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A CONVEX DARBOUX THEOREM ∗

IVAR EKELAND† AND LOUIS NIRENBERG‡

Abstract. We give necessary and sufficient conditions for a smooth, generic, differential one-
form ω on R

n to decompose into a sum ω = a1du1 + . . .+akduk, where the functions a� are positive
and the u� convex (or quasi-convex) near the origin.

1. Introduction. We are given a smooth differential one-form in a neighbour-
hood of the origin in R

n (the Einstein summation convention is used throughout):

ω = ωidxi

its exterior derivative being:

dω = ωi,jdxj ∧ dxi

with:

ωi,j =
∂ωi

∂xj

Problem 1. Under what conditions can we represent ω (near the origin) in the
form:

ω =
k∑

�=1

a�du� (1)

where the a� are positive functions and the u� are strictly convex functions?

The last requirement will be understood to mean that, for each �, the matrix

∂2u�

∂xi∂xj
=: u�,ij

is positive definite.
An obvious necessary condition is:

ω ∧ (dω)k ≡ 0. (2)

Indeed, if (1) holds, then

dω = da� ∧ du�

and

(dω)k = α ∧ du1 ∧ . . . ∧ duk

for some form α, so that (2) follows.
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330 I. EKELAND AND L. NIRENBERG

We will always assume the generic condition:

ω ∧ (dω)k−1 �= 0. (3)

Definition 1. We say that a smooth one-form ω satisfies the k-fold Darboux
condition at the origin if (2) holds on some neighbourhood of the origin.

It is a theorem of Darboux (see [2], theorem II.3.3) that, provided (3) holds, this
condition is necessary and sufficient for the representation (1) near the origin, if we
do not require the positivity of the a� nor the convexity of the u�.

In [3], Chiappori and Ekeland asked what further conditions are needed to have
this representation with the a� positive and the u� convex. They treated the case
when ω is real analytic by using Cartan-Kähler theory, and they found the following
to be necessary and sufficient:

Condition 1. There is some neighbourhood of the origin where the matrix with
coefficients ωi,j is the sum of two matrices, a positive definite one and another one of
rank k.

Shortly afterwards, V.M. Zakalyukin studied the nonanalytic case, when ω is
merely smooth. He found a necessary and sufficient condition, theorem 1 of [5],
which, surprisingly, is slightly different. He introduces the space A2(ω) of all tangent
vector fields ξ such that:

〈ω | ξ〉 = 0
〈dω, (ξ, η)〉 = 0 ∀η,

and in addition to condition 1, he requires the following:

Condition 2. There is some neighbourhood of the origin where the matrix ωi,j +
ωj,i is positive definite on A2(ω).

The present paper began as an attempt to understand the proof in [5]. We began
by investigating the low-dimensional case, and to our surprise we found counterexam-
ples to the preceeding results, both [3] and [5]. We present two, with k = 2, that is,
we are trying to write

ω = a1du1 + a2du2. (4)

Example 1. Here n = 4, the Darboux condition holds and condition 1 as well.
Set:

ω = (1 + x1 + x4)dx1 + x2dx2 + (x3 + x2)dx3.

Then

dω = dx4 ∧ dx1 + dx2 ∧ dx3

and clearly (3) holds, as well as the Darboux condition. Further, we have:

ωi,j =

⎛
⎜⎜⎝

1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 0

⎞
⎟⎟⎠ = Id +

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 −1

⎞
⎟⎟⎠ .
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The last matrix has rank 2, so condition 1 holds. However, the problem has no
solution. Indeed, if relation (4) holds, then u1 satisfies:

du1 ∧ ω ∧ dω = du1 ∧ a2du2 ∧ dω ≡ 0 (5)

On the other hand:

ω ∧ dω = (1 + x1 + x4)dx1 ∧ dx2 ∧ dx3.

Substituting into (5) yields

(1 + x1 + x4)u1,4 ≡ 0.

So u1,4 ≡ 0 and u1 cannot be strictly convex.

