METHODS AND APPLICATIONS OF ANALYSIS. (© 2002 International Press
Vol. 9, No. 3, pp. 329-344, September 2002 001

A CONVEX DARBOUX THEOREM *

IVAR EKELAND' AND LOUIS NIRENBERG#

Abstract. We give necessary and sufficient conditions for a smooth, generic, differential one-
form w on R™ to decompose into a sum w = alduj + . ..+ aFduy, where the functions af are positive
and the uy convex (or quasi-convex) near the origin.

1. Introduction. We are given a smooth differential one-form in a neighbour-
hood of the origin in R™ (the Einstein summation convention is used throughout):

w = w;dz*
its exterior derivative being:
dw = w; jdz’ A da’

with:

Ouw;
OxJ

Wi,j =

PROBLEM 1. Under what conditions can we represent w (near the origin) in the
form:

k
w= Zaedw (1)
=1

where the a’ are positive functions and the wu, are strictly convex functions?

The last requirement will be understood to mean that, for each ¢, the matrix

6211,[ .
Gaiga) - Ui
is positive definite.
An obvious necessary condition is:
w A (dw)* = 0. (2)
Indeed, if (1) holds, then
dw = da* A duy

and
(dw)k =aANdug N...Aduy
for some form «, so that (2) follows.
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330 I. EKELAND AND L. NIRENBERG

We will always assume the generic condition:

w A (dw)F1 £ 0. (3)

DEFINITION 1. We say that a smooth one-form w satisfies the k-fold Darboux
condition at the origin if (2) holds on some neighbourhood of the origin.

It is a theorem of Darboux (see [2], theorem II.3.3) that, provided (3) holds, this
condition is necessary and sufficient for the representation (1) near the origin, if we
do not require the positivity of the a’ nor the convexity of the .

In [3], Chiappori and Ekeland asked what further conditions are needed to have
this representation with the a’ positive and the uy convex. They treated the case
when w is real analytic by using Cartan-Kéhler theory, and they found the following
to be necessary and sufficient:

CONDITION 1. There is some neighbourhood of the origin where the matrix with
coefficients w; ; is the sum of two matrices, a positive definite one and another one of
rank k.

Shortly afterwards, V.M. Zakalyukin studied the nonanalytic case, when w is
merely smooth. He found a necessary and sufficient condition, theorem 1 of [5],
which, surprisingly, is slightly different. He introduces the space As(w) of all tangent
vector fields £ such that:

(Wl &=0
<dw’ (57 77)> =0 Vn,
and in addition to condition 1, he requires the following:

CONDITION 2. There is some neighbourhood of the origin where the matric w; j +
wj,; s positive definite on As(w).

The present paper began as an attempt to understand the proof in [5]. We began
by investigating the low-dimensional case, and to our surprise we found counterexam-
ples to the preceeding results, both [3] and [5]. We present two, with k = 2, that is,
we are trying to write

w = a*duy + a*dus. (4)

EXAMPLE 1. Here n = 4, the Darboux condition holds and condition 1 as well.
Set:

w=(1+a'+a2Mde' + 2%d2® + (23 + 2%)da>.
Then
dw = da* A da' 4 d2® A da®

and clearly (3) holds, as well as the Darboux condition. Further, we have:

100 1 000 1
0100 000 0
wii=lo 11 0|/=9*t|o 1 0 o
000 0 00 0 —1
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The last matrix has rank 2, so condition 1 holds. However, the problem has no
solution. Indeed, if relation (4) holds, then wu; satisfies:

duy Aw A dw = duy A a?dus Adw =0 (5)
On the other hand:
wAdw = (1+z" 4+ 2*)dz' Ada® A da®.
Substituting into (5) yields
(142 + x4)u1,4 =0.
So u1 4 =0 and u; cannot be strictly convex.

