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THE INVERSE MEAN CURVATURE FLOW IN
ROBERTSON-WALKER SPACES AND ITS APPLICATION
TO COSMOLOGY™

CLAUS GERHARDTT

Abstract. We consider the inverse mean curvature flow in Robertson-Walker spacetimes that
satisfy the Einstein equations and have a big crunch singularity and prove that under natural condi-
tions the rescaled inverse mean curvature flow provides a smooth transition from big crunch to big
bang. We also construct an example showing that in general the transition flow is only of class C3.
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0. Introduction. In a series of papers we considered the problem of finding
a smooth transition from a spacetime with a big crunch to a spacetime with a big
bang in a classical setting assuming that the Einstein equations and the equation of
state for a perfect fluid are valid in a (punctured) neighbourhood of the singularity.
We distinguished two cases, depending if the spacetime could be embedded as a
hypersurface or brane in a bulk spacetime, or if it was merely given as an abstract
globally hyperbolic Lorentzian manifold.

In the case of branes embedded in the black hole region of an AdS, o bulk
spacetime A/, which is topologically a product N'=R_ x R x Sy, where Sy is an n-
dimensional space form, we could show that, assuming the usual isotropy and spherical
symmetry of the branes, the brane could be extended smoothly past the singularity
into a new bulk space N =R 4+ XRx8p. The new extended hypersurface was smoothly
embedded into

(0.1) NUN =R?%x &,

only the induced metric had a singularity corresponding to the black (white) hole
singularity of the bulk spacetimes, for details cf. [4] and especially [5].

For abstract spacetimes with a big crunch singularity, that are not realized as
hypersurfaces in a bulk spacetime, it is already a non-trivial matter how to define a
smooth transition past the singularity.

In a recent paper [2] we proved that in this situation the inverse mean curvature
flow, properly rescaled, could be used to define a smooth transition from a big crunch
spacetime to a big bang spacetime, and we also showed that the transition flow was
of class C®. The underlying (n + 1)-dimensional spacetime N was fairly general, a
cosmological spacetime satisfying the structural conditions stated below, we called
these spacetimes ARW spaces.

DEFINITION 0.1. A globally hyperbolic spacetime N, dim N = n+1, is said to be
asymptotically Robertson-Walker (ARW) with respect to the future, if a future end
of N, N, can be written as a product N = [a,b) x Sy, where Sy is a Riemannian
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20 C. GERHARDT

space, and there exists a future directed time function 7 = 2% such that the metric in
N4 can be written as

(0.2) ds* = €2¢{—(d$0)2 + 045 (2°, 2)da’ da? },
where Sy corresponds to 2° = a, 1 is of the form

(0.3) P(2%,2) = f(@°) + (", @),

and we assume that there exists a positive constant ¢y and a smooth Riemannian
metric o;; on S such that

(0.4) lime¥ =co A lim oi;(r, 2) = 535 (),
and
(0.5) lir%f(T) = —00.

Without loss of generality we shall assume ¢y = 1. Then N is ARW with respect
to the future, if the metric is close to the Robertson-Walker metric

(0.6) ds? = 2/ {—dz"® + &, (x)da'da’ }

near the singularity 7 = b. By close we mean that the derivatives of arbitrary order
with respect to space and time of the conformal metric e’szyag in (0.2) should con-
verge to the corresponding derivatives of the conformal limit metric in (0.6), when z°
tends to b. We emphasize that in our terminology Robertson-Walker metric does not
necessarily imply that (&;;) is a metric of constant curvature, it is only the spatial
metric of a warped product.

We assume, furthermore, that f satisfies the following five conditions
(0.7) —f' >0,
there exists @ € R such that

(0.8) n+@—2>0 A lim|f/ 2D = ;> 0.

li
T—b

Set 7 = %(n+ @ — 2), then there exists the limit

(0.9) Tim (" + 31 f'*)

and

(0.10) \DE" + AP < eml 1™ Ym>1,
as well as

(0.11) DPf| < enl ™ ¥m> 1.

If Sp is compact, then we call N a normalized ARW spacetime, if

(0.12) / Jdtan = |5"].
So
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In this paper we shall show that in general the differentiability class C? is the
best posible for the transition flow. If it should be of class C'°°, then additional
assumptions have to be satisfied.

