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FINITE ELEMENT ANALYSIS OF TRANSIENT

ELETROMAGNETIC SCATTERING FROM 2D CAVITIES∗

TRI VAN† AND AIHUA WOOD‡

Abstract. We present a finite element method for the electromagnetic scattering from a 2-D
cavity embedded in the infinite ground plane. The problem is first discretized in time by the β, γ

Newmark time-marching scheme. The resulting semi-discrete problem is well-posed. Error analysis
of the fully discrete finite element formulation is performed. Stability criteria of the time-stepping
scheme are also established. Numerical experiments demonstrate the accuracy and stability of the
method.
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1. Introduction. It is well-known that one of the main difficulties in numerically
approximating solutions involving cavities is the appearance of spurious modes caused
by interior resonances. A variety of techniques have been developed to simulate the
scattering by cavities. They include high and low frequency methods [6, 11, 14],
the method of moments [21, 13, 22], and the time domain finite difference/element
methods [4, 10, 15]. These methods are limited to certain range of frequencies and/or
small/simple cavities. Recently, the hybrid finite element-boundary integral methods
have gained increasing popularity for their ability to model large and complex cavities
[8, 9, 12]. It is observed that many of the findings reported in the engineering literature
regarding scattering from cavities are experimental in nature and hence often give rise
to disputes (for example, explanation of interior resonances). Partial mathematical
research in this area is found in [3, 1, 2, 19] (frequency domain), and [17, 20, 18]
(time-domain).

This paper aims to provide a thorough treatment of two-dimensional cavity-
backed transient electromagnetic scattering problems. We show the method is math-
ematically rigorous and numerically accurate and stable. In [18] we showed the semi-
discrete problem in time and its corresponding variational formulation are well-posed.
Experiments for homogeneous cavity media were performed that reflect the accuracy
and stability of the scheme. Here, we further provide finite element error analysis for
the fully discrete problem. Stability criteria for the resulting hybrid formulation are
also obtained. In addition, numerical experiments for layered cavities are performed
and they again demonstrate the accuracy and stability of the method.

Let the cavity embedded in an infinite ground plane be denoted Ω that is a
bounded Lipschitz continuous region in R

2:

Ω ⊂ {r = (x, y) ∈ R
2 : y < 0}, Ω̄ ∩ {r = (x, y) ∈ R

2 : y = 0} 6= ∅ .

Let S be the cavity walls, Γ the cavity aperture, Γc = {r = (x, y) ∈ R
2 : y = 0} \ Γ,

and U = {r = (x, y) : y > 0} the upper half plane. The ground plane is perfectly
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Fig. 1. Cavity setting

electric conducting (PEC). Ω is either empty with εr = ε0 = 1 or filled with material
whose relative permittivity is εr > 1, see Figure 1. We assume all media are non-
magnetic, hence µr = µ0 = 1. Given an electromagnetic field (Ei,Hi) incident on the
cavity Ω, we wish to determine the total fields E = E

s+E
i+E

r, H = H
s+H

i+H
r,

where (Es, H
s) and (Er, H

r) are the scatterred and reflected fields, respectively.
In this paper we shall present the analysis for the transverse magnetic (TM)

polarization only for brevity, but numerical results for both TM and TE will be
provided.

In the TM case, the fields are of the form

(1.1) E = (0, 0, Ez) = (0, 0, u) and H = (Hx, Hy, 0).

For demonstration purposes, we consider the following two types of incident fields
E
i(t, r): time-harmonic plane wave and Gaussian plane wave polarizing in the z-

direction and propagating in the direction k = (− cos θi,− sin θi), 0 ≤ θi ≤ π. Specif-
ically, we consider E

i = (0, 0, ui), where

(1.2) ui(t, r) =







E0Re{eiω0r·keiω0t} (time-harmonic),

E0
4

σ
√
π

exp

{

−
[4(t− t0 − r · k)

σ

]2
}

(Gaussian).

