 4.39 × 10

−8
and the
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Fig. 3.11. Shape-from-shading 2. Resolution comparison between Godunov and Lax-Friedrichs

numerical Hamiltonian. Third order GS with sweeping method by Godunov numerical Hamiltonian

(γ = 1.6) and Lax-Friedrichs numerical Hamiltonian (γ = 1.0), using the initial guess φ = 0.

80 × 80 mesh. Top left: three-dimensional view of the result by Godunov numerical Hamiltonian;

bottom left: three-dimensional view of the result by Lax-Friedrichs numerical Hamiltonian; top right:

contour lines view of the result by Godunov numerical Hamiltonian, 30 equally spaced contour lines

from φ = 0 to φ = 1; bottom right: contour lines view of the result by Lax-Friedrichs numerical

Hamiltonian, 30 equally spaced contour lines from φ = 0 to φ = 1.

L∞
error is 6.89 × 10

−6
for Godunov, while the L1

error is 1.93 × 10
−4

and the L∞

error is 1.53 × 10
−2

for Lax-Friedrichs. The optimal γ is 1.6 for Godunov numerical

Hamiltonian and 1.0 for Lax-Friedrichs numerical Hamiltonian in this example. The

iteration numbers needed to reach the L1
residue error 10

−11
are 114 for Godunov

and 119 for Lax-Friedrichs numerical Hamiltonian. So Godunov and Lax-Friedrichs

numerical Hamiltonian are comparable in terms of iteration number, but the Godunov

has a much sharper resolution than Lax-Friedrichs numerical Hamiltonian.

At last, we test the acceleration of convergence using a more complicated example

in elastic wave propagation, which is an anisotropic Eikonal equation:

Travel-time problem. The quasi-P slowness surfaces are defined by the quadratic

equation [25]:

c1φ
4

x + c2φ
2

xφ
2

y + c3φ
4

y + c4φ
2

x + c5φ
2

y + 1 = 0, (3.17)
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the third order time-marching method with γ = 1.0, using the initial guess 10 on the computational

grid points. Left: residue r(n); right: error e(n).

where

c1 = a11a44, c2 = a11a33 + a2

44
− (a13 + a44)

2,

c3 = a33a44, c4 = −(a11 + a44), c5 = −(a33 + a44).

Here aijs are given elastic parameters. The corresponding quasi-P wave eikonal equa-

tion is

√

−
1

2
(c4φ2

x + c5φ2

y) +

√
1

4
(c4φ2

x + c5φ2

y)2 − (c1φ4

x + c2φ2

xφ
2

y + c3φ4

y) = 1. (3.18)

The elastic parameters are taken to be

a11 = 15.0638, a33 = 10.8373, a13 = 1.6381, a44 = 3.1258

in the numerical example to be shown. The computational domain is [−1, 1]× [−1, 1],

and Γ = {(0, 0)}. The Hamiltonians are pretty complicated, so we apply the Lax-

Friedrichs numerical Hamiltonian (3.14) to this problem. The initial guess is big

values (we take 10) on the computational grid points, and αx = αy = 4, γ = 1.

First we use the time-marching approach, and the convergence history is plotted

in Figure (3.12). We can see that more than 2000 iterations are needed for 320× 320

mesh, and it even fails to converge for the 640 × 640 mesh. Then we apply the GS

with sweeping and we can see that the convergence is significantly accelerated, in

Figure (3.13). In Table (3.1), we list the iteration numbers for both methods on this

case, and we can see a 5 times acceleration due to the usage of GS with sweeping, if

the time-marching approach converges, and on 640×640 mesh, time-marching fails to

converge but GS with sweeping can still converge. The three-dimensional and contour

views of the numerical solution by GS with sweeping on 80 × 80 mesh are presented

in Figure (3.14).

Remark 1. We want to emphasize that the local solver to which we apply the

Gauss-Seidel philosophy and alternating sweeping strategy is the fixed-point iterative
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Fig. 3.13. Mesh refinement study. Travel-time problem, Lax-Friedrichs numerical Hamiltonian,

the third order GS with sweeping method with γ = 1.0, using the initial guess 10 on the computational

grid points. Left: residue r(n); right: error e(n).

Table 3.1
Travel-time problem. Comparison of iteration numbers between time-marching and GS with

sweeping methods. Lax-Friedrichs numerical Hamiltonian. The third order method with γ = 1.0.

mesh iter # of GS with sweeping iter # of time-marching acce. ratio

80 × 80 176 780 4.43

160 × 160 269 1264 4.70

320 × 320 443 2194 4.95

640 × 640 774 Not conv. ∞

method (3.4). This local solver is explicit and does not involve solving nonlinear

equations. This is different from the fast sweeping methods in [18, 28, 36, 40], where

the local solvers are implicit and nonlinear equations have to be solved. In [39], the

high order approximations are applied to the building blocks whose framework are

still implicit. As a result, the Godunov version of the schemes in [39] is different

from the Godunov GS sweeping method in this paper. But interestingly, it is easy to

show that the Lax-Friedrichs GS sweeping methods in this paper are equivalent to the

Lax-Friedrichs methods in [17, 39], although they are derived from different starting

points.

Remark 2. It is easy to see that the combination of the time-marching type

fixed-point iteration (3.4) with the Gauss-Seidel philosophy and alternating sweeping

strategy does not add any additional computational cost to the original time-marching

method.

Remark 3. It is also straightforward to use the method in this paper to apply

the Gauss-Seidel philosophy and alternating sweeping strategy to the time-marching

method for the steady states calculation of hyperbolic conservation laws. We ex-

pect that the convergence to steady states of hyperbolic conservation laws can be

accelerated and the further study constitutes our future work.

4. Conclusion. In this paper, we explicitly apply the Gauss-Seidel philosophy

and alternating sweeping strategy to the time-marching method to accelerate its con-
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Fig. 3.14. Travel-time problem, Lax-Friedrichs numerical Hamiltonian, the third order GS with

sweeping method with γ = 1.0, using the initial guess 10 on the computational grid points. 80 × 80

mesh. Left: three-dimensional view; right: contour lines view, 30 equally spaced contour lines from

φ = 0 to φ = 0.44173.

vergence to steady states. Extensive numerical experiments show both acceleration

of convergence to steady states and a larger CFL number can be achieved for the

original time-marching method, without any additional computational cost.
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