Example 2. Here n = 5, the Darboux condition holds, and conditions 1 and 2
as well. Set:

ω = −x2dx1 + x1dx2 + (1 + x3)dx3 + (1 + x4)dx4 + (1 + x5)dx5. (6)

Then

dω = 2dx1 ∧ dx2

ω ∧ dω = 2dx1 ∧ dx2
[
(1 + x3)dx3 + (1 + x4)dx4 + (1 + x5)dx5

]
.

so that (3) holds, as well as the Darboux condition. We also have:

ωi,j =

⎛
⎜⎜⎜⎜⎝

0 −1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ = Id +

⎛
⎜⎜⎜⎜⎝
−1 −1 0 0 0
1 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ . (7)

so condition 1 holds as well. Finally, at the origin, ξ belonging to A2(ω) means that

ξ3 + ξ4 + ξ5 = 0
2(ξ1η2 − ξ2η1) = 0 ∀(η1, η2)

the latter equation meaning that ξ1 = ξ2 = 0. We see that the matrix ωi,j + ωj,i is
positive definite on vectors of the form (0, 0, ξ3, ξ4, ξ5). So the condition 2 is satisfied
also. However, in Appendix A, we present a proof that for the one-form ω given by
(6) the problem has no solution.

In this paper, we find the necessary and sufficient conditions, always assuming
(3), that a smooth ω must satisfy for the problem to have a solution.

First, we introduce in the space of all one-forms α a subset I defined as follows:

I =
{
α | α ∧ ω ∧ (dω)k−1 ≡ 0

}
(8)

Condition 3. There is a k-dimensional subspace V of I(0), containing ω(0),
and such that on N = V ⊥, the matrix ωi,j(0) is symmetric and positive definite.
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In their seminal paper, [1], Browning and Chiappori investigated the consump-
tion behaviour of a two-person household spending jointly one unit of account. This
amounts to a particular case of problem 1, with k = 2 and:

ωj(x)xj = 1.

Browning and Chiappori then consider the matrix S = (sij) defined by:

sij = ωi,j + xkωi,kωj ,

and they show that S = Σ+A, where Σ is a symmetric matrix, positive semi-definite,
and A = (aij) has rank at most one.

Suppose Σ is in fact positive definite and A has rank exactly one: aij = uivj ,
where α =

∑
uidxi and β =

∑
vidxi are both non-zero. A simple computation shows

that:

ω ∧ dω = −ω ∧ α ∧ β

so that α and β belong to I. One then checks that S coincides with Σ on the
orthogonal of the two-dimensional subspace spanned by ω and α, so the Browning-
Chiappori condition amounts to condition 3 in that particular case.

Theorem 1. Assume ω is a smooth one-form satisfying (3). Problem 1 has a
solution if and only if the k-fold Darboux condition is satisfied near the origin, and
condition 3 is satisfied at the origin.

Let us rewrite condition 3 at the origin. Define N as the subspace of vectors ξ,
tangent at the origin, such that:

〈ξ | α〉 = 0 ∀α ∈ V.

Condition 3 requires that:

ωi,j(0)ξiηj = ωi,j(0)ηiξj ∀ξ, η ∈ N,

ωi,j(0)ξiξj > 0 ∀0 �= ξ ∈ N.

Note that condition 3 by itself is not open (if it holds at some point, it need not
hold in a neigbourhood). Theorem 1 implies that it becomes open if we impose in
addition the Darboux condition.

Proof of necessity. Assume problem (1) has a solution. We already know that
the Darboux condition has to hold. At the origin (and hence nearby) the dui are
linearly independent; for otherwise, we could express ω(0) as a linear combination of
k−1 of them, and it would then follow that ω∧(dω)k−1 = 0 at the origin, contradicting
(3).

Note next, as we did in example 1 for the case k = 2, that relation (1) implies:

ω ∧ (dω)k−1 = Θ ∧ du1 ∧ . . . ∧ duk

for some (k − 1)-form Θ, so that

dui ∧ ω ∧ (dω)k−1 = 0.
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Thus dui lies in I for all i. Let V be the k-dimensional subspace spanned by
du1, . . . , duk. By (1), the linear form ω(0) lies in V . Set N = V ⊥and take ξ and η in
N . Differentiating (1), we find:

ωi,j = a�
ju�,i + a�u�,ij . (9)

Writing u�,iξ
i = u�,iη

i = 0 in the preceding equation , we get:

ωi,jξ
iηj = a�u�,ijξ

iηj

The right-hand side is symmetric in ξ and η, and so therefore is the left. Further-
more, taking ξ = η, we see that ωi,j is positive definite, as announced. Necessity is
proved.