ExXAMPLE 2. Here n = 5, the Darboux condition holds, and conditions 1 and 2
as well. Set:

w=—z?dz' + 2'dz?® + (1 + 2)de® + (1 + 2*)da* + (1 + 2°)da®. (6)
Then

dw = 2dx* A dx?
w A dw = 2dz' A dx? [(1+2°%)da® + (1+ ah)dzt + (1 + z°)dz’] .

so that (3) holds, as well as the Darboux condition. We also have:

0 -1 00 0 ~1 =100 0
1 0 00 0 1 =100 0

wi;j=10 0 1 0 0|=Id+|[0 0 0 0 0 (7)
00 010 0 0 00 0
00 00 1 0 0 00 0

so condition 1 holds as well. Finally, at the origin, { belonging to As(w) means that

EHet+8 =0
206 =€) =0 Y(n',n?)
the latter equation meaning that ¢! = ¢2 = 0. We see that the matrix Wi +wj; is
positive definite on vectors of the form (0,0,£3,£%,£5). So the condition 2 is satisfied

also. However, in Appendix A, we present a proof that for the one-form w given by
(6) the problem has no solution.

In this paper, we find the necessary and sufficient conditions, always assuming
(3), that a smooth w must satisfy for the problem to have a solution.
First, we introduce in the space of all one-forms « a subset Z defined as follows:

I:{a\a/\w/\(dw)k%EO} (8)

CONDITION 3. There is a k-dimensional subspace V' of Z(0), containing w(0),
and such that on N = V=, the matriz w; ;(0) is symmetric and positive definite.



332 I. EKELAND AND L. NIRENBERG

In their seminal paper, [1], Browning and Chiappori investigated the consump-
tion behaviour of a two-person household spending jointly one unit of account. This
amounts to a particular case of problem 1, with k = 2 and:

wj(z)z! = 1.
Browning and Chiappori then consider the matrix .S = (s;;) defined by:
Sij = wjj + kai,kwja

and they show that S = 3+ A, where ¥ is a symmetric matrix, positive semi-definite,
and A = (a;;) has rank at most one.

Suppose ¥ is in fact positive definite and A has rank exactly one: a;; = w;v;,
where a = Y u;dz’ and 3 = Y v;dz’ are both non-zero. A simple computation shows
that:

wAdw=—-wANaAp

so that a and 3 belong to Z. One then checks that S coincides with ¥ on the
orthogonal of the two-dimensional subspace spanned by w and «, so the Browning-
Chiappori condition amounts to condition 3 in that particular case.

THEOREM 1. Assume w is a smooth one-form satisfying (3). Problem 1 has a
solution if and only if the k-fold Darbouz condition is satisfied near the origin, and
condition 3 is satisfied at the origin.

Let us rewrite condition 3 at the origin. Define N as the subspace of vectors &,
tangent at the origin, such that:

(€]a)=0 VaeV.

Condition 3 requires that:

wi ;(0)E' ) = w; ;(0)n'€? V&, m €N,
wi;(0)€°¢7 >0 YO # ¢ € N.

Note that condition 3 by itself is not open (if it holds at some point, it need not
hold in a neighbourhood). Theorem 1 implies that it becomes open if we impose in
addition the Darboux condition.

Proof of necessity. Assume problem (1) has a solution. We already know that
the Darboux condition has to hold. At the origin (and hence nearby) the du; are
linearly independent; for otherwise, we could express w(0) as a linear combination of
k—1 of them, and it would then follow that wA (dw)*~! = 0 at the origin, contradicting

(3).
Note next, as we did in example 1 for the case k = 2, that relation (1) implies:
WA (dw) P =0 Aduy A... Aduy
for some (k — 1)-form ©, so that

du; Aw A (dw)*~1 = 0.
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Thus du; lies in Z for all 7. Let V be the k-dimensional subspace spanned by
duy,...,duy. By (1), the linear form w(0) lies in V. Set N = V1and take £ and 7 in
N. Differentiating (1), we find:

wi,j = aﬁugﬂ' —+ CLZU[J]'. (9)
Writing ug;£* = us;n° = 0 in the preceding equation , we get:
wi & = aug i &y

The right-hand side is symmetric in £ and 7, and so therefore is the left. Further-
more, taking £ = 7, we see that w; ; is positive definite, as announced. Necessity is
proved. 0O

To conclude this section, let us state (and solve) a related problem. Recall first
that a function u is quasi-convex iff the level sets {z | u(z) < h} are convex for every
h, and strictly quasi-convex if these level sets are stricly convex. A second-order
necessary and sufficient condition for quasi-convexity is that the restriction of the
quadratic form u;;€'¢? to the subspace u;§' = 0 be positive semidefinite (see [4],
theorem M.C.4). If it is positive definite, the function is strictly quasi-convex.

