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PLANAR TRAVELLING WAVES IN INCOMPRESSIBLE

ELASTIC RODS∗
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Abstract. This paper first describes the rich and intricate structure of the quasilinear hyperbolic
equations governing the planar motions of incompressible nonlinearly elastic rods. It then shows that
under a variety of constitutive restrictions, these equations have periodic travelling-wave solutions
coupling longitudinal and transverse extension, flexure, and shear.
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1. Introduction. Travelling waves for nonlinearly elastic structures form a rich
collection of exact solutions to the governing quasilinear hyperbolic equations (see [3]).
(Travelling waves for such structures with viscous dissipation, not treated here, give
important information about the shock structure of the corresponding system without
dissipation.) In this paper we study planar travelling waves for naturally straight
incompressible nonlinearly elastic rods. The governing equations have a mathematical
structure strikingly different from that for compressible rods [3], whose equations are
completely integrable. Our aim here is not to supply a comprehensive treatment of
travelling waves, but merely to give a taste of the physical and mathematical richness
of the equations.

There have been a number of interesting studies, e.g., [5, 16], of purely extensional
motions of incompressible nonlinear elastic rods, which lead to the analyses of phase
portraits. Here we emphasize more complicated motions in which flexure and shear
are coupled with longitudinal and tranvsverse extension.

Since we limit our attention to elastic rods, we can formulate their equations of
motion as the Euler-Lagrange equations for the Lagrangian (action) functional. We
immediately specialize these equations to those for travelling waves, noting that the
structure of their Lagrangian is quite different from that for the dynamics of systems
of rigid bodies.

We then discuss cases in which our travelling-wave equations can be put into
Hamiltonian form and in which this Hamiltonian form has attractive properties. For
these cases we show how some of the extensive qualitative theory of Hamiltonian
ordinary differential equations implies that under various constitutive assumptions
there are periodic travelling waves.

Notation. Vectors, which are elements of Euclidean 3-space E
3, and vector-valued

functions are denoted by lower-case, italic, bold-face symbols. The dot product and
cross product of (vectors) u and v are denoted u · v and u × v .

The (Gâteaux) differential of the function u 7→ f (u) at v in the direction h

is d
dt

f (v + th)
∣

∣

t=0
. When it is linear in h , we denote this differential by ∂f

∂u
(v) · h
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or fu (v) · h . We occasionally denote the function u 7→ f (u) by f (·). The partial
derivative of a function f with respect to the scalar argument t is denoted by either ft
or ∂tf . The operator ∂t is assumed to apply only to the term immediately following
it. We shall always use notation like ∂t for a total derivative, i.e., a derivative of a
composite function. Obvious analogs of these notations will also be used.

The symbol C, occasionally bearing a subscript, always denotes a positive con-
stant that is supplied as data or that can be estimated in terms of data. Its meaning
usually changes with each appearance (even in the same equation or inequality).

2. Formulation of the Governing Equations. We outline the formulation
of virtually the only geometrically exact theory for the planar deformation of in-
compressible rods that leads to local equations in which Lagrange multipliers do not
intervene. For details, see [1, 2, 4].

Kinematics of deformation. Let {i , j , k} be a right-handed orthonormal basis
for Euclidean 3-space. Let h be a small positive number. We take the reference
configuration of a planar rod-like body to be the infinite strip {si+ξj : s ∈ R, |ξ| ≤ h}.
The material line s 7→ si in B is the axis.

Let

(2.1) a(θ) := cos θ i + sin θ j , b(θ) := − sin θ i + cos θ j .

We constrain the position p(s, ξ, t) of material point si+ξj at time t to be determined
by the values of two functions (s, t) 7→ r(s, t) ∈ span {i , j} and (s, t) 7→ θ(s, t) ∈ R

according to

(2.2) p(s, ξ, t) = r(s, t) + β
(

rs(s, t) · a(θ(s, t)), θs(s, t), ξ
)

b(θ(s, t))

where

(2.3) β(ν, µ, ξ) :=
2ξ

ν + δ(ν, µ, ξ)
≡
ν − δ(ν, µ, ξ)

µ
, δ(ν, µ, ξ) :=

√

ν2 − 2ξµ .

The form of β, which ensures that the Jacobian of p(·, ·, t) is identically 1, is found as
the solution of the equation for γ obtained by the requirement that the constrained
position field p = r + γb have Jacobian 1 [1, 2, 4].

We define the strain variables ν, η, µ by

(2.4) rs =: νa + ηb, µ := θs.

The strain ν = k · (rs × b) is the (ratio of the) area of the parallelogram with sides
rs and b (to the area 1 of its pre-image in the reference configuration). It effectively
measures elongation. The shear strain η = rs · b =: |rs| sin(π2 − γ) measures the
reduction γ in angle between b and the tangent rs/|rs|. The strain µ measures the
amount of bending. (It is not a curvature because θ is not the tangent angle to r and
because s is not the arc length of the deformed axis.) We get a theory for unshearable
rods, not treated here, by constraining η = 0. In this case, ν = |rs| and b = k ×rs/ν.

From (2.2) and (2.4) we get

(2.5)
ps = rs + (βννs + βµµs)b − βµa , pξ = βξb,

pt = rt + (βννt + βµµt)b − βθta
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with

(2.6)

δν =
ν

δ
, δµ = −

ξ

δ
, δξ = −

µ

δ
,

βν = −
2ξ

δ(ν + δ)
= −

β

δ
, βµ =

2ξ2

δ(ν + δ)2
=
β2

2δ
, βξ =

1

δ
.

We let s correspond to index 1 and ξ to index 2. Then (2.5) implies that the
components of the right Cauchy-Green deformation tensor C are

(2.7)

C11 = ps · ps = δ2 + (η + βννs + βµµs)
2,

C22 = pξ · pξ = βξ
2 =

1

δ2
,

C12 = ps · pξ = βξ(η + βννs + βµµs) =
1

δ
(η + βννs + βµµs).