The associated reflected field Er is

(1.3) ur(t, r) =







−E0Re{eiω0r·k
∗

eiω0t} (time-harmonic),

−E0
4

σ
√
π

exp

{

−
[4(t− t0 − r · k∗)

σ

]2
}

(Gaussian),
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where k
∗ = (− cos θi, sin θi), σ is the width of the Gaussian pulse measuring its

temporal duration, and E0 is the initial field amplitude. The speed of light c is
normalized to 1. By Maxwell’s equations, the total field E = (0, 0, u) satisfies the
following problem:

(1.4)











−∆u+ εr
∂2u

∂t2
= 0 in Ω × (0, T ),

u = ui + ur + us on Γ × (0, T ),
u = 0 on S ∪ Γc × (0, T ),

with the initial conditions

u(0, r) = u0(r),
∂u

∂t
(0, r) = u1(r).

The scattered field is defined in the upper half plane and satisfies

(1.5)







−∆us +
∂2us

∂t2
= 0 in U × (0, T ),

us = 0 on Γc × (0, T ),

and the radiation condition

(1.6) lim
r→∞

r

(

∂

∂r
+
∂

∂t

)

us(t, r) = 0, r = |r| .

The magnetic field H is found in terms of the electric field E by Maxwell’s equations.
The paper is organized as follows. In Section 2, we discretize the equations in

time by the Newmark time-stepping scheme to obtain semi-discrete problems defined
in an infinite domain. At each time step we construct an exact nonlocal boundary
operator on the cavity aperture to couple the fields in the exterior of the cavity to
those inside. This coupling enables the semi-discrete problem to be reduced to the
minimal region: the cavity itself, where finite elements are applied to approximate
the solutions. We prove that at each time step the weak formulation has a unique
solution. The problem is fully discretized and its finite element error analysis pre-
sented in Section 3. In Section 4, stability criteria for the time-stepping scheme are
derived. Numerical experiments that show the accuracy and temporal stability of the
Newmark-finite element scheme are performed in Section 5.

2. Semi-discrete problem. Let N > 0 be a positive integer, and ∆t = T/N be
the constant time step. For each n = 0, 1, . . . ,N , un(x) and u̇n(x) denote the temporal

approximations of u(r, tn) and
∂u

∂t
(r, tn) where tn = n∆t, and r = (x, y) ∈ R

2. We

express the Newmark scheme in the following predictor-corrector form:

Prediction:

ũn+1 = un + ∆tu̇n +
(∆t)2

2
(1 − 2β)ün,(2.1)

˜̇un+1 = u̇n + ∆t(1 − γ)ün.(2.2)

Solution:

−∆un+1 + α2εru
n+1 = α2εrũ

n+1 in Ω,(2.3)

un+1 = 0 on S,

un+1 = us,n+1 on Γ,
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since ui + ur = 0 on Γ.
Correction:

ün+1 = α2(un+1 − ũn+1),(2.4)

u̇n+1 = ˜̇un+1 + ∆tγün+1,(2.5)

where α2 =
1

∆t2β
.

The scattered field us,n+1 satisfies

(2.6)







−∆us,n+1 + α2us,n+1 = α2ũs,n+1 in U ,
us,n+1 = g on Γ,
us,n+1 = 0 on Γc,

where g := un+1 on Γ. Note that εr = 1 in U .
We refer (2.6) as the exterior (to the cavity) problem, which we show next can

be solved analytically.

Lemma 2.1. Given g ∈ H1/2(Γ), Problem (2.6) has a unique solution

(2.7)

us,n+1(r) = α2

∫ ∞

0

∫ ∞

−∞

Gα(r, r′)ũs,n+1(r′) dr′

+
1

π

∫

Γ

∂

∂y
K0(α|r − x′x̂|)g(x′)dx′,

where K0 is the modified Bessel function of the second kind of order 0, and

Gα(r, r′) =
1

2π

{

K0 (α|r − r
′|) −K0 (α|r − r

′
i|)

}

,

where |r − r
′| =

√

(x′ − x)2 + (y′ − y)2, and |r − r
′
i| =

√

(x′ − x)2 + (y′ + y)2.

