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Abstract. We carry out an error analysis for the heterogeneous multi-scale method for the case
when the macroscale process is that of gas dynamics or more generally nonlinear conservation laws
and the microscale process is an atomistic model such as kinetic Monte Carlo methods or molecular
dynamics (MD). We will consider problems of type B as defined in [4], i.e. the macroscale constitutive
relations are unknown and are extracted from the microscopic model. In addition to the standard
error in the macroscale solver, a new error term occurs in estimating the data, here the fluxes. This
new error term consists of three parts: the relaxation error, the sampling error and the error due to
the finite size of the atomistic simulation. Our results serve as guidelines for designing multiscale
methods, as was done in [13, 16].
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1. Introduction. The main purpose of the present paper is to carry out an error
analysis of the heterogeneous multiscale method for the case when the macroscale
process is that of gas dynamics or more generally nonlinear conservation laws and
the microscale process is an atomistic model such as kinetic Monte Carlo methods
or molecular dynamics (MD). We will consider problems of type B as defined in [4],
i.e. the macroscale constitutive relations are unknown and are extracted from the
microscopic model.

An example of the microscopic model that we will consider is that of molecular
dynamics, i.e. Newton’s equations of motion for the constituting atoms,

(1.1)






ẋi = vi,

miv̇i =
∑

j 6=i

f
(
xi(t) − xj(t)

)
.

Here mi is the mass of the i-th particle and f(r) = −∇φ(r) is the force exerted on
the particles with interatomic potential φ(r).

The macroscale model is the continuum formulation of conservation laws of mass,
momentum and energy, which are usually written in the following form,

(1.2)





∂tρ+ ∇x · q = 0,
∂tq + ∇x · τ = 0,
∂tE + ∇x · J = 0.

Here ρ is the mass density of the system, q = ρv is the momentum density with v

being the velocity, and E is the total energy density. τ and J are the momentum and
energy fluxes respectively.
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Our point of departure from traditional continuum mechanics is in the treatment
of constitutive relations. In continuum mechanics, it is customary to model the con-
stitutive relations empirically. In contrast, we will obtain constitutive information
from the underlying atomistic model. To see how this is done, observe that for MD
(1.1), we can also write down the analogs of equations (1.2) by defining,

(1.3)






ρ̃(x, t) =
∑

i

miδ
(
x − xi(t)

)
,

q̃(x, t) =
∑

i

mivi(t)δ
(
x − xi(t)

)
,

Ẽ(x, t) =
1

2

∑

i

[
miv

2
i +

∑

j 6=i

φ
(
xi(t) − xj(t)

)]
δ
(
x − xi(t)

)
,

and

τ̃ (x, t) =
∑

i

mivi ⊗ viδ
(
x − xi(t)

)
(1.4a)

+
1

2

∑

i

∑

j 6=i

f
(
xi − xj

)
⊗ (xi − xj)

×
∫ 1

0

δ
(
x −

(
xj + λ(xi − xj)

))
dλ

J̃(x, t) =
∑

i

vi

[1

2
miv

2
i +

1

2

∑

j 6=i

φ
(
xi(t) − xj(t)

)]
δ
(
x − xi(t)

)
(1.4b)

+
1

4

∑

j 6=i

(
vj(t) + vi(t)

)
· f

(
xj(t) − xi(t)

)
(xi − xj)

×
∫ 1

0

δ
(
x −

(
xj + λ(xi − xj)

))
dλ.

One can easily verify that,

(1.5)





∂tρ̃+ ∇x · q̃ = 0,
∂tq̃ + ∇x · τ̃ = 0,

∂tẼ + ∇x · J̃ = 0.

The above calculation indicates that the continuum and atomistic models are
consistent at the level of conservation laws. An additional observation is the scale
separation: microscopic processes usually take place at the length scale of nanome-
ters (10−9m) and time scale of femto-seconds (10−15s) on which one can neglect the
variation of the macroscale variables. One can think of the atomistic system as been
constrained by the macroscopic quantities, namely the mass, momentum and energy
densities. In fact, the atomistic system will stay close to local equilibrium since there
is sufficient time for relaxation to take place. One may thus view the models (1.2) as
being the ensemble averages of (1.1).