To conclude this section, let us state (and solve) a related problem. Recall first
that a function u is quasi-convex iff the level sets {x | u(x) ≤ h} are convex for every
h, and strictly quasi-convex if these level sets are stricly convex. A second-order
necessary and sufficient condition for quasi-convexity is that the restriction of the
quadratic form uijξ

iξj to the subspace uiξ
i = 0 be positive semidefinite (see [4],

theorem M.C.4). If it is positive definite, the function is strictly quasi-convex.
Such functions play an important role in economics, since direct utility functions

are typically quasi-concave, and the indirect utility functions quasi-convex (see [4],
proposition 3.D.3). In this context, the following is a natural question:

Problem 2. Under what conditions can we represent ω (near the origin) in the
form:

ω =
k∑

�=1

a�du� (10)

where the a� are positive functions and the u� are strictly quasi-convex functions?

Clearly, (strictly) convex functions are (strictly) quasi-convex, so any solution to
problem 1 is a solution to problem 2. So problem 2 would seem to be more general
than problem 1. This is not the case: the problems are equivalent. This follows from

Lemma 1. Assume that the function u is strictly quasi-convex at the origin, in the
sense that the restriction of the quadratic form uij(0)ξiξj to the subspace ui(0)ξi = 0
is positive definite. Then there is an increasing function φ(t), defined on a small
interval containing u(0), such that φ ◦ u is strictly convex at the origin, in the sense
that the quadratic form (φ ◦ u)ij(0)ξiξj is positive definite.

Proof. We may assume u(0) = 0 and du(0) = dx1. Take φ′(0) = 1 and φ′′(0) = K
We have:

(φ ◦ u)ij(0)ξiξj = uij(0)ξiξj + K(ξ1)2

which can be made positive definite by choosing K large enough.
So any decomposition

ω =
k∑

�=1

a�du�

in terms of functions u� strictly quasi-convex at the origin (and hence strictly quasi-
convex near the origin) yields a similar decomposition in terms of strictly convex
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functions. Indeed, choose for each u� a function φ� such that φ′
�(u�) = 1 at the origin

and v� = φ� ◦ u� is strictly convex. Then:

ω =
k∑

�=1

a�

φ′
�(u�)

dv�

and the coefficients are clearly positive. So theorem 1 provides an answer both to
problems 1 and 2.

2. Preliminaries. The following algebraic result will be used repeatedly. It is
proposition I.1.6. of [2].

Lemma 2. Let α1, . . . , αp+1 be linearly independent one-forms and Ω a two-form
such that:

α1 ∧ . . . ∧ αp ∧ Ωq = 0

for some positive integers p and q. Then

α1 ∧ . . . ∧ αp−1 ∧ Ωq+1 = 0

From now on we assume that ω satisfies the conditions of theorem 1.
There are (n−1) one-forms α1, . . . , αn−1, which, together with ω, span all 1-forms.

We write:

dω = ω ∧ β + Ω (11)

where Ω is a two-form involving the αi only. Then, for any �,

ω ∧ (dω)� = ω ∧ (�ω ∧ β ∧ Ω�−1 + Ω�) = ω ∧ Ω�. (12)

Thus, setting � = k − 1 and k in succession, we find that:

Ωk−1 �= 0, Ωk ≡ 0.

By another algebraic result, namely theorem I.1.7 in [2], there exist 2k−2 linearly
independent one-forms, σ1, . . . , σk−1, σ

′
1, . . . , σ

′
k−1, in the span of the αi, and such

that:

Ω =
k−1∑
�=1

σ� ∧ σ′
� (13)

Inserting this in relation (11), we finally get

dω = ω ∧ β +
k−1∑
�=1

σ� ∧ σ′
� (14)

One last algebraic result will be needed.