Proof. We observe that the modified Green function Gα satisfies the Dirichlet
problem [7],

{ −∆Gα(r, r′) + α2Gα(r, r′) = δ(r − r
′) in U ,

Gα = 0 on {y′ = 0} or {y = 0} .

Hence, the solution us,n+1 to (2.6) can be expressed as

us,n+1(r) = α2

∫

U

Gα(r, r′)ũs,n+1(r′) dr′ −
∫

Γ

∂Gα
∂n′

(r, x′x̂)g(x′)dx′

= α2

∫ ∞

0

∫ ∞

−∞

Gα(r, r′)ũs,n+1(r′) dr′ −
∫

Γ

∂Gα
∂y′

(r;x′x̂)g(x′)dx′,

for r ∈ U . Direct computations yield

∂Gα
∂y′

(r, x̂x′) =
1

2π

[

αK ′
0(α|r − x′x̂|) −y

|r − xx̂| − αK ′
0(α|r − x′x̂|) y

|r − xx̂|

]

= −α
π
K ′

0(α|r − x′x̂|) y

|r − xx̂|

= − 1

π

∂

∂y
K0(α|r − x′x̂|) .(2.8)
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Taking the partial derivative of us,n+1 with respect to y gives

∂us,n+1(r)

∂y
= α2

∫ ∞

0

∫ ∞

−∞

∂Gα
∂y

(r, r′)ũs,n+1(r′)dr′ +
1

π

∫

Γ

∂2

∂y2
K0(α|r − x′x̂|)g(x′)dx′.

Noting that
∂2

∂y2
K0(α|r − x′x̂|) =

∂2

∂y2
K0(α|x − x′|) if y = 0, we get, as y → 0,

∂us,n+1

∂y
|y=0 = α2

∫ ∞

0

∫ ∞

−∞

∂Gα
∂y

(x, 0; r′)ũs,n+1(r′)dr′ +
1

π

∫

Γ

∂2

∂y2
K0(α|x − x′|)g(x′)dx′

≡ H̃n+1(x) + Tg(x),

where

(2.9) H̃n+1(x) := α2

∫ ∞

0

∫ ∞

−∞

∂Gα
∂y

(x, 0; r′)ũs,n+1(r′)dr′,

and T : H1/2(Γ) → H−1/2(Γ) is defined as

(2.10) Tg(x) =
1

π

∫

Γ

∂2

∂y2
K0(α|x− x′|)g(x′)dx′ .

Since

∂2

∂y2
K0(α|x − x′|) = [K ′′

0

y2

|r|2 +K ′
0(

1

|r| −
y2

|r|3 )]|y=0 = K ′
0

1

|x| = −K1
1

|x| ≤ 0,

it is clear that 〈Tu, u〉 ≤ 0, ∀u.
Lemma 2.2. The operator T : H1/2(Γ) → H−1/2(Γ) defined in (2.10) is bounded

and non-positive.

Remark 2.3. The operator T is actually a pseudodifferential operator of order
one and hence is bounded. The proof of the lemma is rather technical and is omitted
here for brevity. Interested readers are referred to [16].

The boundary operator T will be used to couple the total field in the infinite
homogeneous upper half plane U to the total field in the bounded domain Ω. Indeed,
since

∂un+1

∂y
=
∂uinc,n+1

∂y
+
∂uref,n+1

∂y
+
∂us,n+1

∂y

=
∂uinc,n+1

∂y
+
∂uref,n+1

∂y
+ H̃n+1 + Tus,n+1

= 2
∂uinc,n+1

∂y
+ H̃n+1 + Tun+1 on Γ,

the boundary value problem (2.3) can be rewritten as

(2.11)

−∆un+1 + α2εru
n+1 = α2εrũ

n+1 in Ω,

un+1 = 0 on S,

∂un+1

∂y
= 2

∂uinc,n+1

∂y
+ H̃n+1 + Tun+1 on Γ.
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Let V = {v ∈ H1(Ω) : u = 0 on S}. The variational problem associated with
(2.11) is then

(2.12) b(un+1, v) = Fn+1(v), ∀v ∈ V,

where

b(u, v) = (∇u,∇v) + α2(εru, v) − 〈Tu, v〉Γ ,

Fn+1(v) = α2(εrũ
n+1, v) + 〈H̃n+1, v〉Γ + 2〈∂u

inc,n+1

∂y
, v〉Γ.