The requirement that C22 be finite is equivalent to the requirement that δ be
positive. Since the minimum of δ as a function of ξ must occur at ξ = ±h, the set
where δ > 0 is given by

(2.8) ν >
√

2h|µ| .

Alternative strains. For some of our work it proves convenient to introduce the
strains

(2.9) δ± := δ(ν, µ,±h) ≡
√

ν2 ∓ 2hµ ,

in terms of which

(2.10)

2ν2 = δ2
+

+ δ2
−
, 4hµ = δ2

−
− δ2

+
, ν4 − 4h2µ2 = δ2

+
δ2
−
,

2δ2 =

(

1 +
ξ

h

)

δ2
+

+

(

1 −
ξ

h

)

δ2
−
.

The nonconvex domain in (ν, µ)-space defined by(2.8) is thus an analytic diffeomor-
phism of the open first quadrant in (δ−, δ+)-space, which in turn is an analytic diffeo-
morphism of the open unit disk.

The stored-energy function. We generate our constitutive equations from those
of the 2-dimensional theory [2]. We assume that the 2-dimensional body is hyper-
elastic and homogeneous, with a stored-energy function Φ depending on (2.7). For an
isotropic body, Φ depends only on C11 +C22. Here we merely assume that Φ is even in
C12. Thus Φ depends only on δ2 and (η+βννs+βµµs)

2. We define the stored-energy
function W for the rod by

W (ν, µ, η, ν′, µ′) : =

∫ h

−h

Φ
(

γ(ν, µ, η, ν′, µ′, ξ)2, δ(ν, µ, ξ)2
)

dξ,(2.11)

γ(ν, µ, η, ν′, µ′, ξ) : = η + βν(ν, µ, ξ)ν
′ + βµ(ν, µ, ξ)µ

′,(2.12)

with the domain of W defined by (2.8). Here the primes have no operational signifi-
cance: They merely identify arguments ν′ and µ′ whose slots will be occupied by νs
and µs.
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From (2.11) we immediately read off the symmetry condition

(2.13) W (ν, µ,−η,−ν′,−µ′) = W (ν, µ, η, ν′, µ′).

We use (2.6), (2.11), and the change of variables ξ = −χ to obtain a second symmetry
condition:

(2.14)

W (ν,−µ, η,−ν′, µ′)

≡

∫ h

−h

Φ
(

[η − βν(ν,−µ, ξ)ν
′ + βµ(ν,−µ, ξ)µ

′]2, δ(ν,−µ, ξ)2
)

dξ

≡ −

∫ −h

h

Φ
(

[η + βν(ν, µ, χ)ν′ + βµ(ν, µ, χ)µ′]2, δ(ν, µ, χ)2
)

dχ

≡W (ν, µ, η, ν′, µ′).

Combining (2.13) and (2.14) we obtain a third symmetry condition:

(2.15) W (ν,−µ,−η, ν′,−µ′) = W (ν, µ, η, ν′, µ′).

These conditions imply that

(2.16)

Wν′ (ν, µ, 0, 0, 0) = Wη(ν, µ, 0, 0, 0) = Wµ′(ν, µ, 0, 0, 0) = 0,

Wν′ (ν, 0, η, 0, µ′) = Wµ(ν, 0, η, 0, µ
′) = 0,

Wη(ν, 0, 0, ν
′, 0) = Wµ(ν, 0, 0, ν

′, 0) = Wµ′(ν, 0, 0, ν′, 0) = 0.

Dynamics. Since we are restricting our attention to homogeneous hyperelastic
materials with constant mass density ρ, the governing partial differential equa-
tions of motion are the Euler-Lagrange equations for the Lagrangian functional
∫∫

R2

{∫ h

−h
1
2ρpt · pt dξ −W

}

ds dt, where the term in braces, the Lagrangian, is the
difference between the kinetic energy per unit length (found from (2.5)3) and W :

(2.17)

ρ

2

∫ h

−h

{[rt · a(θ) − β(ν, µ, ξ)θt]
2 + [rt · b(θ) + βν(ν, µ, ξ)νt

+ βµ(ν, µ, ξ)µt]
2} dξ −W (ν, µ, η, νs, µs).

We substitute

(2.18)
ν = rs · a(θ), νs = rss · a(θ) + θsrs · b(θ), νt = rst · a(θ) + θtrs · b(θ),

η = rs · b, µs = θss, µt = θst,

coming from (2.4), into (2.17) to get an expression for the Lagrangian denoted by
L(rt, rst, rs, rss, θ, θt, θst, θs, θss). Then the Euler-Lagrange equations are

(2.19)

∂

∂t

∂L

∂rt
−

∂2

∂s∂t

∂L

∂rst
+

∂

∂s

∂L

∂rs
−

∂2

∂s2
∂L

∂rss
= 0,

∂

∂t

∂L

∂θt
−

∂2

∂s∂t

∂L

∂θst
+

∂

∂s

∂L

∂θs
−

∂2

∂s2
∂L

∂θss
=
∂L

∂θ
.
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For completeness we readily compute

(2.20)

∂L

∂rt
= ρ

Z h

−h

{[rt · a − βθt]a + [rt · b + βννt + βµµt]b} dξ,

∂L

∂rst
= ρ

Z h

−h

[rt · b + βννt + βµµt]βνa dξ,

∂L

∂rs
= ρ

Z h

−h

{−[rt · a − βθt]θtβνa + [rt · b + βννt + βµµt][(βνννt + βµνµt)a + βνθtb]} dξ

− Wνa − µWν′b − Wηb,

∂L

∂rss
= −Wν′a,

∂L

∂θt
= ρ

Z h

−h

{−[rt · a − βθt]β + [rt · b + βννt + βµµt]βνη} dξ,

∂L

∂θst
= ρ

Z h

−h

[rt · b + βννt + βµµt]βµ dξ,

∂L

∂θs
= ρ

Z h

−h

{−[rt · a − βθt]βµθt + [rt · b + βννt + βµµt][βνµνt + βµµµt]} dξ,

∂L

∂θss
= −Wµ′ ,

∂L

∂θ
= ρ

Z h

−h

{−[rt · a − βθt][rt · b − βνηθt]

+ [rt · b + βννt + βµµt][−rt · a + βννηνt + βµνηµt + βν(rst · b − νθt)} dξ

− ηWν − (rss · b − νµ)Wν′ + νWη.