We shall consider the problem in Robertson-Walker spaces N = I x Sy, where Sy
is a space form with curvature £ = —1,0, 1, it may be compact or not, and the metric
in N is of the form

(0.13) ds? = &2 (—(dz®)? + 0y (x)dx'dx?),

where 2° = 7 is the time function, (0;;) the metric of Sy, f = f(7), and z° ranges

between —a < 2° < 0. We assume that there is a big crunch singularity in {z° = 0},
i.e., we assume

(0.14) lim f(7) = —c0 and lin}J —f' = oo.

7—0

The Einstein equations should be valid with a cosmological constant A
(015) Gag + Agaﬁ = IiTag, k>0,
or equivalently,

(0.16) Gop = K(Tup — 0Gap), 0 =2,

K

If (Tap) is the stress-energy tensor of a perfect fluid

(0.17) Ty = —p, T = poy

with an equation of state

(0.18) p="2p,

then the equation (0.16) is equivalent to the Friedmann equation

(0.19) 2 = =+ =25 (0 + 0)e¥

which can be easily derived by looking at the component o = 8 =0 in (0.16).
Assuming that w is of the form

(0.20) w=wy+ A(f), wo= const,

where A = A(t) is smooth satisfying

(0.21) lim A(t) =0,

t——o0
such that there exists a primitive i = f(t), g’ = A, with

(0.22) lim fi(t) =0,

t——o0
then p obeys the conservation law

(0.23) p = poe~(MFwolfe=i
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cf. [2, Lemma 0.2]. Hence we deduce from (0.19)

(0.24) If'1? = =& + n(iil) (poe~(MHwo)f et 4 5)e?f

The main result of the paper can be summarized in the following theorem

THEOREM 0.2. Let ¥ = %(n +wo —2) > 0, and assume that \ satisfies the
condition (1.2) and that p can be viewed as a smooth and even function in the variable
(—=7)7, where r = —e/ < 0, or that it can be extended to a smooth and even function
on (=31, 47Y), then the transition flow y = y(s,€), as defined in (2.16) and (2.17),
is smooth in (—y~1,771) x Sy, if either

(0.25) wo€R and =0,
or
(0.26) wo=4—-n and oe€R.

Let us emphasize that the smooth transition from big crunch to big bang does
not constitute the existence of a cyclic universe, cf. the end of Section 2 for a detailed
discussion.

In Section 3 we prove that in general the transition flow is only of class C® by
constructing a counter example.

We believe that the results and even more the proofs indicate strongly that the
inverse mean curvature flow is the right vehicle to offer a smooth transition from big
crunch to big bang in case of abstract spacetimes that are not embedded in a bulk
spacetime.

We refer to [1, Section 2] for a description of our notations and conventions.

1. The Friedmann equation. We want to solve the Friedmann equation (0.24)
in an interval I = (—a,0) such that the resulting spacetime N is an ARW space, cf.
Definition 0.1.

In a slightly different setting we proved in [2, Section 9] that a cosmological
spacetime satisfying the Einstein equations for a perfect fluid with an equation of
state (0.18), w = const, is an ARW space, if

(1.1) ¥=1(n+w-2)>0.

This result will also be valid in the present situation.

LEMMA 1.1. Let 5 = £(n +wo — 2) be positive and assume that X\ and fi satisfy
the conditions stated in the previous section, and in addition suppose

(1.2) [DTA()| < e, V'm e N.

Then the Friedmann equation (0.24) can be solved in an interval I = (—a,0) such
that f € C(I) and the relations (0.14) are valid. Moreover, N is an ARW space.

Proof. We want to apply the existence result [4, Theorem 3.1]. Multiply equation
(0.24) by *¥f and set

(1.3) o=e
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and
(1.4) r=—el.

Then ¢ satisfies the differential equation

(1.5) 72 = —Re® + (2N i) (020D 4 poe™),

n{n—

where we defined p = u(r) by

(1.6) pu(r) = plog(=r)).

Suppose the Friedmann equation were solvable with f satisfying (0.14), then the
right-hand side of (1.5) would tend to —25—

=Ty PO if 7 — 0. Thus, we see that solving
(0.24) and (0.14) is equivalent to solving

(1.7) Yo =—VF(p)

with initial value ¢(0) = 0, where

~ K — z—1
(1.8) F(p) = —ip® + 72555 (poe ™ + o> 7))

n(n

and p should be considered to depend on
(1.9) u(r) = p(=¢" ).