Another example we will consider is the case when the microscopic model is
the asymmetric simple exclusion process [11]. Consider the simplest case of a one
dimensional lattice. Each lattice site is either unoccupied or occupied by a single
particle. At Poission distributed times, a particle is picked at random, and with
probability p and 1− p (p 6= 1/2) respectively, the particle makes an attempted move
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to the nearest neighboring site to its left and its right. The move is accepted if the
desired site is empty, and rejected otherwise.

In this case, it has been shown that the hydrodynamic equation, which plays
the role of the macroscopic model for the present example, is the Burgers equation.
Since for this problem, the passage from microscopic to macroscopic models is well-
understood at the analytical level, it serves as a good example for the analysis of
multi-scale, multi-physics numerical methods such as the heterogeneous multi-scale
method.

2. The heterogeneous multi-scale method. The multi-scale method that we
consider here has been developed in [13, 16], following the general framework of the
heterogeneous multi-scale method (HMM), formulated in [4, 20]. There are two main
components in HMM: the selection of a macroscale solver and the estimation of the
needed macroscale data using the microscale model. HMM has been applied to a wide
range of physical problems. We refer to the review article [5] for a discussion of these
applications as well as general issues of HMM. See also [20].

Macroscale solver. Our macroscopic model (1.2) is in the form of a conserva-
tion law, therefore we will choose as our macroscale solver a finite volume method.
Although there are many different finite volume methods that are available for con-
servation laws e.g. [12, 10], many involve the computation of the Jacobian for the flux
functions. These are not suitable for the present problem since the flux function is
not explicitly given to us. An exception is the central scheme of Lax-Friedrichs type,
such as [15], which is formulated over a staggered-grid. As it turns out, this method
can be easily coupled with molecular dynamics.

To be more specific, we first rewrite the conservation laws in a generic form,

(2.1) ut + fx = 0.

We will confine our discussion to macroscopically one dimensional problems since
the extension to higher dimension is straightforward. The first order central scheme
represents the solutions by piece-wise constants, which are the average values over
each cell:

un
k =

1

∆x

∫ xk+1/2

xk−1/2

u(x, tn)dx.

Time integration over [xj , xj+1] × [tn, tn+1) leads to the following scheme,

(2.2) un+1

k+1/2
=

un
k + un

k+1

2
− ∆t

∆x

(
fn
k+1 − fn

k

)
,

with numerical flux,

fn
k =

1

∆t

∫ tn+1

tn

f(xk, t)dt,

which is taken to be fn
k = f(xk, t

n) in central scheme.
(1.2) is still incomplete since we still do not know the fluxes. Next we describe

how this information can be extracted from MD or other atomistic models.

Microscale solver. We first discuss the case when the microscopic model is MD.
At each point where numerical fluxes are needed, we perform a local MD simulation to
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estimate the fluxes. The atomistic simulation will be constrained by the local macro-
scopic variables, which are the local density, momentum and energy. To initialize the
MD simulation, we first arrange a trial configuration of the atoms according to the
local density. From the local total energy, momentum and potential energy V of the
trial configuration, we can compute the thermal energy KT by

(2.3) KT = E − V − 1

2
ρv2,

If KT is negative, the trial configuration is rejected and another trial configuration
with the same number of atoms is generated. Otherwise it is accepted, and a local
initial temperature is estimated from,

(2.4) kBT = 〈 1

dN

∑

i

miv
2
i 〉 = 〈2

d
KT 〉,

where 〈·〉 is the ensemble average, d is the dimension and N is the number of particles
in the MD system.

The velocities of the atoms are then given by

vi = v + v′
i,

where v′
i is thermal velocity sampled from the Maxwell-Boltzmann distribution with

the given local temperature. After the sampling, we adjust the instantaneous tem-
perature to T by rescaling v′

i in order to satisfy (2.3).
The set of ODEs (1.1) can be solved by standard finite difference scheme such as

Verlet’s method. For the present analysis, however, we will assume that the ODEs are
solved exactly to avoid unnecessary complication. After the MD system equilibrates,
we obtain the needed quantities by averaging. Specifically let j̃ be the spatial average
over the simulation box of a local flux whose expression was given in (1.4),

(2.5) j̃ = j̃(X), X = (x1,x2, · · · ,xN ,v1,v2, · · · ,vN ),

then we obtain the corresponding macroscale quantity by time averaging,

(2.6) J =
1

T

∫ τ+T

τ

j̃
(
X(t)

)
dt,

where τ is the starting point when the time averaging begins, and T is the duration
of the time averaging. An additional ensemble averaging can also be used if desired.
For detailed discussion on the setup of the MD as well as boundary conditions, see
[13].