Such functions play an important role in economics, since direct utility functions
are typically quasi-concave, and the indirect utility functions quasi-convex (see [4],
proposition 3.D.3). In this context, the following is a natural question:

PROBLEM 2. Under what conditions can we represent w (near the origin) in the
form:

k
w= Z a‘duy (10)
£=1

where the a’ are positive functions and the wu, are strictly quasi-convex functions?

Clearly, (strictly) convex functions are (strictly) quasi-convex, so any solution to
problem 1 is a solution to problem 2. So problem 2 would seem to be more general
than problem 1. This is not the case: the problems are equivalent. This follows from

LEMMA 1. Assume that the function u is strictly quasi-convez at the origin, in the
sense that the restriction of the quadratic form u;;(0)§°€7 to the subspace u;(0)€" =0
is positive definite. Then there is an increasing function ¢(t), defined on a small
interval containing u(0), such that ¢ ow is strictly convex at the origin, in the sense
that the quadratic form (¢ ou);;(0)£°€7 is positive definite.

Proof. We may assume u(0) = 0 and du(0) = dz;. Take ¢/(0) =1 and ¢"(0) = K
We have:

(¢ ou)is(0)€'€7 = ui; (0)6°¢ + K(¢')?

which can be made positive definite by choosing K large enough. O
So any decomposition

k
_ ¢
w= E a‘duy
=1

in terms of functions w, strictly quasi-convex at the origin (and hence strictly quasi-
convex near the origin) yields a similar decomposition in terms of strictly convex
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functions. Indeed, choose for each u, a function ¢, such that ¢}(us) =1 at the origin

and vy = ¢y o uy is strictly convex. Then:

and the coefficients are clearly positive. So theorem 1 provides an answer both to
problems 1 and 2.
2. Preliminaries. The following algebraic result will be used repeatedly. It is

proposition 1.1.6. of [2].
., apt1 be linearly independent one-forms and Q a two-form

LEMMA 2. Let aq, ..

such that:
A ANap AT =0

for some positive integers p and q. Then
A Aoy AQITE =0

From now on we assume that w satisfies the conditions of theorem 1.

There are (n—1) one-forms oy, . . ., a1, which, together with w, span all 1-forms.

We write:
dv=wNp+Q (11)

where 2 is a two-form involving the «; only. Then, for any /,
WA (dw)f =wAUwABAQALTT+QH =wAQ (12)
Thus, setting £ = k — 1 and k in succession, we find that:
QFt20, QF=o0.
By another algebraic result, namely theorem 1.1.7 in [2], there exist 2k — 2 linearly
.,0}_1, in the span of the a;, and such

independent one-forms, oy,...,0-1,07%,..

that:
k—1
Q= Z o Aoy (13)
=1
Inserting this in relation (11), we finally get
k—1
dw:w/\ﬁ—i—ZJg/\oz (14)
=1
One last algebraic result will be needed.
.,agp_1 be one-forms such that aq,...,qp_1,w are linearly

LEMMA 3. Let aq,..
independent and satisfy:
o N AN Aw A (dw)k_“l =0.
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Define J; to be the set of one-forms « such that:
a Nt A...ANayp_q /\w/\(dw)k*Z =0.

Then:
(i) Je is spanned by 2k — £ one-forms 71, ..., Tok—s¢
(i) If © is a two-form satisfying

6/\041/\.../\(1@,1/\w/\(dw)k_ZEO.

then there exist one-forms u; such that

2k—4

O = Zui/\Ti
im1

The proof is deferred to Appendix B.