Theorem 2.4. The variational problem (2.12) has a unique solution in V .

Proof. Since T is bounded, |b(u, v)| ≤ C‖u‖1‖v‖1 for some C > 0. Since T is non-
positive, b(u, u) ≥ C∗‖u‖2

1 for some C∗ > 0. Hence a unique solution is guaranteed
by Lax-Milgram theorem.

3. Finite element error analysis. Assume that Ω is covered by a family of
quasi-uniform triangular mesh τh where h is the mesh size, that is,

h = max
K∈τh

hK ,

where hK is the diameter of the element K ∈ τh.

We consider the finite dimensional subspace

Vh = {vh ∈ H1(Ω) : vh|K is linear ,K ∈ τh}.

We note that Vh is closed in V and Vh → V as h → 0. The fully-discrete problem is
to find unh ∈ Vh, n = 1, 2, . . . ,N , such that

(3.1) b(unh, vh) = Fn(vh), ∀vh ∈ Vh,

where b(unh, vh) and Fn(vh) are as defined in (2.12). We recall that the bilinear form
b is coercive and continuous. Hence by Céa’s lemma [5], the fully-discrete problem
(3.1) has a unique solution unh ∈ Vh and

(3.2) ‖un − unh‖V ≤ C inf
vh∈Vh

‖un − vh‖V .

Since εr is discontinuous in Ω, the solution un /∈ H2(Ω). Hence the inequality (3.2)
does not yield a convergence rate in terms of h. In fact, since Vh → V , for any ǫ > 0,
there is an h0 = h0(ǫ, u

n), such that for 0 < h < h0, there exists vh ∈ Vh satisfying

‖un − vh‖V ≤ ǫ.

By (3.2), we have

‖un − unh‖V ≤ Cǫ ∀h < h0(ǫ, u
n).

Thus, the finite element solution unh converges to un in V but not necessarily uniformly.
We have the following result.
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Theorem 3.1. Let un ∈ V and unh ∈ Vh be the solutions to (2.12) and (3.1),
respectively, for Fn ∈ V ′. Then given ǫ > 0, there is an h0 = h0(ǫ), such that for all
0 < h < h0 we have

(3.3) ‖un − unh‖L2(Ω) ≤ ǫ‖un − unh‖V .

Furthermore, if εr ∈ L∞(Ω), hence εrũ
n ∈ L2(Ω), then there exists an h1 = h1(ǫ) > 0,

such that for all 0 < h < h1 we have

(3.4) ‖un − unh‖V ≤ Cǫ‖Fn‖L2(Ω),

where C is a positive constant independent of h. Consequently, we have

‖un − unh‖L2(Ω) ≤ Cǫ2‖Fn‖L2(Ω).

We first consider the following lemma.

Lemma 3.2. Let Λ be the set of solutions w ∈ V to

(3.5) b(w, v) = (ψ, v) for all v ∈ V,

where ‖ψ‖L2(Ω) = 1. Then Λ is compact in V .

Proof. Since w ∈ V is the solution to (3.5), it satisfies

‖w‖V ≤ C‖ψ‖L2(Ω).

Thus, the solution mapping G : ψ → Gψ = w is continuous from the dual space V ′ to
V ⊂ H1(Ω). Furthermore, the embedding, I : L2(Ω) ⊂ V ′, is compact. This implies
that Λ ⊂ G ◦ I({ψ ∈ L2(Ω) : ‖ψ‖L2(Ω) = 1}) is compact in V .

We now prove the theorem.

Proof. By viewing un − unh as a linear functional in L2(Ω), we have

‖un − unh‖L2(Ω) = sup
‖ψ‖

L2(Ω)=1

(un − unh, ψ).

Let w ∈ V be the solution to

b(v, η) = (ψ, η) for all η ∈ V.

Then

‖w‖V ≤ C‖ψ‖L2(Ω).