The overall numerical procedure is shown schematically in Figure 1. At each time
step, the scheme (2.2) requires as input the fluxes at grid point xk to complete the
time integration. These flux values are obtained by performing local MD simulations
that are consistent with the local macroscale state (ρ, q, E). Once these values are
computed, one can advance to the next macro time step using (2.2).

One result from such a method is shown in Figure 2. Here the setup for the
macroscale model is a Riemann problem for one-dimensional wave propagation in
solids. The result of HMM is compared with that of a direct MD simulation. The
microscale model is two dimensional MD with Lennard-Jones potential.

If the microscopic model is the asymmetric simple exclusion process, the procedure
is very similar. At each point where the numerical flux is needed, we set up a local
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Fig. 1. A schematic illustration of the numerical procedure: starting from piece-wise
constant solutions {un

k}, one integrates (2.1) in time and in the cell [xk, xk+1]. The time
step ∆t is chosen in such a way that the waves coming from xk+1/2 will not reach xk, and

thus for t ∈ [tn, tn+1), u(xk, t) = u
n
k . If f(u) at xk is found to be unknown, we perform a

MD simulation using u
n
k to invoke and restrict the microscopic process. The needed flux is

then extracted from the simulation and the integration is completed. Analogously one can
embed the MD simulation to higher order macro-schemes or higher dimensions.

simulation of the asymmetric exclusion process, with periodic boundary condition.
Let L be the total number of sites and ρn

j be the current particle density at the
j-th grid point. A total of N = Lρn

j number of particles are distributed randomly
according the simple exclusion rule. As the simulation proceeds, empirical fluxes are
recorded at every micro time step, and the empirical flux is then averaged in time and
ensemble, as discussed before for MD. This averaged value is then used in the macro
solver to advance to the next macro time step.

3. Error analysis. The general strategy for the error analysis of such multiscale
methods is as follows (see [4]). The first step is to analyze the error, e(HMM) in
estimating the macroscale data from the microscale model. The second step is to
analyze the stability of the macroscale solver. If the macroscale solver is stable, then
the total error in the overall scheme is the standard error of the macroscale solver plus
an additional term due to the error in estimating the macroscale data. This strategy
has been used for a number of examples including ODEs [3], stochastic ODEs [6] and
homogenization problems [7, 14].

As the exact solution, when the microscale model is MD, we will take as the
solution of the macroscale conservation law with fluxes given by averages of the mi-
croscopic fluxes with respect to the (local) infinite volume Gibbs state (see [17]). We
will assume that the atomistic potential is smooth and bounded. When the microscale
model is the simple asymmetric exclusion process, the exact solution is taken as the
solution of the Burgers equation

ρt + (p(1 − p)ρ(1 − ρ))x = 0
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Fig. 2. Numerical test on shock formation and propagation. 200 macro-grid points are
used and each local MD simulation consists of 40×10 atoms and 104 steps of time integration.
The solution is displayed after 40 steps of integration over macro time steps. Solid line:
computed solution; dashed line: full atom simulation (one realization). Top: strain, middle:
velocity, bottom: displacement.

that satisfies the entropy condition.

3.1. Error from estimating the fluxes. Let us first discuss the case when
the microscale model is MD. Our goal now is to estimate the difference between the
computed flux and the exact one:

(3.1) e(HMM) = E
[
|J − J̄ |

]
,

where the exact flux is defined to be the average w.r.t. the infinite volume Gibbs state
µ∞,

(3.2) J̄ =

∫
j̃(X)dµ∞,

and the computed flux J is given by (2.6).
To proceed with the discussion, let us denote by µt

L the particle distribution for
the MD system of size Ld at time t with d being the dimension. We also define two
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quantities α(L) and τ0(L) which are functions of L, the size of the microscale system,
by the following

(A1)

∣∣∣∣
∫
f(X)d(µL − µt

L)

∣∣∣∣ ≤ Ce
− t

τ0(L) ‖f‖w,∞,

and

(A2)

∣∣∣∣
∫
f(X)d(µL − µ∞)

∣∣∣∣ ≤ Cα(L)‖f‖w,∞,

for any continuous function f that satisfies,

‖f‖w,∞ ≤ ∞,

where,

‖f‖w,∞ = sup
X

(
1 + |X|2)−p/2|f(X)|,

for p ≥ 2. τ0(L) is the relaxation time for system of size L, and α(L) measures the
error due to the finite size effect.