Conserved quantities. Note that L does not depend on r , s, t, and L is invariant
under a rotation about k , i.e., under transformations of the form r → Q ·r , θ → θ+ψ,

where Q has a matrix of the form
[

cosψ
sinψ

− sinψ
cosψ

]

with respect to the basis {i , j}.

Noether’s Theorem (cf. [9, Thm. 6.6]) ensures that the governing equations admit the
standard conserved quantities: linear momentum corresponding to the absence of r

as an argument of L, angular momentum corresponding to the invariance of L under
rotation about k , and energy corresponding to the absence of t as an argument of L.

For future reference, it is useful to examine the energy integral. We take the
dot product of (2.17)1 with rt, multiply (2.17)2 by θt, and then use identities like
rt · ∂t(∂L/∂rt) = ∂t(rt · ∂L/∂rt) − rtt · (∂L/∂rt) to write the sum of these products
in the conservation form

(2.21)
∂

∂t

[

rt ·
∂L

∂rt
+ rst ·

∂L

∂rst
+ θt

∂L

∂θt
+ θst

∂L

∂θst
− L

]

+
∂F

∂s
= 0

where F is a complicated expression involving L. We integrate (2.21) with respect to
s over [a, b], and use (2.20) to obtain the conservation of energy:

(2.22)

0 =
d

dt

Z b

a

�Z h

−h

ρ{[rt · a − β(ν, µ, ξ)θt]
2 + [rt · b + βννt + βµµt]

2} dξ − L

�
ds + F

����b
a

=
d

dt

Z b

a

�Z h

−h

ρ
2
{[rt · a − β(ν, µ, ξ)θt]

2 + [rt · b + βννt + βµµt]
2} dξ + W

�
ds + F

����b
a

.

If the dependent variables entering the Euler-Lagrange equations (2.19) are required
to have period b − a in s, then the boundary term in (2.22) vanishes. On the other
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hand, if rt, rst, θt, θst → 0 as s → ±∞ and if appropriate derivatives of r and θ are
bounded in this limit, then (2.22) holds with a = −∞, b = ∞, and no “boundary”
term. Of course, (2.22) is valid only when the fields are sufficiently regular; it is not
valid when there are shocks. The conservation law corresponding to the absence of s
as an argument of L can be obtained by taking the dot product of (2.17)1 with rs,
multiplying (2.17)2 by θs, and proceeding as above. (This approach is easier than
using [9, Thm. 6.6].)

Explicit integration. All the integrals in (2.20) can be evaluated in closed form,
by the simple device of replacing the variable ξ of integration with δ given by (2.3)2.
Indeed,

(2.23)

∫ h

−h

f(δ, ξ) dξ =

∫ δ(ν,µ,−h)

δ(ν,µ,+h)

f

(

δ,
ν2 − δ2

2µ

)

δ

µ
dδ.

In particular,

(2.24)

∫ h

−h

β(ν, µ, ξ) dξ =

∫ h

−h

ν − δ

µ
dξ

= 2h
ν

µ
−

1

µ2

∫ δ(ν,µ,−h)

δ(ν,µ,+h)

δ2 dδ

=
1

µ2
[2hνµ− 1

3δ(ν, µ,−h)
3 + 1

3δ(ν, µ, h)
3].

L’Hôpital’s Rule ensures that the limit of this expression at µ = 0 is 0. Indeed, the
derivative of the numerator of the last form of (2.24) with respect to µ is h[2ν −
δ(ν, µ,−h) − δ(ν, µ, h)], and the derivative of this expression with respect to µ is
h2[−δ(ν, µ,−h)−1+δ(ν, µ, h)−1], whose limit at µ = 0 is 0. The same kind of argument
handles other cases in which µ appears in the denominator.

3. Equations of travelling waves. We seek solutions of the equations of mo-
tion in which each dependent variable f has the form f(s, t) = f̂(s − ct) where c is
a constant. We denote the phase s− ct by σ, henceforth denote derivatives of these
variables with respect to σ by a prime, and drop the circumflex. We set

(3.1) Ψ(δ, γ) := Φ(δ2, γ2).

In view of (2.11), the formula (2.17) for the Lagrangian reduces to

(3.2)
Λ(ν, µ, η, ν′, µ′) :=

∫ h

−h

{ 1
2ρc

2[γ(ν, µ, η, ν′, µ′, ξ)2 + δ(ν, µ, ξ)2]

− Ψ(γ(ν, µ, η, ν′, µ′, ξ), δ(ν, µ, ξ))} dξ.

Note that this Lagrangian functional, which is the difference between the kinetic
and potential energy for the rod, does not have the form of the Lagrangian functional
for the dynamics of systems of rigid bodies because it need not be quadratic in the
derivatives and because the potential-energy term depends on derivatives.
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The Euler-Lagrange equations for (3.2) reduce to

0 = Λη ≡

∫ h

−h

(ρc2γ − Ψγ) dξ,

(3.3a)

0 =
dΛν′

dσ
− Λν ≡

d

dσ

∫ h

−h

(ρc2γ − Ψγ)βν dξ −

∫ h

−h

{[ρc2γ − Ψγ ]γν + [ρc2δ − Ψδ]δν} dξ,

(3.3b)

0 =
dΛµ′

dσ
− Λµ ≡

d

dσ

∫ h

−h

(ρc2γ − Ψγ)βµ dξ −

∫ h

−h

{[ρc2γ − Ψγ ]γµ + [ρc2δ − Ψδ]δµ} dξ

(3.3c)

where γν = βννν
′ + βνµµ

′, etc. As is clear from (3.2) and (3.3a), the role of the shear
strain and its corresponding resultant is degenerate.