We are going to construct the functions wuq, . ..., u; by the successive equations:
duy Aw A (dw)* 1 =0, de duy €T (15.1)
dug A duyp Aw A (dw)*2 =0, (15.2)
dug A ... ANduy Aw A (dw)* ¢ =0, (15.0)
dug—1 ANdug—o A ... Nduy Aw A dw = 0, (15.k — 1)
dug A ... Nduy Aw = 0. (15.k)

At the origin the du, are to be linearly independent and to lie in V. Furthermore,
each u, will be strictly convex, the a’ will be positive, and there will be conditions on
the dug(0). We will do this inductively on £.

Observe first that the set Z of one-forms, defined by (8), is a linear space of
dimension (2k — 1) . Indeed, using (12) and (13), we find that a belongs to Z if and
only if:

0=aAwAQF!

=calAw Aoy Aoy ... NOk_1 N0T)_4
for some ¢ # 0. This means that

/ /
T = Span {w,al,al, .. .,ak,l,akfl} .
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We claim that 7 generates a differential ideal. This is equivalent to the Frobenius

condition: if aq,...,a2,—1 span Z, then there are one-forms p;; such that, for 1 <
1 <2k —1:
2k—1
dOéi = Z Hij A Qy. (16)
i=1

To verify (16), we take o in Z and apply d to (8):
daAw A (dw) 1 = a A (dw)”

which vanishes by lemma 2. Relation (16) then follows by lemma 3 (ii)

Assume uq, ..., up—1 have been obtained, satisfying equations (15.1) to (15.£—1),
with w and the differentials du; linearly independent.We then define a set Z; of one-
forms « by:

Ir={a | aNdug_y A...Nduy Aw A (dw)** =0}

It follows from lemma 2 that:

LhrCIy1C...CT (17)

and the assumption on the u;,1 < i < ¢, means that:
u, €I; Vi<t (18)
For £ =1, we get 7; = 7.
For ¢ =k, we get:
I ={a | aANdug—1 A... Nduy Aw =0}
= Span{w,duy,...,dug_1}

which is a k-dimensional linear space.
We claim that 7 generates a differential ideal. Indeed, if « € Ty, we apply d to
the system for a, and we get:

daoNdup_1AN...Ndug ANw=FaANdug_1 N...\Ndus Adw
=0

because « is a linear combination of w,duq,...,dug_1, and up_; has been assumed
to satify equation (15.k — 1). As above, using lemma 3 (ii), we find that the forms
w,duq, . ..,dug_q satisfy the Frobenius condition, so that Z; generates a differential
ideal.

For 1 < ¢ < k, by lemma 3 (i), Z; is at each point a linear space of dimension
2k — ¢. We claim that Z, generates a differential ideal. For, if a@ € Z;, then, applying
d to the system defining «, we obtain:

daNdug_1 A ... ANdug Aw A (dw)* " = ta Adug_y A ... Aduy A (dw)—?

and the right-hand side vanishes by lemma 2. Using lemma 3 (ii) we conclude that Z,
is spanned by one-forms satisfying the Frobenius condition, so that it is a differential
ideal.
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3. Proof of sufficiency. Without loss of generality, we may suppose that at
the origin w = dz', and that V is spanned by dz',...,dz¥. Thus N consists of all
vectors &, tangent at the origin, such that:

f=...=¢"=0.
and the assumed symmetry of w; ;(0) on N means simply that:
w;;(0) = w;;(0) Vi,j > k.
Thus:
dw(0) = dz' A By +7 with 7=daz® A By + ...+ dz" A By,
where each 3; involves only the dz? with j > i. And so at the origin:
wA (dw)* = =wA (7)F¢, with 7F = 0.
We will need:
LEMMA 4. At the origin, if ay,...,ap are any £ linear forms in V, then:

A Aoy AwA (dw) Tt =0.