Lemma 3. Let α1, . . . , α�−1 be one-forms such that α1, . . . , α�−1, ω are linearly
independent and satisfy:

α1 ∧ . . . ∧ α�−1 ∧ ω ∧ (dω)k−�+1 ≡ 0.
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Define J� to be the set of one-forms α such that:

α ∧ α1 ∧ . . . ∧ α�−1 ∧ ω ∧ (dω)k−� ≡ 0.

Then:
(i) J� is spanned by 2k − � one-forms τ1, . . . , τ2k−�

(ii) If Θ is a two-form satisfying

Θ ∧ α1 ∧ . . . ∧ α�−1 ∧ ω ∧ (dω)k−� ≡ 0.

then there exist one-forms µi such that

Θ =
2k−�∑
i=1

µi ∧ τi

The proof is deferred to Appendix B.
We are going to construct the functions u1, . . . ., uk by the successive equations:

du1 ∧ ω ∧ (dω)k−1 ≡ 0, ie du1 ∈ I (15.1)

du2 ∧ du1 ∧ ω ∧ (dω)k−2 ≡ 0, (15.2)

du� ∧ . . . ∧ du1 ∧ ω ∧ (dω)k−� ≡ 0, (15.�)

duk−1 ∧ duk−2 ∧ . . . ∧ du1 ∧ ω ∧ dω ≡ 0, (15.k − 1)

duk ∧ . . . ∧ du1 ∧ ω ≡ 0. (15.k)

At the origin the du� are to be linearly independent and to lie in V . Furthermore,
each u� will be strictly convex, the a� will be positive, and there will be conditions on
the du�(0). We will do this inductively on �.

Observe first that the set I of one-forms, defined by (8), is a linear space of
dimension (2k − 1) . Indeed, using (12) and (13), we find that α belongs to I if and
only if:

0 ≡ α ∧ ω ∧ Ωk−1

≡ cα ∧ ω ∧ σ1 ∧ σ′
1 . . . ∧ σk−1 ∧ σ′

k−1

for some c �= 0. This means that

I = Span
{
ω, σ1, σ

′
1, . . . , σk−1, σ

′
k−1

}
.
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We claim that I generates a differential ideal. This is equivalent to the Frobenius
condition: if α1, . . . , α2k−1 span I, then there are one-forms µij such that, for 1 ≤
i ≤ 2k − 1:

dαi =
2k−1∑
i=1

µij ∧ αj . (16)

To verify (16), we take α in I and apply d to (8):

dα ∧ ω ∧ (dω)k−1 = α ∧ (dω)k

which vanishes by lemma 2. Relation (16) then follows by lemma 3 (ii)
Assume u1, . . . , u�−1 have been obtained, satisfying equations (15.1) to (15.�−1),

with ω and the differentials dui linearly independent.We then define a set I� of one-
forms α by:

I� =
{
α | α ∧ du�−1 ∧ . . . ∧ du1 ∧ ω ∧ (dω)k−� ≡ 0

}
It follows from lemma 2 that:

I� ⊂ I�−1 ⊂ . . . ⊂ I1 (17)

and the assumption on the ui, 1 ≤ i ≤ �, means that:

ui ∈ Ii ∀i ≤ � (18)

For � = 1, we get I1 = I.
For � = k, we get:

Ik = {α | α ∧ duk−1 ∧ . . . ∧ du1 ∧ ω ≡ 0}
= Span {ω, du1, . . . , duk−1}

which is a k-dimensional linear space.
We claim that Ik generates a differential ideal. Indeed, if α ∈ Ik, we apply d to

the system for α, and we get:

dα ∧ duk−1 ∧ . . . ∧ du1 ∧ ω ≡ ±α ∧ duk−1 ∧ . . . ∧ du1 ∧ dω

≡ 0

because α is a linear combination of ω, du1, . . . , duk−1, and uk−1 has been assumed
to satify equation (15.k − 1). As above, using lemma 3 (ii), we find that the forms
ω, du1, . . . , duk−1 satisfy the Frobenius condition, so that Ik generates a differential
ideal.