Since Λ does not depend on σ, the Euler-Lagrange equations for Λ have a corre-
sponding energy-like integral. We obtain it by multiplying the σ-derivative of (3.3a)
by η, multiplying (3.3b) by ν′, multiplying (3.3c) by µ′, and adding these products
to obtain

(3.4) ηΛη + ν′Λν′ + µ′Λµ′ − Λ ≡

∫ h

−h

{ 1
2ρc

2(γ2 − δ2) + Ψ − γΨγ} dξ = const.

Note that this term is not the integral with respect to ξ over [−h, h] of the kinetic

and potential energy densities, which is
∫ h

−h
{ 1

2ρc
2(γ2 + δ2) + Ψ} dξ.

It is instructive to examine the true conservation of energy (2.22) in the context
of periodic travelling waves. We first note that if û has period b − a and if u(s, t) =
û(s − ct), then u(·, t) has period b − a. We replace all the functions of (s, t) in the
second integrand of (2.22) by functions of s− ct of period b− a, and make the change
of variable σ = s− ct to obtain

(3.5)

0 =
d

dt

Z b

a

Z h

−h

{ 1
2
ρc

2(γ2 + δ
2) + Ψ} dξ ds =

d

dt

Z b−ct

a−ct

Z h

−h

{ 1
2
ρc

2(γ2 + δ
2) + Ψ} dξ dσ

= −c

Z h

−h

{ 1
2
ρc

2(γ2 + δ
2) + Ψ} dξ

����σ=b−ct

σ=a−ct

.

For travelling waves with period b−a, this is an identity. The same observation holds
for other such conservation laws.

It proves convenient to introduce a Hamiltonian Λ∗ when possible. For this pur-
pose we set

(3.6)

H : = Λη(ν, µ, η, ν
′
, µ

′)

=

Z h

−h

{ρc
2
γ(ν, µ, η, ν

′
, µ

′
, ξ) − Ψγ(γ(ν, µ, η, ν

′
, µ

′
, ξ), δ(ν, µ, ξ))}dξ,

N : = Λν′ (ν, µ, η, ν
′
, µ

′)

=

Z h

−h

{ρc
2
γ(ν, µ, η, ν

′
, µ

′
, ξ) − Ψγ(γ(ν, µ, η, ν

′
, µ

′
, ξ), δ(ν, µ, ξ))}βν(ν, µ, ξ) dξ,

M : = Λµ′ (ν, µ, η, ν
′
, µ

′)

=

Z h

−h

{ρc
2
γ(ν, µ, η, ν

′
, µ

′
, ξ) − Ψγ(γ(ν, µ, η, ν

′
, µ

′
, ξ), δ(ν, µ, ξ))}βµ(ν, µ, ξ) dξ.
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We regard this as a system to be solved for η, ν′, µ′ as functions of ν, µ,H,N,M .
The quadratic form of the second derivatives of Λ with respect to η, ν′, µ′ is

(3.7)

∫ h

−h

[ρc2 − Ψγγ ][a+ bβν + cβµ]
2 dξ, a, b, c ∈ R.

If we assume that ρc2 −Ψγγ is everywhere positive or everywhere negative, then (3.7)
is positive- or negative-definite (because the form of β prevents a + bβν + cβµ from
vanishing for all ξ ∈ (−h, h)). Thus Λ is respectively convex or concave in η, ν′, µ′.
If we strengthen the assumption that ρc2 − Ψγγ have fixed sign by requiring that
Λ → ±∞ as |η| + |ν′| + |µ′| → ∞, i.e., by requiring that Ψ be asymptotic strictly
sub- or superquadratic in η, ν′, µ′, then (3.6) can be uniquely solved for η, ν′, µ′ as
functions of the other variables in these equations. (The proof consists in showing
that these conditions imply that (η, ν′, µ′) 7→ Λ(ν, µ, η, ν′, µ′) −Hη −Nν′ −Mµ′ has
a unique minimum or maximum.) We denote these solutions by

(3.8) η = η♯(ν, µ,H,N,M), ν′ = ν♯(ν, µ,H,N,M), µ′ = µ♯(ν, µ,H,N,M).

We now define the Hamiltonian Λ∗ by the Legendre transform (cf. (3.4))

(3.9)

Λ
∗(ν, µ, H, N, M) : = η

♯(ν, µ, H,N, M)H + ν
♯(ν, µ, H, N, M)N + µ

♯(ν, µ, H, N, M)M

− Λ(ν, µ, η
♯(ν, µ, H, N, M), ν♯(ν, µ, H, N, M), µ♯(ν, µ, H, N, M))

≡

Z h

−h

{ 1
2
ρc

2(γ2 − δ
2) + Ψ − γΨγ} dξ

where the arguments of γ are (ν, µ, η♯(ν, µ,H,N,M), ν♯(ν, µ,H,N,M),
µ♯(ν, µ,H,N,M), ξ), the arguments of δ are (ν, µ, ξ), and the arguments of Ψ
are (ν, µ, η♯(ν, µ,H,N,M), ν♯(ν, µ,H,N,M), µ♯(ν, µ,H,N,M)). Equation (3.4)
ensures that Λ∗ is conserved. Note that

(3.10) Λ∗
ν = −Λν, Λ∗

µ = −Λµ, Λ∗
H = η♯, Λ∗

N̄ = ν♯, Λ∗
M̄ = µ♯

where the arguments of Λ∗ and its derivatives are ν, µ,H,N,M , the arguments of Λ
and its derivatives are ν, µ, η♯, ν♯, µ♯, and the arguments of η♯, ν♯, µ♯ are ν, µ,H,N,M .