Thus, for vh ∈ Vh, by the boundedness of the bilinear form b(·, ·) we have

|(un − unh, ψ)| = |b(un − unh, w)| = |b(un − unh, w − vh)|
≤ C‖un − unh‖V ‖w − vh‖V .

By the density property of Vh in V , we can choose vh such that ‖w− vh‖V ≤ ǫ‖w‖V .
We then obtain

|(un − unh, ψ)| ≤ Cǫ‖un − unh‖V ‖w‖V ≤ Cǫ‖un − unh‖V ‖ψ‖L2(Ω).
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Thus,

‖un − unh‖L2(Ω) ≤ Cǫ‖un − unh‖V .

This proves the estimate (3.3).

Next, we set

F̂n =
Fn

‖Fn‖L2(Ω)
, ûn =

un

‖Fn‖L2(Ω)
, ûnh =

unh
‖Fn‖L2(Ω)

.

Then, we have

b(ûn, v) = F̂n(v), ∀v ∈ V,

b(ûnh, vh) = F̂n(vh), ∀vh ∈ V.

By Céa’s Lemma,

‖ûn − ûnh‖V ≤ C inf
vh∈Vh

‖ûn − vh‖V .

Since the set Λ̂ = {ûn : b(ûn, φ) = F̂n(φ), ‖F̂n‖L2(Ω) = 1} is compact in V , we have,
for 0 < h < h0(ǫ),

inf
vh∈Vh

‖ûn − vh‖V ≤ ǫ.

Thus,

‖ûn − ûnh‖V ≤ Cǫ,

which implies that

‖un − unh‖V ≤ Cǫ‖Fn‖L2(Ω).

This completes the proof.

4. Stability analysis. For stability analysis, we express the Newmark scheme
in a three-step formulation. We start with

−∆un+2 + α2εru
n+2 = α2εrũ

n+2

= α2εr

[

un+1 + ∆tu̇n+1 +
∆t2

2
(1 − 2β)ün+1

]

.

By using (2.1)-(2.5) recursively, we obtain

−β∆un+2 − (1
2 − 2β + γ)∆un+1 − (1

2 + β − γ)∆un

+βα2εr(u
n+2 − 2un+1 + un) = 0.

Adapting unh for un ∈ Vh, we have the following variational form of the above equation

(4.1)

1
∆t2 (εr(u

n+2
h − 2un+1

h + unh), vh) + a(βun+2
h + (1

2 − 2β + γ)un+1
h

+(1
2 + β − γ)unh, vh)

= βGn+2(vh) + (1
2 − 2β + γ)Gn+1(vh) + (1

2 + β − γ)Gn(vh)
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∀vh ∈ Vh, where

a(uh, vh) =

∫

Ω

∇uh · ∇vh −
∫

Γ

T (uh)vh,

and

Gn(vh) =

∫

Γ

2
∂ui

∂y
vh.

Consider the eigenvalue problem

(4.2) a(wh, vh) = λh(wh, vh), ∀vh ∈ Vh.

Since a(u, v) is linear, symmetric, and bounded, (4.2) has positive eigenvalues and
corresponding orthonormal eigenvectors:

0 < λh,1 ≤ λh,2 ≤ . . . ≤ λh,M ,

wh,1, wh,2, . . . , wh,M ,

where dimVh = M . Without confusion, we write wi = wh,i and λi = λh,i. Substitut-
ing wi for vh in (4.1), noting that

a(unh, wi) = a(wi, u
n
h) = λi(wi, u

n
h) = λi(u

n
h, wi),

yields

(4.3)

1
∆t2 (εr(u

n+2 − 2un+1 + unh), wi)

+λi(βu
n+1
h + (1

2 − 2β + γ)un+1
h + (1

2 + β − γ)unh, wi)

= βGn+2(wi) + (1
2 − 2β + γ)Gn+1(wi) + (1

2 + β − γ)Gn(wi)

≡ Ψn,

where Ψn is independent of u-terms.