Now let

(3.3) J t
L =

∫
j̃(X)dµt

L,

and the covariance,

(3.4) A(t, s) = E

[(
j̃(t) − J t

L

)(
j̃(s) − Js

L

)]
,

where the expectation is w.r.t. µ0
L, the initial distribution. We further assume that,

(A3)

∫ +∞

0

A(t, s)ds ≤ C0, ∀t ≥ 0.

This amounts to assuming that the correlation decays in time sufficiently fast.
With (A1), (A2), we have,

(3.5)

∣∣∣∣∣J̄ − 1

T

∫ τ+T

τ

J t
Ldt

∣∣∣∣∣ ≤ C

(
α(L) +

1

T
e
− t

τ0(L)

)
,

and combining it with (A3), we have,

E

[(
J − 1

T

∫ τ+T

τ

J t
Ldt

)2
]

=
1

T 2
E

[∫ τ+T

τ

∫ τ+T

τ

(
j̃(t) − J t

L

)(
j̃(s) − Js

L

)
dtds

]
,

≤ C0

T
,

In summary, we have

(3.6) e(HMM) ≤ C

(
α(L) +

1

T
e
− τ

τ0(L) +
1√
T

)
.
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If ensemble averaging is also used, for example, with M independent copies, the above
estimate becomes,

(3.7) e(HMM) ≤ C

(
α(L) +

1

T
e
− τ

τ0(L) +
1√
TM

)
.

We clearly see that e(HMM) is controlled by the behavior of α(L) and τ0(L).
Unfortunately, there are very few examples for which these two functions have been
explicitly estimated. Almost all known examples are lattice systems, whereas MD is
certainly an off-lattice systems.

In the absence of analytical results, we resort to careful numerical experiments to
study how these terms behave for typical systems. Plotted in Figure 3 is a result on
the finite size effect, expressed in α(L). In each L, we measure the stress component
τ11 for sufficiently long time to eliminate the relaxation and sampling error. The exact
value has been obtained from a simulation for large L. The error decays as the system
size increases, consistent with the naive guess L−1.5 from the central limit theorem.

1 2 3 4 5 6 7 8 9 10 11 12 13
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 L

L−3/2

Fig. 3. Error due to finite size effect, plotted together with the L−1.5.

The analysis proceeds in the same way for asymmetric simple exclusion process.
However, in this case, the various quantities have been explicitly estimated. It is easy
to see that

α(L) = 0

if L ≥ 3, i.e. there are more than 3 sites in the micro cell. For the relaxation error,
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Lee and Yau [11] proved that,

τ0(L) ≤ CL2 logL.

From (3.6), we see the conflicting effects of choosing the size of the MD system:
when L is increased, the finite size error is reduced while the relaxation time τ0 is
increased. Similarly when L is decreased, τ0 decreases but α(L) will increase.

3.2. Error analysis for the overall scheme. The macroscopic models con-
sidered in this paper have the following properties:

1. They are hyperbolic.
2. They have a strictly convex entropy function S, with entropy flux Q.

To avoid irrelevant complications, we will further assume that the numerical solu-
tions at the macroscale level are bounded and the exact solution is piecewise Lipschitz
continuous.

To begin with, we first define a new variable,

ũ = ∇S(u).

Since the entropy is strictly convex, the mapping between ũ and u is one to one. We
also introduce,

H =
∂u

∂ũ
, B = ∇2S(u),

and

ψ(ũ) = ũ′f
(
u(ũ)

)
− Q(u(ũ)),

with

∂ψ

∂ũ
= f

(
u(ũ)

)
.

Numerically (2.1) is often solved at first order by a three-point conservative
scheme,

(3.8) un+1
j = un

j − ∆t

∆x

(
fn
j+1/2 − fn

j−1/2

)
,

where fj+1/2 = F(uj ,uj+1) and we have omitted the superscript. For Lax-Friedrichs
type of schemes, which are the ones considered in the following analysis, the numerical
flux fj+1/2 is given by,

(3.9) F(uj ,uj+1) =
1

2

(
f(uj) + f(uj+1)

)
− a

2

(
uj+1 − uj

)
.