When ρc2 > Ψγγ everywhere, the speed of propagation exceeds the natural speed
of what might be termed shear waves, in which case the speed c of propagation for
such waves can be termed supersonic in shear. When the opposite inequality holds, c
can be termed subsonic in shear. Likewise, when ρc2 > Ψδδ, the speed of propagation
exceeds the natural speed of what might be termed extensional-flexural waves, in
which case c is supersonic for extensional-flexural motions.

Equations (3.6) and (3.10) imply that the Euler-Lagrange equations (3.3) are
equivalent to Hamilton’s equations

(3.11) d
dσ
ν = Λ∗

N̄ ,
d
dσ
µ = Λ∗

M̄ , H = 0, d
dσ
N = −Λ∗

ν,
d
dσ
M = −Λ∗

µ.

By construction, Λ∗ is convex or concave in H,N,M according as Λ is convex
or concave in η, ν′, µ′. But even in this special case predicated on the invertibility of
(3.6), the Hamiltonian Λ∗ appears to lack some attractive mathematical structure.
E.g., even in the simple examples we shall consider, it does not appear that level
surfaces of Λ∗ enclose convex regions or even regions star-shaped with respect to an
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interior point. (In particular, if Ψ blows up to infinity at a sufficiently fast rate as
δ ց 0, then W would blow up on the non-convex boundary of its domain of definition,
defined by (2.8), an impossibility for convex functions.) This observation means that
many powerful tools for the qualitative treatment of Hamiltonian equations, like those
described in [6, 10], are not available to us. See Section 5. We do note, however, that
the positivity of ν♯ ensures that the gradient of Λ∗ vanishes nowhere, so that the
differentiability of Λ∗ ensures that surfaces Λ∗(ν, µ,H,N,M) = E of constant energy
are of class C1.

Since (3.11) implies that H = 0, we can make this substitution in (3.9). In place
of level surfaces of Λ∗, we restrict our attention to the intersections of such surfaces
with the plane H = 0: Λ∗(ν, µ, 0, N,M) = E.

4. Example. Let

(4.1) 2Ψ(γ, δ) = Aγ2 +Bδ2 + ϕ(δ)

where A and B are positive with A ≡ Ψγγ 6= ρc2 and where ϕ is positive-valued with
ϕ(δ) → ∞ as δ → 0. Then Λ has the form

(4.2)

Λ(ν, µ, η, ν
′
, µ

′) =
1

2

Z h

−h

{(ρc
2−A)γ(ν, µ, η, ν

′
, µ

′
, ξ)2+(ρc

2−B)δ(ν, µ, ξ)2−ϕ(δ(ν, µ, ξ))} dξ.

In this case, (3.6) reduces to

(4.3)

H := (ρc2 −A)

∫ h

−h

γ dξ, N = (ρc2 −A)

∫ h

−h

γβν dξ, M = (ρc2 −A)

∫ h

−h

γβµ dξ.

Let us set

(4.4)
g0 :=

(∫

1,
∫

βν ,
∫

βµ
)T

, g1 :=
(∫

βν ,
∫

βν
2,

∫

βνβµ
)T

,

g2 :=
(∫

βµ,
∫

βνβµ,
∫

βµ
2
)T

, n := (H,N,M)T

with the integrals taken over (−h, h) and with T denoting the transpose. Then
Cramer’s Rule implies that

(4.5)
η♯ =

det(n, g1, g2)

(ρc2 −A)∆
, ν♯ =

det(g0,n, g2)

(ρc2 −A)∆
, µ♯ =

det(g0, g1,n)

(ρc2 −A)∆
,

∆ : = det(g0, g1, g2).

Now Λ∗ has the value

(4.6) ηΛη + ν′Λν′ + µ′Λµ′ − Λ =
1

2

∫ h

−h

[(ρc2 −A)γ2 − (ρc2 −B)δ2 + ϕ(δ)] dξ,

so that

(4.7)
Λ∗(ν, µ,H,N,M) =

1

2

∫ h

−h

{(ρc2 −A)γ(ν, µ, η♯, ν♯, µ♯, ξ)2

− (ρc2 −B)δ(ν, µ, ξ)2 + ϕ(δ(ν, µ, ξ))} dξ.
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The substitution of (4.5) into the first term of (4.7) yields

(4.8)
ρc2 −A

2

∫ h

−h

γ2 dξ =
1

2(ρc2 −A)∆2

∫ h

−h

[ω1H + ω2N + ω3M ]2 dξ

where

(4.9)
ω1 = det(g, g1, g2), ω2 = det(g0, g, g2), ω3 = det(g0, g1, g),

g : = (1, βν , βµ).

Expression (4.8) is a definite quadratic form in H,N,M with coefficients depending
on ν, µ. In view of (2.23), we also have

(4.10)

∫ h

−h

{(ρc2−B)δ(ν, µ, ξ)2−ϕ(δ(ν, µ, ξ))} dξ = 2h(ρc2−B)ν2−
1

µ

∫ δ−

δ+

ϕ(δ)δ dδ.

In particular, for ϕ(δ) = δ−p with p 6= 2,

(4.11)

∫ h

−h

δ−r dξ =
δ−r+2
−

− δ−r+2
+

(2 − r)µ
=

4h

2 − r

δ−r+2
−

− δ−r+2
+

δ2
−
− δ2

+

with the special values

(4.12)

∫ h

−h

δ−1 dξ =
4h

δ+ + δ−
,

∫ h

−h

δ−4 dξ =
2h

ν4 − 4h2µ2
=

2h

δ2
+
δ2
−

.

Each of these functions of δ± is convex, but only the latter has the desirable property
that it blows up as δ− → 0 or δ+ → 0.