Proof. Write, fori=1,...,¢:

k
a; = Zaijdxj = agdzt + o,
j=1
Then:
k—¢ _ 1 k—¢
A A AwA (dw)" =a] AL A Aw A (dw)
=aj A ANy AwA (1),

and the right-hand side vanishes for every term involves k products of the (k — 1)
one-forms dz?,...,dz*. 0

3.1. Construction of u;. Since Z has dimension 2k — 1 and satisfies (16), it
follows from the Frobenius theorem (see [2], theorem II.1.1) that there exists 2k — 1
functions v1,...,v9r_1, the differentials of which span Z. We may choose vy, ..., vg
such that, at the origin:

dvi(0) = dx', for i=1,...,k
v;(0) =0 Vj.
Since w belongs to Z, we may write:

2k—1
w= Z fdug,
(=1
with f1(0) = 1 and f(0) = 0 for £ > 1. So:

w; = floe,
w; (0) = v1,45(0) + £1(0)ve,:(0).
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Now use the fact that w; ;(0) is positive definite on NV, and hence on Z(0), which
is a smaller space. For & € Z+(0), we have:

v (0)E =0 £=1,...,2k—1 (19)
and:
cllél? < wij(0)6°¢ = v1,45(0)6°¢7, ¢ > 0. (20)
Set
2k—1
up = vy +€vg + K Z (ve)? (21)
1

for €7 > 0 small and K large. Then u; is a solution of (15.1), that is, du; € Z. We
claim that wq is strictly convex at the origin. Indeed, at the origin:

1,35 (0)€°€7 = 01,45 (0)6°¢7 + €1v2,5(0)€°¢7 + 2K Y (v4,:(0)€")°
L

Thus, for ¢ € Z1(0), we have, according to (19) and (20):

u1,ij (0)€'€7 = wi j(0)E'E + €1v2,4;(0)E°€
> c/2||€]|? for e small

When ¢ belongs to a complementary subspace of Z+(0), the last term in (21)
takes precedence, so that, for K large enough:

i C
uy,i;(0)€°¢7 > Z||€|*, ¢> 0.
for all vectors £ tangent at the origin. This finishes the construction of u;. Note that:
duy(0) = da' 4 e;dx? (22)

3.2. Construction of the uy, for ¢/ < k — 1. We now argue by induction.
Suppose we have constructed functions:

ULy« ooy Up—1,

for £ < k — 1, and positive numbers

€1,---5€0-1
satisfying recursively (15.1), ..., (15.0—1), the matrix u; ,5(0) being positive definite,
and
du;(0) = do' — e;dx’ + e;da’™t (23)

for 2 < i < ¢ — 1, while (22) holds for ¢ = 1. We now construct uy with similar
properties.

Since Z; generates a differential ideal, and has dimension 2k — ¢, using Frobenius
again we find that there exist 2k — ¢ functions vy, ..., v,y spanning Z,.
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Because of (22) and (23), the du;(0),1 < i < £ —1, all belong to V. Comparing
lemma 4 with the definition of Z,, we find that V' C Z;(0), so that we may assume
that:

dvi(0) = da* for i=1,...,k.
Again, we may represent:
w; = févf,m
using functions f* with f1(0) = 1 and f*(0) = 0 for £ > 1. Thus, at the origin:
w; ;(0) = w145 + ffw,i
Since Z,;(0) D V, we have Z,(0)* C N. For & € Z,(0)*, we get:
Wi, j (O)fifj = Ul,ij(o)gifj
By our assumption on V| it follows that, for some ¢ > 0, we have:
v, (0)€°€7 > c|lé|f?, V€ € Tu(0)*

We now define:

2k—1
Up = V1 — €0V + €Up41 + K g vz

s=1

Just as before, we find that
icj ~ € 2
ug,i5(0)£¢7 > ||,
provided ¢, is small and K large. We have u, € Zy, and at the origin:
duy(0) = dz' — epda’ + epda™™!