For 1 < � < k, by lemma 3 (i), I� is at each point a linear space of dimension
2k − �. We claim that I� generates a differential ideal. For, if α ∈ I�, then, applying
d to the system defining α, we obtain:

dα ∧ du�−1 ∧ . . . ∧ du1 ∧ ω ∧ (dω)k−� ≡ ±α ∧ du�−1 ∧ . . . ∧ du1 ∧ (dω)k−�+1

and the right-hand side vanishes by lemma 2. Using lemma 3 (ii) we conclude that I�

is spanned by one-forms satisfying the Frobenius condition, so that it is a differential
ideal.
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3. Proof of sufficiency. Without loss of generality, we may suppose that at
the origin ω = dx1, and that V is spanned by dx1, . . . , dxk. Thus N consists of all
vectors ξ, tangent at the origin, such that:

ξ1 = . . . = ξk = 0.

and the assumed symmetry of ωi,j(0) on N means simply that:

ωi,j(0) = ωj,i(0) ∀i, j > k.

Thus:

dω(0) = dx1 ∧ β1 + τ with τ = dx2 ∧ β2 + . . . + dxk ∧ βk

where each βi involves only the dxj with j > i. And so at the origin:

ω ∧ (dω)k−� = ω ∧ (τ)k−�, with τk = 0.

We will need:

Lemma 4. At the origin, if α1, . . . , α� are any � linear forms in V , then:

α1 ∧ . . . ∧ α� ∧ ω ∧ (dω)k−� = 0.

Proof. Write, for i = 1, . . . , �:

αi =
k∑

j=1

αijdxj = αi1dx1 + α′
i.

Then:

α1 ∧ . . . ∧ α� ∧ ω ∧ (dω)k−� = α′
1 ∧ . . . ∧ α′

� ∧ ω ∧ (dω)k−�

= α′
1 ∧ . . . ∧ α′

� ∧ ω ∧ (τ)k−�,

and the right-hand side vanishes for every term involves k products of the (k − 1)
one-forms dx2, . . . , dxk.

3.1. Construction of u1. Since I has dimension 2k − 1 and satisfies (16), it
follows from the Frobenius theorem (see [2], theorem II.1.1) that there exists 2k − 1
functions v1, . . . , v2k−1, the differentials of which span I. We may choose v1, . . . , vk

such that, at the origin:

dvi(0) = dxi, for i = 1, . . . , k

vj(0) = 0 ∀j.

Since ω belongs to I, we may write:

ω =
2k−1∑
�=1

f � dv�,

with f1(0) = 1 and f �(0) = 0 for � > 1. So:

ωi = f �v�,i

ωi,j(0) = v1,ij(0) + f �
j (0)v�,i(0).
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Now use the fact that ωi,j(0) is positive definite on N , and hence on I⊥(0), which
is a smaller space. For ξ ∈ I⊥(0), we have:

v�,i(0)ξi = 0 � = 1, . . . , 2k − 1 (19)

and:

c‖ξ‖2 ≤ ωi,j(0)ξiξj = v1,ij(0)ξiξj , c > 0. (20)

Set

u1 = v1 + ε1v2 + K

2k−1∑
1

(v�)2 (21)

for ε1 > 0 small and K large. Then u1 is a solution of (15.1), that is, du1 ∈ I. We
claim that u1 is strictly convex at the origin. Indeed, at the origin:

u1,ij(0)ξiξj = v1,ij(0)ξiξj + ε1v2,ij(0)ξiξj + 2K
∑

�

(v�,i(0)ξi)2.

Thus, for ξ ∈ I⊥(0), we have, according to (19) and (20):

u1,ij(0)ξiξj = ωi,j(0)ξiξj + ε1v2,ij(0)ξiξj

≥ c/2‖ξ‖2 for ε1 small

When ξ belongs to a complementary subspace of I⊥(0), the last term in (21)
takes precedence, so that, for K large enough:

u1,ij(0)ξiξj ≥ c

2
‖ξ‖2, c > 0.

for all vectors ξ tangent at the origin. This finishes the construction of u1. Note that:

du1(0) = dx1 + ε1dx2 (22)

3.2. Construction of the u�, for � ≤ k − 1. We now argue by induction.
Suppose we have constructed functions:

u1, . . . , u�−1,

for � ≤ k − 1, and positive numbers

ε1, . . . , ε�−1

satisfying recursively (15.1), . . . , (15.�−1), the matrix ui,rs(0) being positive definite,
and

dui(0) = dx1 − εidxi + εidxi+1 (23)

for 2 ≤ i ≤ � − 1, while (22) holds for i = 1. We now construct u� with similar
properties.