We can now apply the existence result in [4, Theorem 3.1] to conclude that (1.7)
has a solution ¢ € C*((—a,0]) N C°°((—a,0)), where, if we choose a maximal, a is
determined by the requirement

(1.10) lim p=00 or lim F(p)=0.

T——a T——a

Set f =7 llogp, then f satisfies (0.14), since F(0) > 0.
Moreover, differentiating (1.5) with respect to 7 and dividing the resulting equa-
tion by 2f’e7f we obtain

(1.11) F" AP = =R + iy 20 (3 + 1) = Apoe™),

from which we conclude that N is an ARW space, in view of (0.21), (0.22) and (1.2).
a

2. The transition flow. Let M, be a spacelike hypersurface with positive mean
curvature with respect to the past directed normal, then the inverse mean curvature
flow with initial hypersurface My is given by the evolution equation

(2.1) i=—H 'v,

where v is the past directed normal of the flow hypersurfaces M (t) which are locally
defined by an embedding

(22) T = :E(t,f), §= (gi)a
cf. [2] for details.
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In general, even in Robertson-Walker spaces, this evolution problem can only be
solved, if Sy is compact. However, if, in the present situation, we assume that M
is a coordinate slice {#° = const}, then the fairly complex parabolic system (2.1) is
reduced to a scalar ordinary differential equation.

Look at the component a = 0 in (2.1). Writing the hypersurfaces M (t) as graphs
over Sy

(2.3) M@)={(u,x): 2 €S8},
we see that u only depends on ¢, u = u(t), and u satisfies the differential equation

1

where f = f(u), with initial value w(0) = wug, cf. [2, Section 2]. The mean curvature
of the slices M(t) is given by

(2.5) H=c(=nf").

From (2.4) we immediately deduce

(2.6) dnf+t)=nfu+1=0,
and hence
(2.7) e"fel = const = c,

or equivalently,
(2.8) et = ¢,

where v = %ﬁ, and where the symbol ¢ may represent different constants.

The conservation law (2.8) can be viewed as the integrated version of the inverse
mean curvature flow.

In [2, Theorem 3.6] we proved that there are positive constants ¢, co such that

(29) —c1 < u < —co <0.

The old proof also works in the present situation, where Sy is not necessarily compact,
since u doesn’t depend on zx.
Moreover,

(2.10) lim @ exists,

t—oo

cf. [2, Lemma 7.1]. R
We shall define a new spacetime N by reflection and time reversal such that the
IMCF in the old spacetime transforms to an IMCF in the new one.

By switching the light cone we obtain a new spacetime N. The flow equation in
N is independent of the time orientation, and we can write it as

(2.11) i=-H 'v=—(—H)"Y(-v)=-H'p,

where the normal vector o/ = —v is past directed in N and the mean curvature
H = — H negative.
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Introducing a new time function £° = —z" and formally new coordinates (£%) by
setting
(2.12) ¥ =20 3 =2,

we define a spacetime N having the same metric as N—only expressed in the new
coordinate system—such that the flow equation has the form

(2.13) t=—-H1p,
where M (t) = grapha(t), 4 = —u.

The singularity in £° = 0 is now a past singularity, and can be referred to as a
big bang singularity.

The union N U N is a smooth manifold, topologically a product (—a,a) x So—we
are well aware that formally the singularity {0} x Sp is not part of the union; equipped
with the respective metrics and time orientation it is a spacetime which has a (metric)
singularity in 2° = 0. The time function

O .

z”, in N
2.14 0 = ’ N
( ) {—:170, in N,
is smooth across the singularity and future directed.

Using the time function in (2.14) the inverse mean curvature flows in N and N
can be uniformly expressed in the form

(2.15) r=—-H"1p,

where (2.15) represents the original flow in N, if £° < 0, and the flow in (2.13), if
9 > 0.

In [2] we then introduced a new flow parameter

(2.16) —y~te=t  for the flow in N,
. 5 — V
~~le™* for the flow in N,

and defined the flow y = y(s) by y(s) = Z(t). y = y(s) is then defined in [—y~1, 77 1] x
Sp, smooth in {s # 0}, and satisfies the evolution equation

—H pe, s<0,
(2.17) y=4Ldy= {

Hper, s>0,
or equivalently, if we only consider the salar version with 7 = 7(s) representing y°

ue’t, s <0,

2.18 = dy = .
(2.18) =3 {—ﬁew, s> 0.