3.3. Construction of wu; and conclusion. We have thus constructed
u1,...,up_1 with the desired properties, and we finally construct ug. Again, Z has
dimension k and generates a differential ideal, so that it is spanned by the differentials
of k functions wy, ..., wg. As above, Z(0) = V, so we may choose

dwl(O) = dIi(O), 1= 1,...,/{

We now set:

k

uk:wl—ekwk—FKg w?
1

As before, using the fact that w; ;(0) is positive definite on N = VL, we find that
for € small and K large, we have

w5 (0)€°€7 = el
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while:
duy(0) = dz* — e da”

To complete the proof of the theorem, we must show that in the representation

k
_ ¢
w= E a‘duy
=1

all the a’ are positive at the origin. Well, at the origin, the du;(0) are independent,
so the a¢(0) are unique. But at the origin;

w(0) = dat
duyi(0) = da* + e;da?
duy(0) = dr' — exda? + eoda®

dug—1(0) = dr' — e,_1dz* ' + €1 dx”
duy,(0) = dz' — epda®.

Then:

1
—duy(0) = adml + da?

€1
1 1
—duy(0) = —da' — da® + da®
€9 €9
X S
dug—1(0) = dat — dzh=t 4 da®
€r—1 €k—1
1

1
—dug(0) = adxl — dz*.

Summing up, we get:

Z édui(o) = (Z é)dxl

which gives the desired decomposition w(0) = 3", a*(0)du,(0), with

a'(0) =[e Y (1/e)] " >0

This concludes the proof.
Appendix A. Proof of Example 2. We prove that for the one-form w given

by (6) the problem has no solution. Assume otherwise; for the sake of convenience,
write u; = u, ug = v, a* = a, and a? = b, so that
w = adu + bdv

In particular, on the plane 22 = 2* = 2% = 0, we have:

auj + bvy = —x2 (24)
aug + bvy = 2t (25)
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We may assume u(0) = v(0) = 0. Expanding v and v near the origin in the plane
(2!, 2?), we have:

u=c1z' +e2a? + Q1 2%) + of|z[|)
v=dia! +daa® + Qa(z',2%) + o([]?)

where @1 and Q2 are positive definite quadratic forms.
From (24) and (25), we have:

a(uguy — utvs) = x'vy + 220y = diat + doa® + 2Qo(xt, 2%) + o||z]|?)  (26)
b(urvg — ugy) = xtuy + 22un = crxt + cpr® +2Q1 (21, 2%) +o(|z|?).  (27)

At the origin, the right-hand sides vanish , and since a and b are positive, we must
have ugv; — ujve = 0. This implies that the vectors (¢1,c2) and (dy,ds) are parallel.
One or both may vanish, but in any case we can choose (z1,x2) # 0 near the origin
so that

1zt + cox? =0 = dixt + dox?.

For such a choice of (z1,x3), the right-hand sides of (26) and (27) are positive.
But the left-hand sides have opposite signs. This is a contradiction.

Appendix B. Proof of lemma 3. We begin by an algebraic result:

LEMMA 5. Consider a 2m-dimensional space of one-forms spanned by

/ !/
01,071, +,0m, Oy

and set:
Q=01 Aoy +...+om Ao,

so that Q™ # 0. Let v1,...7s—1 be linearly independent one-forms such that:
YA Ay AQMTIF2 =0,

Then :
1) There is a set of one-forms Bi,...,Bm,YV., ...,V such that:
(i) R AN

s—1 m
Q:Z%/\/BHFZ’Y;/\/BJ'- (28)
i=1 j=s

(i) The space of one-forms
M, = {a Ay AL Aye_g AQMT5TH EO}

s spanned by the %-,7}7@, for1<i<s<ji<m,1</¢<m, and so has
dimension 2m — s + 1.
Proof. We first assume (i) to prove (ii).

If (28) holds, since Q™ # 0, the 3;, v; and +; must be linearly independent. The
system defining 75 then becomes:

m m—s—+1
0=aAY A... Avs_1 A (Z%{A@)

i=$

(m=—s+I)aAY A AV A AVEABs Ao c Aoy A B
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We end up with:
M, = Span{;,7},B; | 1<i<s—1,s<j<m}
so that (ii) is proved.
Now to prove (i). This will be done by induction on s. For s = 1, we can take
B3; = 0; and 7} = o}, so the lemma holds in this case.