For stability analysis, we need only consider the corresponding homogeneous equa-
tion, where Ψn = 0. It is also true that εr can be considered a constant and hence
without loss of generality, let εr = 1. Indeed, for 1 < εr ∈ L∞(Ω), we may consider
the space L2(Ω, εr) with the weighted inner product

(u, v)εr
= (εru, v) = (u, εrv).

Then the corresponding eigenvalue problem

(4.4) a(uh, vh) = λh(uh, vh)εr
∀vh ∈ Vh,

has similar properties as that of (4.2), namely (4.4) has positive eigenvalues λi and
corresponding orthonormal eigenvectors wi, i = 1, 2, . . . ,M , such that

(wi, wj)εr
= δij .

Hence we may consider (4.3) with ǫr = 1 and Ψn = 0. By substituting unh =
∑M

i=1 u
n
i wh,i into (4.3), we obtain, for i = 1, 2, . . . ,M ,

(4.5)
1

∆t2
(un+2
i − 2un+1

i +uni )+λi(βu
n+2
i +(

1

2
− 2β+ γ)un+1

i +(
1

2
+β− γ)uni ) = 0,
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that is,

un+2
i =

2
∆t2 − λi(

1
2 − 2β + γ)

1
∆t2 + λiβ

un+1
i −

1
∆t2 + λi(

1
2 + β − γ)

1
∆t2 + λiβ

uni

≡ ηun+1
i − κuni .

Thus, (4.5) can be written in a matrix form as
(

un+2
i

un+1
i

)

=

(

η −κ
1 0

) (

un+1
i

uni

)

≡ B

(

un+1
i

uni

)

.

By denoting Xn
i =

(

un+1
i

uni

)

, for n = 1, 2, . . . , N , i = 1, 2, . . . ,M , we obtain the

recursive relation

Xn+1
i = B(λi)X

n
i ,

or equivalently,

(4.6) Xn+1
i = BnX0

i .

For stability analysis we wish to establish conditions on β, γ, and ∆t such that
|Xn

i | = (|un+1
i |2 + |uni |2)1/2 for all i, and hence |un| = (

∑M
i=1 |uni |2)1/2, is bounded

independent of n.

We observe that, if B is diagonalizable with the spectral radius ρ(B) ≤ 1, then

|Xn| = |BnX0| ≤ ‖G−1‖ρn(B)‖G‖|X0| ≤ C,

for some matrix G. For simplicity, we seek conditions on β, γ, and ∆t such that B
has distinct eigenvalues (hence, diagonalizable) of lengths less than or equal to 1.

We shall assume that β ≥ 0. We consider the characteristic equation of B

det(µI −B) = µ2 − µη + κ = 0.

The solutions µ1, µ2 are

µ1,2 =
η ±

√

η2 − 4κ

2
.

We consider the following two cases.

Case 1: Suppose ∆ = η2 − 4κ < 0. Then µ1 = µ̄2 and |µ1| = |µ2| =
√
κ. Thus,

we require κ ≤ 1 which implies that γ ≥ 1
2 . We have

∆ = [2 − λi∆t
2(

1

2
− 2β + γ)]2 − 4(1 + λi∆t

2β)[1 + λi∆t
2(

1

2
+ β − γ)] < 0,

which is

−4λi∆t
2 + (λi∆t

2)2[(1 + γ)2 − 4β] < 0,

or equivalently,

1

4
(
1

2
+ γ)2 − β <

1

λi∆t2
, ∀i = 1, 2, . . . ,M.
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Case 2: Suppose ∆ > 0, that is,

(4.7)
1

4
(
1

2
+ γ)2 − β >

1

λi∆t2
, ∀i = 1, 2, . . . ,M.

Without loss of generality, µ1 < µ2. Let

−1 ≤ µ1 =
η

2
−

√
∆

2
<
η

2
+

√
∆

2
= µ2 ≤ 1.

The inequality µ1 ≥ −1 implies 1 + η + κ ≥ 0, or

(4.8)
γ

2
− β ≤ 1

λi∆t2
.

µ2 ≤ 1 implies 1 − η + κ ≥ 0. So we require κ ≥ −1, which implies

(4.9)
1

2
(γ − 1

2
− 2β) ≤ 1

λi∆t2
.