The constant a is chosen to be bigger than the eigenvalues of ∇f

a ≥ max |λ(∇f)|,

to ensure stability. For the classical Lax-Friedrichs scheme, a = ∆x/∆t and for the
two-step central scheme, a = ∆x/(2∆t). Since the time step and the grid size are
always proportional in the scheme, we will mainly use ∆x to indicate the discretization
error.
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We need to analyze the effect on the numerical solution due to the error in the
flux. Assume that we approximate the flux f by g:

un+1
j = un

j − ∆t

∆x

(
gj+1/2 − gj−1/2

)
,(3.10)

gj+1/2 = G(uj ,uj+1),(3.11)

with,

(3.12) G(uj ,uj+1) =
1

2

(
g(uj) + g(uj+1)

)
− a

2

(
uj+1 − uj

)
.

Let {vn
j } be the numerical solution with exact flux function:

vn+1
j = vn

j − ∆t

∆x

(
fj+1/2 − fj−1/2

)
,(3.13)

fj+1/2 = F(vj ,vj+1),(3.14)

and {wn
j } be the intermediate variable:

wn+1
j = un

j − ∆t

∆x

(
hj+1/2 − hj−1/2

)
,(3.15)

hj+1/2 = F(uj ,uj+1).(3.16)

Evidently within one time step, the difference between {wn+1
j } and {un+1

j } can
be controlled by e(HMM),

(3.17) ‖wn+1 − un+1‖ ≤ Ce(HMM),

with some constant C. The distance between {wn+1
j } and {vn

j }, however, is directly
related to the stability of the numerical methods.

For the scalar conservation laws, as in the case when the microscopic process is
the asymmetric simple exclusion process, we have

Theorem 1. Consider the case when the macroscale solver is the Lax-Friedrichs

scheme. Fix T > 0. Suppose that the CFL condition,

a
∆t

∆x
≤ 1,

is satisfied, then

∥∥un − vn
∥∥

L1
≤ C

e(HMM)

∆x
,

if t = n∆t ≤ T .

Proof. From the L1-contraction property of the Lax-Friedrichs scheme [12, 10],
i.e.

‖wn+1 − vn+1‖L1 ≤ ‖un − vn‖L1,

and (3.17), one has,

‖un+1 − vn+1‖ ≤ ‖un − vn‖L1 + Ce(HMM).
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Tracing back to n = 0, one completes the proof.
For systems, we will make use of the functional introduced by DiPerna [2], to

obtain the L2 stability of the numerical solution. The result in [2] and a different
version in [1] rely on the introduction of the functions,

α(u,v) = S(u) − S(v) −∇S(v)(u − v),(3.18)

β(u,v) = Q(u) − Q(v) −∇S(v)
(
f(u) − f(v)

)
.(3.19)

First of all, α(u,v) is a new entropy with entropy flux β(u,v) parameterized by v,
and α is the quadratic part of the entropy, and thus its integral is equivalent to the
L2 norm of u− v. Secondly, after some formal calculation, one finds,

αt + βx = −vT
x ∇2S(v)

(
f(u) − f(v) −∇f(v)(u − v)

)
.

Therefore under the condition that v is a piece-wise Lipschitz solution, and u is
a weak solution, one can show that

d

dt

∫
α(u,v)dx ≤ C‖u− v‖L2 .

Hence the L2 stability at the PDE level follows.
Nex we show the stability of semi-discrete version of (3.13):

Theorem 2. Assume that {vj} and {uj} are solutions of the semi-discrete

scheme,

(3.20)
d

dt
uj = − 1

∆x

(
F(uj ,uj+1) − F(uj−1,uj)

)

and {vj} satisfies

(3.21) ‖vn
j+1 − vn

j ‖∞ ≤ C∆x, ‖vn
j+1 − 2vn

j + vn
j−1‖∞ ≤ C∆x2,

for all j and n ≥ 0. Then,

(3.22)
∑

j

α(un+1
j ,vn+1

j )∆x ≤ (1 + C∆t)
∑

j

α(un
j ,v

n
j )∆x + C∆x2.

Here C denotes generic constants.

Proof. We first prove the entropy inequality for the numerical scheme. Detailed
discussion on the entropy stability can be found in the review paper by Tadmor [19].
First recall that ũ = ∇S(u). By direct calculation one has,

d

dt
S(uj) = − 1

∆x

(
Q(uj ,uj+1) − Q(uj−1,uj)

)

+
1

2∆x

(
( ˜uj+1 − ũj)

T fj+1/2 − (ψ(ũj+1) − ψ(ũj))
)

+
1

2∆x

(
(ũj − ũj−1)

T fj−1/2 − (ψ(ũj) − ψ(ũj−1))
)
.