Suppose (i) holds up to s = r; we wish to establish it for s = r+ 1. Let 71,...,7,
be linearly independent one-forms satisfying

A LA AQTTTHL =0,

This means that «, belongs to M,.. Since (28) holds for s = r, we have seen that
v, then belongs to the linear span of the %-,'y}, Bj, for 1 <i<r <j<mu

r—1 m m
Y= et Y biB Y a;
=1 j=r j=r

At least one of the b; or a; must be non-zero. Suppose it is a,; the case where all
the a; vanish and b, # 0 would be treated in the same way. We may assume a, = 1.
Then:

r—1 m m
Yo=Y cvi— Y biBi— Y a (29)
i=1 j=r Jj=r+1

Because (28) holds up for s = r, we have:

r—1 m
Q= "7ABi+ Y _vAB;
i=1 j=r
Replacing ~,. in this expression by its value, taken from (29), we obtain:
r—1 m
Q= " %ABi—ciB) 7 AB+ > (h+biB) A B —a;B)  (30)
=1 Jj=r+1
Setting:

B;=Bi—cB for 1<i<r—1
B, =By

Vi =75 +bibe for r+1<j<m
B; =B;—a;B, for r+1<j<m,

we rewrite (30) as follows:
Q= %wABi+ Y VAP
i=1 j=r+1

so (28) holds for s = + 1, and the lemma is proved. O
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Proof of lemma 3(i). We show first that:

jgz{oz|oz/\ozg_l/\.../\oq/\w/\(dw)kfzEO}, (31)
has dimension 2k — /.
Recall that the a1, ...,ay—1 and w are linearly independent, and satisfy
A Aag Aw A (dw) T =0, (32)

By lemma 2 | J; and the «; belong to Z, and so is «; is a linear combination of
w and the 0, 0%. Thus we may write:

a; =bw+y for 1<i<i-1 (33)
where 7; is a linear combination of the o, ¢”. Inserting (33) in (32), we obtain:

YA AT Aw A (dw)EFH =0, (34)

On the other hand, by relation (14), we have:

k—1
dw=wAB+Q, with Q:Zw/\aé
i=1
so equation (34) becomes:
A AV Aw AQFTHL =0, (35)
This implies:
Vo1 A A AQETHL =0 (36)

Indeed, the left-hand side is a k-form involving only the o}, a;-, and if it did not
vanish, taking the wedge product with w, which is linearly independent from the o, 0;»
would contradict (35).

Consider any « in Jp,. We may write a = bw + &, where & is a linear combination
of the o, 0., and equation (31) implies:

AATMA . A1 AQF =0

By lemma 5, with m = k—1, we see that the set of such & has dimension 2k—¢—1,
so J¢, which is spanned by these & and by w, has dimension 2k — ¢. 0O

Proof of lemma 3(ii). Suppose the two-form O satisfies the prescribed condi-
tion. Then:

ONIA...hNay_1 AwAQFt=0.

Using (33), we get:

Il
e

OAYA ... A1 AwAQFE

and the v1,...,v,—1 satisfy (36)
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By lemma 5 (i), with m = k — 1, there is a set of one-forms
By Br—1,7), -+ V1 Such that:

-1 k1
Q= "wAB+D 7 AB,
=1 =t

and hence:
OAVIA AV 1 AWAYABe Ao Ay A Br—1 = 0.
Set T1 = W, T2 = Y1, Te = Ye—1, Te+1 :’yé, ey ey Tk :’7//6_1, Tk+1 :ﬂg, ey

Top—¢ = Pr—1. By lemma 5 (ii), they are all independent and span [Jp;. Then the
preceding equation takes the form:

OANTIA...ANTop_¢ = 0. (37)
The 7;, together with n — (2k — ¢) forms 73, _,,,,..., 7, span all one-forms. We
may therefore write:
2k—¢ n
0= Zui/\TiJr Z o AT (38)
i=1 2k—0<i<]

It then follows from (37) that:

n
TIA ..\ Tog—p N E f”TZ{/\T]{.EO
2k—0<i<j

which means that the f% all are identically zero. Equation (38) then has the desired
form. 0O
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