By combining (4.8) and (4.9), we have

(4.10)
γ

2
− β − 1

4
≤ 1

λi∆t2
.

However, the inequalities (4.7) and (4.10) are inconsistent, so we ignore Case 2.

Thus, Xn = BnX0 is stable if

(4.11) γ ≥ 1

2
and

1

4
(
1

2
+ γ)2 − β <

1

λi∆t2
, i = 1, 2, . . . ,M.

We summarize the above analysis in the following theorem.

Theorem 4.1. The Newmark scheme for the TM variational problem is stable if
γ ≥ 1

2 , β ≥ 0, and

(4.12)
1

4
(
1

2
+ γ)2 − β <

1

λi∆t2
, i = 1, 2, . . . ,M,

where λh,i are the eigenvalues of a(w, vh) = λh(w, vh), ∀vh ∈ Vh.

Remark 4.2. In Theorem 4.1, the time-marching scheme is unconditionally
stable if

γ ≥ 1

2
, and β ≥ 1

4
(
1

2
+ γ)2,

in which case (4.12) holds for all ∆t > 0.

5. Numerical results. For numerical experiments, let Ω be the rectangular
cavity of dimension 1m×0.25m as in Figure 3. We consider two types of excitations:
continuous wave and Gaussian pulse. The cavity is covered by a uniform mesh of
triangles so that there are 20 nodes on the longer sides and 5 nodes on the shorter
ones. We set

∆t = 1/20, γ = .9, β = .25(.5 + γ)2.

We start the time-marching procedure at t = 0.
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Fig. 2. Rectangular cavity Ω of dimension 1 m× .25 m

5.1. Incident continuous wave. In this example, the cavity is empty and the
incident field is of the form

ui = Re
{

eik0(x cos θi+y sin θi)eik0t
}

,

where k0 = 2π/λ is the wave number and θi = π/2. For a given λ, the steady-state so-
lution follows a basic pattern of the time-harmonic excitation after a number of cycles.
Figure 3 shows the RCS obtained by the time-domain finite element method (TD-
FEM) compared to that by the frequency-domain finite element method (FDFEM),
[19], for λ = 1 meter (300 MHz), and λ = 1.5625 meter (468.75 MHz), respectively.
The results agree well.
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Fig. 3. RCS for εr = 1.

5.2. Incident Gaussian pulse. We consider the Gaussian pulse represented by

(5.1) ui(x, y, t) =
4

T
√
π
e−τ

2

,

where

τ =
4(t− t0 + x cos θi + y sin θi)

T
, θi ∈ [π/2, π].
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In what follows, we set θi = π/2, T = 2, and t0 = 3. This means that the Gaussian
pulse will reach its maximum at the origin (0, 0) at t0 = 3. Figure 4 are contour plots
of the TM and TE solutions for an empty cavity. In particular, Figure 4 (a) is a snap
shot of the TM fields at t = 4.025 and Figure 4(b) is that of the TE fields at t = 2.025.
No spurious modes are present. Both manifest the expected stability.
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Fig. 4. Solutions on Ω for εr = 1.

We next consider layered cavities. TM solutions are plotted in Figure 5 for a Left-
Right filled cavity, and Figure 6 shows the TE solutions of a Top-Bottom filled cavity.
In each case, we plot TM and TE solutions at the center of the cavity opening (0, 0)
and at an interior point. Solutions oscillate in the early time and then exponentially
decay, clearly showing the expected stability. LM in the plots denotes light-meter,
i.e., the amount of time for light to travel 1m in free space.
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Fig. 5. TM Solution: Left-Right filled with εlf = 1, εrt = 4

6. Conclusion. We have presented a two-dimensional hybrid FETD/TDIE
method for analyzing transient electromagnetic scattering from inhomogeneous cavi-
ties embedded in the infinite ground plane. The method is shown to lead to a well-
posed discrete problem. Finite element error estimates in both the H1 and L2 norms
are obtained. Stability criteria for the time-marching scheme are also established.
The method is fully implemented and numerical results for both filled and unfilled
cavities show the accuracy and stability of the scheme.
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