A level surface of Λ∗ has the form
(4.13)

2Λ∗(ν, µ,H,N,M) ≡
1

(ρc2 −A)∆2

∫ h

−h

[ω1H + ω2N + ω3M ]2 dξ − 2h(ρc2 −B)ν2

+
1

µ

∫ δ−

δ+

ϕ(δ)δ dδ = 2E.

It does not appear that this surface or even its projection onto the plane H = 0 is
star-shaped with respect to any point within it. (Such a property plays an important
role in the much of the theory of Hamiltonian differential equations.)

5. Periodic travelling waves. During the past twenty-five years, there has
been an extensive development of the theory of Hamiltonian ordinary differential
equations (see [14] and the references cited therein). In this section, we pluck some
of the most accessible fruits of this labor and apply them to some representative
problems of travelling waves. In the Conclusion, we comment briefly on the general
problem. Throughout this section, we take H = 0, in keeping with (3.11)3.

We begin with one of the earliest results on Hamiltonian systems, due to Seifert
[15] (cf. [13]):

5.1. Theorem. Let D be a simply-connected domain of R
2n, let D ∋ (q,p) 7→

H(q,p) = p · A(q) · p + V(q) ∈ R be continuously differentiable (here A is an n× n-
matrix-valued function and p · A(q) · p is its quadratic form in p), for V0 ∈ R let

V := {q ∈ D : V(q) ≤ V0} be diffeomorphic to the closed unit ball in R
n, and let A(q)
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be uniformly positive-definite for q ∈ V. Then there is a T > 0 and a pair of points

q0,q1 on ∂V such that Hamilton’s equations

(5.2)
dq

dt
= Hp(q,p),

dp

dt
= −Hq(q,p)

have a solution of period 2T satisfying (q(0),p(0)) = (q0, o), (q(T ),p(T )) = (q1, o)
with q(t) lying in the interior of V for all t in (0, T ).

5.3. Theorem. Let Λ be given by (4.2) with ϕ(δ) = Cδ−4, C > 0, so that Λ∗

is given by the appropriate versions of (4.7) and (4.13). Let B > ρc2 > A. Then

Hamilton’s equations (3.11), which are equivalent to the Euler-Lagrange equations

(3.3) for (3.2), have a nontrivial periodic solution.

Proof. We identify q with (ν, µ), p with (N,M), H with Λ∗, p · A(q) · p with
(4.8), and 2V with h(B − ρc2)ν2 + hC

ν4−4h2µ2 . We use the diffeomorphisms (2.9) and

(2.10) to write 2V = h(B − ρc2)(δ2
+

+ δ2
−
) + hC

δ2+δ
2
−

. A computation of the Hessian of

this function shows that it is convex on its domain, which is the first open quadrant
in (δ+, δ+)-space. In view of the smoothness of the set ∂V and of the growth of V at
the extremes of its domain, the (convex) set where this V ≤ V0 is diffeomorphic to
the closed unit ball in R

n.

It is tempting to treat the problem with the reversed inequality B < ρc2 < A on
the wave speed by identifying H with −Λ∗, but doing so is thwarted by the physical

requirement that
∫ h

−h
ϕ(δ) dξ → ∞ as δ± → 0.

The use of Theorem 5.1 for our problems rests upon the quadratic dependence of
Λ∗ on N,M , which requires that Ψ be quadratic in γ. The limitation of Ψ to such
a form would be unduly restrictive for our problems of elasticity. As we mentioned
earlier, many other far more refined results for Hamiltonian systems likewise impose
restrictions that are severe in the context of elasticity. A powerful generalization of
the theorem of Seifert, due to Hofer and Zehnder [7], and refined by Rabinowitz [12]
(cf. [13]), will allow a more general material response:

5.4. Theorem. Let H be continuously differentiable and let H
−1(E) := {(q,p) :

H(q,p) = E} be a compact hypersurface in R
2n (on which (Hq(q,p),Hp(q,p)) vanishes

nowhere). Then either (i) there are uncountably many ε near 0 such that H
−1(E + ε)

contains a periodic solution of Hamilton’s equations (5.2), or (ii) there is an infinite

sequence εk → 0 such that H
−1(E + εk) contains uncountably many distinct periodic

solutions of Hamilton’s equations.

To exploit this result by identifying H with Λ∗ we assume (for simplicity of expo-
sition) that

(5.5) Ψ(γ, δ) = G(γ) +D(δ)

so that

(5.6) Λ∗ =

∫ h

−h

[12ρc
2γ2 +G(γ) − γGγ(γ) +D(δ) − 1

2ρc
2δ2] dξ.
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We require G and D to satisfy the constitutive restrictions

0 < Gγγ < ρc2 − C,(5.7)
1
2ρc

2γ2 +G(γ) − γGγ(γ) → ∞ as |γ| → ∞,(5.8)

∫ h

−h

[D(δ) − 1
2ρc

2δ2] dξ ≡
4h

δ2
−
− δ2

+

∫ δ−

δ+

[D(δ) − 1
2ρc

2δ2]δ dδ → ∞ as



















δ− → 0,

δ+ → 0,

δ− → ∞,

δ+ → ∞.

(5.9)

An example of a function G satisfying these restrictions has the form G(γ) = C|γ|p,
0 ≤ p < 2, for |γ| sufficiently large and is suitably adjusted for |γ| small. A function
D with these properties is given by D(δ) = C1δ

q + C2δ
−r with q > 2 and r > 2 (see

(4.11)). (Theorem 5.3 handles a case in which p = 2 = q.)
Under these conditions we want to determine how Λ∗ depends on N and M .