Since I� generates a differential ideal, and has dimension 2k − �, using Frobenius
again we find that there exist 2k − � functions v1, . . . , v2k−� spanning I�.
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Because of (22) and (23), the dui(0), 1 ≤ i ≤ � − 1, all belong to V . Comparing
lemma 4 with the definition of I�, we find that V ⊂ I�(0), so that we may assume
that:

dvi(0) = dxi for i = 1, . . . , k.

Again, we may represent:

ωi = f �v�,i,

using functions f � with f1(0) = 1 and f �(0) = 0 for � > 1. Thus, at the origin:

ωi,j(0) = v1,ij + f �
j v�,i

Since I�(0) ⊃ V , we have I�(0)⊥ ⊂ N . For ξ ∈ I�(0)⊥, we get:

ωi,j(0)ξiξj = v1,ij(0)ξiξj

By our assumption on V , it follows that, for some c > 0, we have:

v1,ij(0)ξiξj ≥ c‖ξ‖2, ∀ξ ∈ I�(0)⊥

We now define:

u� = v1 − ε�v� + ε�v�+1 + K

2k−�∑
s=1

v2
�

Just as before, we find that

u�,ij(0)ξiξj ≥ c

2
‖ξ‖2,

provided ε� is small and K large. We have u� ∈ I�, and at the origin:

du�(0) = dx1 − ε�dx� + ε�dx�+1

3.3. Construction of uk and conclusion. We have thus constructed
u1, . . . , uk−1 with the desired properties, and we finally construct uk. Again, Ik has
dimension k and generates a differential ideal, so that it is spanned by the differentials
of k functions w1, . . . , wk. As above, Ik(0) = V , so we may choose

dwi(0) = dxi(0), i = 1, . . . , k

We now set:

uk = w1 − εkwk + K

k∑
1

w2
�

As before, using the fact that ωi,j(0) is positive definite on N = V ⊥, we find that
for εk small and K large, we have

uk,ij(0)ξiξj ≥ c

2
‖ξ‖2
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while:

duk(0) = dx1 − εkdxk

To complete the proof of the theorem, we must show that in the representation

ω =
k∑

�=1

a�du�

all the a� are positive at the origin. Well, at the origin, the dui(0) are independent,
so the a�(0) are unique. But at the origin;

ω(0) = dx1

du1(0) = dx1 + ε1dx2

du2(0) = dx1 − ε2dx2 + ε2dx3

. . .

duk−1(0) = dx1 − εk−1dxk−1 + εk−1dxk

duk(0) = dx1 − εkdxk.

Then:

1
ε1

du1(0) =
1
ε1

dx1 + dx2

1
ε2

du2(0) =
1
ε2

dx1 − dx2 + dx3

. . .
1

εk−1
duk−1(0) =

1
εk−1

dx1 − dxk−1 + dxk

1
εk

duk(0) =
1
εk

dx1 − dxk.

Summing up, we get: ∑
i

1
εi

dui(0) = (
∑

i

1
εi

)dx1

which gives the desired decomposition ω(0) =
∑

� a�(0)du�(0), with

a�(0) = [ε�

∑
(1/εi)]−1 > 0

.
This concludes the proof.

Appendix A. Proof of Example 2. We prove that for the one-form ω given
by (6) the problem has no solution. Assume otherwise; for the sake of convenience,
write u1 = u, u2 = v, a1 = a, and a2 = b, so that

ω = adu + bdv

In particular, on the plane x3 = x4 = x5 = 0, we have:

au1 + bv1 = −x2 (24)
au2 + bv2 = x1. (25)
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We may assume u(0) = v(0) = 0. Expanding u and v near the origin in the plane
(x1, x2), we have:

u = c1x
1 + c2x

2 + Q1(x1, x2) + o(‖x‖2)
v = d1x

1 + d2x
2 + Q2(x1, x2) + o(‖x‖2)

where Q1 and Q2 are positive definite quadratic forms.
From (24) and (25), we have:

a(u2v1 − u1v2) = x1v1 + x2v2 = d1x
1 + d2x

2 + 2Q2(x1, x2) + o(‖x‖2) (26)
b(u1v2 − u2v1) = x1u1 + x2u2 = c1x

1 + c2x
2 + 2Q1(x1, x2) + o(‖x‖2). (27)

At the origin, the right-hand sides vanish , and since a and b are positive, we must
have u2v1 − u1v2 = 0. This implies that the vectors (c1, c2) and (d1, d2) are parallel.
One or both may vanish, but in any case we can choose (x1, x2) �= 0 near the origin
so that

c1x
1 + c2x

2 = 0 = d1x
1 + d2x

2.