According to the results in [2, Theorem 8.1] y, and hence 7, are of class C® across
the singularity.
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Now, looking at the relation (2.8) we see that the new parameter s could just as
well be defined by

_A—1.9f < 0
(2.19) A
ol ef, s>0,

where in N as well as in N f is considered to be a function of u(t), f = f(u(t)).
Defining s by (2.19) we deduce for s < 0

1 1
g —dt EX) = = -1
(2.20) n = ugs u—f’e’YfiL — T = ©

The same relation is also valid for s > 0.

Suppose now that ¢, or equivalently, (2,
(2:21) 0" =P =~k 4 R (o€ 4 poe),

can be viewed as an even function in €7/, or equivalently, an even function in s, then
1 would be of class C* across the singularity, and hence the transition flow y = y(s)
would be smooth.

We have thus proved

THEOREM 2.1. Let ¥ = 3(n+wo —2) > 0, and assume that X\ satisfies the
condition (1.2) and that p is a smooth and even function in the variable (—r)7, r < 0,
or can be extended to a smooth and even function on (—y~1,571), then the transition

flow y = y(s,€) is smooth in (=71, 771) x Sy, if either

(2.22) wo€R and o=0,
or
(2.23) wo=4—n and oe€R.

If n = 3 and (2.23) is valid, this means that we consider a radiation dominated
universe.

Let us also emphasize that in the preceding theorem we have only proved a smooth
transition from big crunch to big bang. This does not necessarily mean that we have a
cyclic universe—the same observation also applies to the transition results we obtained
in [4] in a brane cosmology setting.

It could well be that the following scenario holds: The spacetime N exists in
—00 < 7 < 0 with the only singularity in 7 = 0, a big crunch; the mean curvature of
the slices {2° = const} is always positive and

(2.24) lim e = o,

T——00

After a smooth transition through the singularity the mirror image N develops.

Such a pair of universes (IV, N ) can be easily constructed, in fact, this will always
be the case, if the right-hand side of equation (1.8) never vanishes and grows at most
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quadratically in ¢, which will be the case, if ¢ = 0, since then equation (1.7) will be
solvable in an interval (—a, 0], where a is determined by the requirement
(2.25) lim F(p) = 0.

Hence, if F(y) never vanishes, the solution of (1.7) will exist in (—oo, 0]. More-
over, in 7 = —oo there cannot be a singularity, a big bang, since this would require

that the mean curvature of the coordinate slices tend to —oo. But this impossible,
since H never changes sign, there exist no maximal hypersurfaces in V.

To give an explicit example set ¢ = u = 0 and assume k = 0, —1. Then equation
(1.5) has the form

. ~~ kA2
(2:26) ¢* = =R + ST po-
If K = —1, we deduce
2.27 = Asinh(cr), A <0, ¢>0,
( @

and if & =0, then

(2.28) o =—c?,
hence

(2.29) o = —c?r,
ie.,

(2.30) ef = (=)

3. A counter example. We shall show that, even in the case of Robertson-
Walker spaces, the transition flow is in general only of class C2, by constructing a
counter example.

THEOREM 3.1. Let w = wg be such that
(3.1) F=in+w-2)>2,

and assume o # 0. Then the Friedmann equation (0.24) has a solution in the interval
(—a,0) such that corresponding spacetime is an ARW space. The transition flow
y = y(s), however, is only of class C3. If ¥ = 2, then y is of class C>1, but, if 5 > 2,
then

din
(ds)*

(32) lim| | = oo,

where n = n(s) is defined as in (2.18).

Proof. Due to Lemma 1.1 the Friedman equation is solvable and the resulting
spacetime is an ARW space.
Notice that

—ce, s<0
3.3 5§ = 2 ’
(3:3) { e, s>0,



28 C. GERHARDT

and hence we conclude

(34) W(s)=¢",

cf. equation (2.20), where 2 can be expressed as

(3.5) ©* = —Fkeys? + capo + 030(52)”'—771

with positive constants c;.
The proof of the theorem can now be completed by elementary calculations. O
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