Equation (3.6) implies that

(5.10) Nν′ := Λν′ν′ =

∫ h

−h

[ρc2 −Gγγ ]β
2
ν dξ,

so that (2.3), (2.6), (5.7) imply that
(5.11)

Nν′ ≥ C

∫ h

−h

β2
ν dξ ≡ C

∫ h

−h

β2

δ2
dξ ≥ C

∫ h

−h

ξ2

[max{δ−, δ+}]4
dξ =

C

[max{δ−, δ+}]4
,

(5.12) Nν′ ≤ ρc2
∫ h

−h

β2
ν dξ ≤

C

[min{δ−, δ+}]4
.

Thus for fixed values of ν, µ, η, µ′, the function N → ±∞ if and only if ν′ → ±∞.
Likewise, for fixed values of ν, µ, η, ν′, the function M → ±∞ if and only if µ′ → ±∞.
These considerations show that a level surface of Λ∗ is a compact hypersurface in the
open subset of (ν, µ,N,M)-space satisfying (2.8). Recall that at the end of Section 3
we showed that the gradient of Λ∗ could vanish nowhere. Hence Theorem 5.4 implies

5.13. Theorem. Let (5.5)–(5.9) hold. Let H be identified with Λ∗. Then the

conclusion of Theorem 5.4 holds.

Another generalization of Theorem 5.1, due to Rabinowitz [11, Thm. 1.4], which
lacks the richness of the multiplicity results of Theorem 5.4 for level surfaces near a
given one but guarantees a periodic solution on a given level surface, will allow us to
account for other constitutive restrictions:

5.14. Theorem. Let H(q,p) = K(q,p) + V(q) where K ∈ C2(Q × R
n,R),

V ∈ C1(Q,R), and Q is a simply-connected domain in R
n. Let E be a given number.

Let

(i) Vq 6= o for q ∈ ∂V(E) where V(E) := {q ∈ Q : V(q) < E}.
(ii) V is C2-diffeomorphic to the open unit ball in R

n.

(iii) For q in the closure of V(E),

(5.15) K(q, o) = 0, p · Kp(q,p) > 0 for p 6= o.
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(iv) For fixed q ∈ V and for |p| = 1,

(5.16) lim
α→∞

K(q, αp) > E − V(q).

Then Hamilton’s equations have a (nonconstant) periodic solution on H
−1(E).

This Theorem, while it is couched in terms of the Hamiltonian, emphasizes the
split between the K and V, and is thus closer to the physical basis of our travelling-
wave equations than is Theorem 5.4.

To exploit this theorem, we assume that ρc2−Ψγγ is everywhere positive and that
(5.5) holds, and we identify

(5.17)

q = (ν, µ), p = (N,M), H = Λ∗, Q = {(ν, µ) : (2.8) holds},

K =

∫ h

−h

[12ρc
2γ2 +G(γ) − γGγ(γ)] dξ,

V =

∫ h

−h

[D(δ) − 1
2ρc

2δ2] dξ

(see (3.9)). Let us now study the hypotheses (i)–(iv).
With a slight abuse of notation, (2.6) and (2.23) imply that

Vν =

∫ h

−h

[Dδ(δ) − ρc2δ]δν dξ = ν

∫ h

−h

[δ−1Dδ(δ) − ρc2] dξ(5.18)

=
ν

µ

∫ δ−

δ+

Dδ(δ) dδ − 2hρc2ν =
ν

µ
[D(δ−) −D(δ+)] − 2hρc2ν,

Vµ =

∫ h

−h

[Dδ(δ) − ρc2δ]δµ dξ = −

∫ h

−h

[δ−1Dδ(δ) − ρc2]ξ dξ(5.19)

= −
1

2µ2

∫ δ−

δ+

Dδ(δ)(ν
2 − δ2) dδ

(with the latter forms of these equations valid for µ 6= 0). Recall that ν must be
positive. These equations for µ = 0 (so that δ = ν) show that Vµ(ν, 0) = 0 and
that Vν(ν, 0) = 0 if and only if Dδ(ν) = ρc2ν. On physical grounds D should be
everywhere positive with D(δ) → ∞ as δ → 0,∞. Under these conditions it is
reasonable to prohibit Vν(ν, 0) from vanishing by taking

(5.20) Dδ(δ) < ρc2δ for all δ > 0.

(Here we have a supersonic behavior with respect to extensions.)
Since ν must be positive, (2.10) implies that Vν(ν, µ) = 0 if and only if

(5.21) [D(δ−) −D(δ+)] = 1
2ρc

2[δ2
−
− δ2

+
].

Assumption (5.20), which ensures that δ 7→ D(δ) − 1
2ρc

2δ2 is strictly decreasing,
implies that (5.21) is equivalent to δ− = δ+, which occurs if and only if µ = 0. Thus
(5.20) prohibits the vanishing of Vq anywhere, and therefore ensures (i) for all E.

We can handle hypothesis (i) under weaker constitutive restrictions by restricting
the range of E: The requirement that Vν = 0 is given by (5.21). Equations (5.19)
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and (5.17)6, together with (2.10) and (2.23), imply that the restrictions Vµ = 0 and
V = E have the form

∫ δ−

δ+

δ2Dδ(δ) dδ = ν2[D(δ−) −D(δ+)] = 1
2 (δ2

−
+ δ2

+
)[D(δ−) −D(δ+)],(5.22)

∫ δ−

δ+

δD(δ) dδ − 1
8ρc

2(δ4
−
− δ4

+
) = µE =

1

4h
(δ2

−
− δ2

+
)E.(5.23)

Equation (5.22) can be written as

(5.24)

1
2 (δ2

−
+ δ2

+
)[D(δ−) −D(δ+)] =

∫ δ−

δ+

δ2Dδ(δ) dδ =

∫ δ−

δ+

{δ[δD(δ)]δ − δD(δ)} dδ

= δ2
−
D(δ−) − δ2

+
D(δ+) − 2

∫ δ−

δ+

δD(δ) dδ.