For such a choice of (x1, x2), the right-hand sides of (26) and (27) are positive.
But the left-hand sides have opposite signs. This is a contradiction.

Appendix B. Proof of lemma 3. We begin by an algebraic result:

Lemma 5. Consider a 2m-dimensional space of one-forms spanned by

σ1, σ
′
1, . . . , σm, σ′

m,

and set:

Ω = σ1 ∧ σ′
1 + . . . + σm ∧ σ′

m

so that Ωm �= 0. Let γ1, . . . γs−1 be linearly independent one-forms such that:

γ1 ∧ . . . ∧ γs−1 ∧ Ωm−s+2 ≡ 0.

Then :
(i) There is a set of one-forms β1, . . . , βm, γ′

s, . . . , γ
′
m such that:

Ω =
s−1∑
i=1

γi ∧ βi +
m∑

j=s

γ′
j ∧ βj . (28)

(ii) The space of one-forms

Ms =
{
α | α ∧ γ1 ∧ . . . ∧ γs−1 ∧ Ωm−s+1 ≡ 0

}
is spanned by the γi, γ

′
j , β�, for 1 ≤ i < s ≤ j ≤ m, 1 ≤ � ≤ m, and so has

dimension 2m − s + 1.

Proof. We first assume (i) to prove (ii).
If (28) holds, since Ωm �= 0, the βi, γi and γ′

i must be linearly independent. The
system defining Js then becomes:

0 = α ∧ γ1 ∧ . . . ∧ γs−1 ∧
(

m∑
i=s

γ′
i ∧ βi

)m−s+1

= (m − s + 1)! α ∧ γ1 ∧ . . . ∧ γs−1 ∧ γ′
s ∧ βs ∧ . . . ∧ γ′

m ∧ βm
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We end up with:

Ms = Span
{
γi, γ

′
j , βj | 1 ≤ i ≤ s − 1, s ≤ j ≤ m

}
so that (ii) is proved.

Now to prove (i). This will be done by induction on s. For s = 1, we can take
βi = σi and γ′

i = σ′
i, so the lemma holds in this case.

Suppose (i) holds up to s = r; we wish to establish it for s = r +1. Let γ1, . . . , γr

be linearly independent one-forms satisfying

γ1 ∧ . . . ∧ γr ∧ Ωm−r+1 ≡ 0.

This means that γr belongs to Mr. Since (28) holds for s = r, we have seen that
γr then belongs to the linear span of the γi, γ

′
j , βj , for 1 ≤ i < r ≤ j ≤ m:

γr =
r−1∑
i=1

ciγi +
m∑

j=r

bjβj +
m∑

j=r

ajγ
′
j

At least one of the bj or aj must be non-zero. Suppose it is ar; the case where all
the aj vanish and br �= 0 would be treated in the same way. We may assume ar = 1.
Then:

γ′
r = γr −

r−1∑
i=1

ciγi −
m∑

j=r

bjβj −
m∑

j=r+1

ajγ
′
j (29)

Because (28) holds up for s = r, we have:

Ω =
r−1∑
i=1

γi ∧ βi +
m∑

j=r

γ′
j ∧ βj .