Now taking ũj+1/2(ξ) = 1

2
(ũj + ũj+1) + ξ(ũj+1 − ũj), one gets:

ψ(ũj+1) − ψ(ũj) = (ũj+1 − ũj)
T

∫ 1/2

−1/2

f
(
u(ũj+1/2(ξ))

)
dξ

=
1

2
(ũj+1 − ũj)

T
(
f(uj) + f(uj+1)

)

− (ũj+1 − ũj)
T

∫ 1/2

−1/2

ξ∇fHdξ(ũj+1 − ũj),
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and,

(ũj+1 − ũj)
T fj+1/2 =

1

2
(ũj+1 − ũj)

T
(
f(uj) + f(uj+1)

)

− a

2
(ũj+1 − ũj)

T (uj+1 − uj)

=
1

2
(ũj+1 − ũj)

T
(
f(uj) + f(uj+1)

)

− a

2
(ũj+1 − ũj)

T

∫ 1/2

−1/2

Hdξ(ũj+1 − ũj).

Since ∂v

∂u
= ∇2S is positive definite, ∇fH = H−1/2(H1/2∇fH1/2)H1/2 and a ≥

max |λ(∇f)|, we have

(3.23)
d

dt
S(uj) ≤ − 1

∆x

(
Q(uj ,uj+1) − Q(uj−1,uj)

)
.

For the smooth solution v, the inequality becomes equality within order of ∆x:

(3.24)
d

dt
S(vj) = − 1

∆x

(
Q(vj ,vj+1) − Q(vj−1,vj)

)
+O(∆x).

Now we compute the time derivative of α(u,v). First notice that,

∇S(vj)
d

dt
(uj − vj)

= −ṽT
j

(
F(uj ,uj+1) − F(uj−1,uj) − F(vj ,vj+1)

)
+ F(vj−1,vj)

)
/∆x

= −ṽT
j+1/2

(
F(uj ,uj+1) − F(vj ,vj+1)

)
/∆x

+ ṽT
j−1/2

(
F(uj−1,uj) − F(vj−1,vj)

)
/∆x

+
1

2
(ṽT

j+1 − ṽT
j )(F(uj ,uj+1) − F(vj ,vj+1)

)
/∆x

+
1

2
(ṽT

j − ṽT
j−1)

(
F(uj−1,uj) − F(vj−1,vj)

)
/∆x.

By splitting ṽT
j we obtain two conservative terms, which can be eliminated by sum-

mation. One can continue to extract conservative terms as follows,

1

2
(ṽT

j+1 − ṽT
j )

(
F(uj ,uj+1) − F(vj ,vj+1)

)
/∆x

=
1

4
(ṽT

j+1 − ṽT
j )

(
f(uj+1) − f(uj) + f(vj+1) − f(vj)

)
/∆x

+
a

4
(ṽT

j+1 − ṽT
j )

(
uj+1 + uj − vj+1 + vj

)
/∆x

+
1

2
(ṽj+1 − ṽj)

T (f(uj) − f(vj))/∆x

+
a

2

(
uj − vj)

T (ṽj+1 − ṽj

)
/∆x.
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With the entropy inequalities and the above calculation, one has,

d

dt
α(uj ,vj)

≤ − 1

∆x

(
Q(uj ,uj+1) − Q(uj−1,uj)

)
+

1

∆x

(
Q(vj ,vj+1) − Q(vj−1,vj)

)

+ ṽT
j+1/2

(
F(uj ,uj+1) − F(vj ,vj+1)

)
/∆x

− ṽT
j−1/2

(
F(uj−1,uj) − F(vj−1,vj)

)
/∆x

− 1

4

(
(ṽj+1 − ṽj)

T
(
f(uj+1) − f(uj)

)
− (ṽj − ṽj−1)

T
(
f(uj) − f(uj−1)

))
/∆x

+
1

4

(
(ṽj+1 − ṽj)

T
(
f(vj+1) − f(vj)

)
− (ṽj − ṽj−1)

T
(
f(vj) − f(vj−1)

))
/∆x

− 1

2
(ṽj+1 − ṽj−1)

T (f(uj) − f(vj))/∆x

+
a

4

(
(ṽj+1 − ṽj)

T (uj+1 + uj) − (ṽj − ṽj−1)
T (uj + uj−1)

)
/∆x

− a

4

(
(ṽj+1 − ṽT

j )(vj+1 + vj) − (ṽj − ṽj−1)
T (vj + vj−1)

)
/∆x

− a

2
(uj − vj)

T (ṽj+1 − 2ṽj + ṽj−1)/∆x

+
1

2
(vj+1 − vj−1)

T∇2S∇f(vj)(uj − vj)/∆x+O(∆x)

= −1

2
(ṽj+1 − ṽj)

T∇2S(vj)
(
f(uj) − f(vj) −∇f(vj)(uj − vj)

)
/∆x

+ O(∆x) + conservative terms.