We substitute this equation into (5.23) to obtain

(5.25) (δ2
−
− δ2

+
)[D(δ−) +D(δ+)] = 1

2ρc
2(δ4

−
− δ4

+
) + (δ2

−
− δ2

+
)
E

h
.

If δ− 6= δ+ (i.e., if µ 6= 0), then we can cancel δ2
−
− δ2

+
from (5.25). From the resulting

equation and from (5.21) we obtain

(5.26) D(δ±) −
1

2
ρc2δ2

±
=

E

2h
.

Again we find that if (5.20) holds, then each of these equations has a unique solution,
and these solutions must be the same, implying that the contradiction that µ = 0.
Let us adopt the weaker restriction that

(5.27) lim
δ→∞

D(δ)
1
2ρc

2δ2
→ 0 as δ → ∞.

In this case, (5.26) implies that δ− = δ+ for sufficiently large E, with the same con-
tradiction.

Thus, when (5.27) holds, the gradient of V can vanish only where µ = 0. As we
observed in the paragraph containing (5.20), the gradient vanishes in this case only
when ν satisfies Dδ(ν) = ρc2ν. We can prohibit this from happening on ∂V(E) by
simply choosing E such that the values of ν, if any, satisfying E = 2h[D(ν) − 1

2ρc
2ν2]

(see (5.17)3) do not satisfy Dδ(ν) = ρc2ν.
The modification of assumption (5.9) so that the potential energy approaches ∞

merely as δ± → 0 ensures hypothesis (ii). We turn to hypothesis (iii). Let us assume
that Gγ(0) = 0, which follows from the assumption that the reference configuration is
natural (stress-free), and assume without loss of generality that G(0) = 0. Under the
assumption that ρc2 − Ψγγ ≡ ρc2 −Gγγ is everywhere positive, (3.6) has at most one
solution for (η, ν′, µ′). Then for (H,N,M) = (0, 0, 0), (3.6) has the unique solution
(η, ν′, µ′) = (0, 0, 0), so that γ = 0, and (5.15)1 holds.

From (3.11) and (3.6) with H = 0 we obtain

(5.28)

p · Kp(q,p) ≡ NKN̄ +MKM̄ = Nν♯ +Mµ♯ = ηΛη + ν′Λν′ + µ′Λµ′

=

∫ h

−h

(ρc2γ −Gγ)(η + βνν
′ + βµµ

′) dξ =

∫ h

−h

(ρc2γ −Gγ)γ dξ.
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Since Gγ(0) is assumed to be 0, condition (5.7) ensures that the integrand of (5.28)
is positive for γ 6= 0, so that (5.15)2 holds.

To verify hypothesis (iv), we note that if Gγγ +C < ρc2, then (γGγ−G)γ+Cγ ≤

ρc2γ for γ > 0, and K ≥ C
∫ h

−h
γ2 dξ. Arguments like those surrounding (5.11) and

(5.12) imply that hypothesis (iv) holds.
In view of these results, Theorem 5.14 implies

5.29. Theorem. Let (5.5)–(5.9), (5.20) hold with Gγ(0) = 0, G(0) = 0. Then

for any E, Hamilton’s equations (3.11) have a nonconstant periodic solution satisfying

Λ∗ = E. If the restriction (5.20) is replaced by the weaker condition (5.27), and if the

limit (5.9) holds merely as δ± → 0, then the conclusion holds for sufficiently large E.

6. Conclusion. The equations for travelling waves in nonlinearly elastic rods
form a system of ordinary differential equations, which can be characterized as the
Euler-Lagrange equations for a Lagrangian (action) functional. These equations, how-
ever, have a mathematical structure quite different from that for Lagrange’s equations
of motion for a system of particles and rigid bodies, this difference signalled by the
difference in the forms of the kinetic and potential energies. A major distinction is
that our equations of motion cannot in general be cast into Hamiltonian form. The
source of this difficulty is that our equations describe wave propagation. At the char-
acteristic speeds, our governing equations cannot be solved uniquely for the terms
with highest derivatives. We have avoided this difficulty in the preceding section by
limiting our attention to waves that are either sub- or supersonic.

For the totally integrable system for travelling waves in compressible nonlinearly
elastic rods, this issue was confronted head-on in [3] by allowing the integrals to have
multi-valued inverses. Then travelling waves could be characterized as the level curves
of a multi-valued energy over a certain phase plane. At characteristic speeds, different
level curves have tangencies, at which a trajectory could switch from one branch to
another, with the consequence that there could be an uncountable family of travelling
waves at such a characteristic speed.

The existence of travelling waves in a neighborhood of a equilibrium state, es-
pecially a straight equilibrium state, or in a neighborhood of a purely longitudinal
motion (like those of [5, 16], could be treated by means of bifurcation theory. (See
[8] and the references cited therein.) For such purposes the symmetry results given
in Section 2 would be most useful. These same results could also be used for refined
global theorems (see [14]).

In Section 3 we used a global implicit function theorem to construct the Hamil-
tonian. Clearly, much of our development would go through without such a global
theorem provided that we could find suitable bounds, say energy bounds, on the
solutions of (3.3).

The growth assumptions we have made to ensure that our theorems in Section 5
hold are compatible with the assumptions made in [1] which support a collection of a
priori bounds on the solutions of the full partial differential equations.

We had to go through some contortions to put our system into a suitable Hamil-
tonian forms. This remark suggests that the analysis of travelling waves might be
more naturally conducted in the original Lagrangian formulation.

We have just treated a few special cases in which the available theory for Hamil-
tonian systems can applied with a reasonable effort. We have left untouched the
treatment for elastic materials satisfying other constitutive restrictions. We have
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not treated the possibility of homoclinic and heteroclinic solutions of the governing
equations, which correspond to pulses and bores.

The methods we have used can be applied to other problems for nonlinearly elastic
rods, e.g., to the spatial motion of incompressible rods, and to rods with a structure
more complicated than that of [3].
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