Replacing γ′
r in this expression by its value, taken from (29), we obtain:

Ω =
r−1∑
i=1

γi ∧ (βi − ciβr) + γr ∧ βr +
m∑

j=r+1

(γ′
i + bjβr) ∧ (βj − ajβr) (30)

Setting:

βi = βi − ciβr for 1 ≤ i ≤ r − 1
βr = βr

γ′
j = γ′

j + bjβr for r + 1 ≤ j ≤ m

βj = βj − ajβr for r + 1 ≤ j ≤ m,

we rewrite (30) as follows:

Ω =
r∑

i=1

γi ∧ βi +
m∑

j=r+1

γ′
j ∧ βj

so (28) holds for s = r + 1, and the lemma is proved.
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Proof of lemma 3(i). We show first that:

J� =
{
α | α ∧ α�−1 ∧ . . . ∧ α1 ∧ ω ∧ (dω)k−� ≡ 0

}
, (31)

has dimension 2k − �.
Recall that the α1, . . . , α�−1 and ω are linearly independent, and satisfy

α1 ∧ . . . ∧ α� ∧ ω ∧ (dω)k−�+1 ≡ 0. (32)

By lemma 2 , J� and the αi belong to I, and so is αi is a linear combination of
ω and the σj , σ

′
j . Thus we may write:

αi = biω + γi for 1 ≤ i ≤ � − 1 (33)

where γi is a linear combination of the σj , σ
′
j . Inserting (33) in (32), we obtain:

γ1 ∧ . . . ∧ γ�−1 ∧ ω ∧ (dω)k−�+1 ≡ 0. (34)

.
On the other hand, by relation (14), we have:

dω = ω ∧ β + Ω, with Ω =
k−1∑
i=1

σ� ∧ σ′
�

so equation (34) becomes:

γ1 ∧ . . . ∧ γ�−1 ∧ ω ∧ Ωk−�+1 ≡ 0. (35)

This implies:

γ�−1 ∧ . . . ∧ γ1 ∧ Ωk−�+1 ≡ 0 (36)

Indeed, the left-hand side is a k-form involving only the σj , σ
′
j , and if it did not

vanish, taking the wedge product with ω, which is linearly independent from the σj , σ
′
j

would contradict (35).
Consider any α in J�. We may write α = bω + α̂, where α̂ is a linear combination

of the σi, σ
′
i, and equation (31) implies:

α̂ ∧ γ1 ∧ . . . ∧ γ�−1 ∧ Ωk−� = 0

By lemma 5, with m = k−1, we see that the set of such α̂ has dimension 2k−�−1,
so J�, which is spanned by these α̂ and by ω, has dimension 2k − �.

Proof of lemma 3(ii). Suppose the two-form Θ satisfies the prescribed condi-
tion. Then:

Θ ∧ α1 ∧ . . . ∧ α�−1 ∧ ω ∧ Ωk−� ≡ 0.

Using (33), we get:

Θ ∧ γ1 ∧ . . . ∧ γ�−1 ∧ ω ∧ Ωk−� ≡ 0.

and the γ1, . . . , γ�−1 satisfy (36)
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By lemma 5 (i), with m = k − 1, there is a set of one-forms
β1, . . . , βk−1, γ

′
�, . . . , γ

′
k−1 such that:

Ω =
�−1∑
i=1

γi ∧ βi +
k−1∑
j=�

γ′
j ∧ βj ,

and hence:

Θ ∧ γ1 ∧ . . . ∧ γ�−1 ∧ ω ∧ γ′
� ∧ β� ∧ . . . ∧ γ′

k−1 ∧ βk−1 ≡ 0.

Set τ1 = ω, τ2 = γ1, τ� = γ�−1, τ�+1 = γ′
�, . . . , . . . , τk = γ′

k−1, τk+1 = β�, . . . ,
τ2k−� = βk−1. By lemma 5 (ii), they are all independent and span J�. Then the
preceding equation takes the form:

Θ ∧ τ1 ∧ . . . ∧ τ2k−� ≡ 0. (37)

The τi, together with n − (2k − �) forms τ ′
2k−�+1, . . . , τ

′
n, span all one-forms. We

may therefore write:

Θ =
2k−�∑
i=1

µi ∧ τi +
n∑

2k−�<i<j

f ijτ ′
i ∧ τ ′

j . (38)

It then follows from (37) that:

τ1 ∧ . . . ∧ τ2k−� ∧
n∑

2k−�<i<j

f ijτ ′
i ∧ τ ′

j . ≡ 0

which means that the f ij all are identically zero. Equation (38) then has the desired
form.
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<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