This implies that,

d

dt

∑

j

α(uj ,vj)∆x ≤ C
∑

j

α(uj ,vj)∆x+O(∆x),

and (3.22) follows immediately.
In light of (3.17) and the entropy inequality (3.23), we obtain the entropy stability

of our numerical solution {un
j }. An additional fact we will use is that In addition

suppose that the the Lax-Friedrichs scheme is first order accurate for smooth solutions
in the L2 norm. Together, we then obtain

Theorem 3. Let u be the exact solution to the PDEs (2.1), and u is smooth.

Let uHMM = {un
j }, we have

(3.25)
∑

j

S(un
j )∆x ≤

∑

j

S(u0
j )∆x+ C∆x + C

e(HMM)

∆x

and

(3.26)
∥∥u − uHMM

∥∥
L2

≤ C∆x +

√
C∆x+ C

e(HMM)

∆x
.

Proof. First notice that (3.10) and (3.13) are the Euler discretization of the
semi-discrete schemes. In discrete form, we have the entropy inequality,

∑

j

S(wn+1
j )∆x ≤

∑

j

S(un
j )∆x + C∆x2.
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In light of (3.17), one gets,

∑

j

S(un+1
j )∆x ≤

∑

j

S(un
j )∆x+ C∆x2 + Ce(HMM),

which then gives (3.25).
Similarly from the estimate of the functional α, we have

(3.27)
∑

j

α(wn+1
j ,vn+1

j )∆x ≤ (1 + C∆t)
∑

j

α(un
j ,v

n
j )∆x + C∆x2,

and,

(3.28)
∑

j

α(un+1
j ,vn+1

j )∆x ≤ (1 + C∆t)
∑

j

α(un
j ,v

n
j )∆x + C∆x2 + Ce(HMM).

Thus we conclude that (3.26) holds.
To see whether this estimate is sharp, we have conducted a number of numerical

experiments in which the size of the macro grid is changed systematically, with all
parameters fixed. The ’exact’ equation of state is obtained from a series of large
scale MD simulations (in multiscale modeling, this is referred to as the serial coupling
technique), and the exact solution is computed on a very fine grid using the exact
equation of state. In Fig. 4, we plot the total error versus the grid size. We see
that for large ∆x, the error scales as ∆x. This behavior changes to ∆x1/2 for smaller
values of ∆x. But we do not observe the ∆x−1/2 type of behavior suggested by the
analytical result.

This discrepancy might be explained as follows. In the analysis presented above,
we did not take into account the possible cancellations between the e(HMM) terms
at neighboring grid points. This is because e(HMM) contains atomistic fluctuations
which are essentially independent for the different microscopic simulations at differ-
ent grid points, therefore we do not expect to see cancellations. In the case when
the microscopic simulation is a Monte Carlo scheme, this actually suggests a possible
technique for variance reduction, by using the same set of random numbers on differ-
ent grid points. Nevertheless, in general, one does not expect cancellation from the
fluctuation part of e(HMM).

However, this does not exclude the possibility that the fluctuation part of e(HMM)
is very small, compared with the other parts which are smooth, and a better estimate
can be obtained by taking into account the cancellations in the remaining part of
e(HMM). This is what is suggested in Figure 4.

In addition, the relaxation error can be reduced by using a better initialization
scheme for the microscopic solver. For ODEs, this is discussed in detail in [5].

We remark that the results can be easily extended to multi-dimensional case.
Indeed the stability of the solutions for hyperbolic systems was indeed originally
established for systems in arbitrary dimensions, and the entropy stability of the
Lax-Friedrichs scheme in higher dimension is also straightforward. The estimation of
e(HMM) does not rely on dimension, even though the specific dependence of α(L)
and τ0(L) may very well do depend on dimension.
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Fig. 4. Dependence of the total error on the grid size. The data is plotted at log-log scale.
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