METHODS AND APPLICATIONS OF ANALYSIS. (© 2004 International Press
Vol. 11, No. 1, pp. 069076, March 2004 006

DARBOUX EQUATIONS IN EXTERIOR DOMAINS *

SAOUSSEN KALLEL-JALLOULIY

Abstract. We give sufficient conditions ensuring existence and regularity of a radial solution to
the following equation

det (¢s5) = F (|z], ¢, [V¢]),in Q
Plaa =c

when 2 is an exterior domain.

1. Introduction. In this work, we consider the Dirichlet problem for real
Monge-Ampere equations in exterior domains. More precisely, let B C R™ be an
open ball, centered at the origin, that can be supposed, without loss of generality, to
be the unit ball . Our purpose is to establish the existence of radial, convex solution
u € C? (R™\ B) of radially symmetric Monge-Ampere equation

det (¢s;) = F' (|z],,|Ve]), in R" B
{ (¢i5) = F (|z], ¢,|V]) \ 0

o = ¢

where F' is a nonnegative continuous function. As usual, |z| denotes the Euclidean
length of = (1, ...,x,) and n is (all over this paper) the dimension of our Euclidean
space. Additional hypothesis on F' are described in §2.

When € is a strictly convex domain, this problem has received considerable study.
Not many results are known about the solutions in unbounded domains. In the case
when F' > 0, F.Finster and O.C. Schniirer [2] proved the existence of smooth, strictly
convex solution to (1) under some restrictions on F. We can also cite the work of T.
Kusano and Ch.A. Swanson [3] related to radially symmetric two-dimensional elliptic
Monge-Ampere equations.

Our attention will be directed toward the construction of radial solutions u (x) =
u (t) of (1), t = |x|. Direct computation (see [1]), shows that solving the equation (1)
in C? is equivalent to solving the ordinary differential equation

{ ()] =t F (ty,y), ift>1 )
y(1)=c
Without loss of generality, we can take ¢ = 0.

If we take as initial condition 3’ (1) = 0, we can easily transform (2) into the
following integro-differential equation

v = [ [ [ R o) ) " 3)

1
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EXAMPLE. Let F(r) = (r—1)""""°71"" with ¢ > 0 small enough. Then,

1

w(r) = [n" }7 (r—1)'7 7. In this case F € C°, but u ¢ C2.

—&

This example shows that even when F depends only on r, it may not yield a C?
solution, if F' is allowed to vanish in the domain. This implies that we should place
some restrictions on F.

Throughout this work, F' satisfies some hypothesis be selected from the following
list:

H1 :

1() F)(t, Yy, z) is a nonincreasing function with respect to both y and z for each fixed
(t,z) and (t,y), respectively.

i) [ F (1,0,0) dt < 400

(Hs): F (t,y,2) < Cot ™" |y|” |2|’, with 8> 0, @ > 3, 0 > 0 and Cp < &L if
B+6=n.

(H3):

i) F (t,y,z) is a nondecreasing function with respect to both y and z for each
fixed (¢, z) and (¢,y), respectively.

ii) There exists a constant a > 0 such that

+oo
/ nt" " YF (t, (t —1)a,a)dt < a"
1
(Hy): F(t,y,z) = (t—1)" F(t,y,2), with F(1,9,0) # 0, fory > 0,1 > n — 1,
F € C°.

An example of a Monge-Ampere equation satisfying (Hs) is the Gauss curvature
equation

9 é
det (ui;) = p (|z]) w? (1—|—|Vu| ) , z€R'\B

ugp =1
with v,0 > 0, 26 + v < n and p is a non-négative function satisfying:

+oo
/ t" Ty (t) dt < 400
1

In the following, F is used as introduced in (Hy4). We shall prove

THEOREM A. If (Hy) and either (Hy), (Hz) or (Hs) holds, equation (1) has an

infinitude of radial convex solutions u € C? such that “Z) has a positive finite limit

[
at oo.

THEOREM B. If we suppose, in addition to the hypothesis of Theorem A, that

FeC*((R™\ B) x R?) (4)

and
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1 1
eN or l%zkjtl (5)

either

then the solutions given by theorem A are in C**2

2. Proof of theorem A. To prove the existence of a radially symmetric convex
solution to the problem (1), we need to introduce the Frechet space C! of all contin-
uously differentiable functions in [1,4+o00[, with the topology of uniform convergence
of functions and their first derivatives on compact intervals. Consider now the closed
convex subset Cr of C!

Kr={yeC'|y(1)=0,0<y () <R} (6)

and the operator T : Kr —C' defined by

)0 = [ | [ oo o)) gz )

In order to prove that T has a fixed point y € Kg , we need to verify that 7" maps
K r continuously into a relatively compact subset of Kg .
If y € Kr, (7) implies that T'(y) (1) = 0 and

0< (Ty) (r) = [/TntnIF(tvy(t)vy,(t))dt:|7lL

1

We shall need to verify that we can find a constant R > 0 such that

n

|/ e (s (5) (nds| < weKs ®)

* If F satisfies (H1), we can write using (H1) (),

(T < [/ ns" 1 (5,0,0) ds} TIL

1

by (Hi) (%), it suffices then to take

1

“+o00 n
R= [n/ s"1F (5,0,0) ds}
1

and we get
(Ty) (r) < R
* When F satisfies (Hz), then, since
y(r) =[] v (t)dt,
we get by (6),
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ly (M <(r-1R,

S0,

1 1
r » »
(Ty) (r) < [/ nCos™ (s —1)° Rm'eds} < (a r 50()) R
L _

In order to get (8), it suffices to take R small enough when (8+60) > n, big
enough when (8 + 60) < n. In the case when 8+ 6 = n and Cy < a—;ﬁ, any positive
constant R lead to

(Ty) (r) <R
* Finally, if F satisfies (Hs), then, assumption (Hs) (i) shows that
1
(Ty) (r) < Uf ns" 1F (s,(s—1)R,R) ds]
it suffices then to take R = a to ensure by (Hs) (i7) the inequality (8).

lim y, =
k——+oo

y € C' in the C'-topology. By the dominated convergence theorem, we have then

To establish the continuity of T, let (yx) be a sequence in Kpr with

T

T
Jim [ s U (s (9, () ds = [ ns" T sy (s). o (5) ds

uniformly on [1, +oo[, from which Ty, and (Tyx)" converge uniformly to Ty and
(Ty)', respectively, on compact intervals in [1,+oo[. this means that Ty, converges
to Ty in the C'-topology.

The relative compactness of T (Kr) is a consequence of Ascoli’s Theorem; we
need only verify the local uniform boundedness and local equicontinuity of the sets
T (Kgr) and T (Kg)' = {(Ty)/, y € Kgr}.

Let us denote G (£) = nF (t,u (t),u/ (t)) and G (t) = nF (t,u (t),u' ().

1
For every y € Kp, 1 < t; < t, the inequality aw — bw < (a—b)™, true for

a > b >0, implies

1

(T) () = (Ty) (1) = ([P Ga)” = ([ em6w dt)%

< ( G (1) dt);
* If F satisfies (H7), then
G (t) <nF(t,0,0)

and )

(Ty)' (t2) = (Ty)' (t2) < (2 nt""LF (1,0,0)dt) " — 0, as 1tz — o
* If F satisfies (H2), then,

1
(Ty) (tz) — (Ty) (1) < ( U nCotm e (t —1)° R5+9dt>
’l
< Cl ( :12 tﬁ_a_ldt> ! - 0, as f,l,tg — 00
* Finally, when F' satisfies (Hs) , then by (i), since R = a,
G(t) <nF(t(t—1)a,a)
and
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1

(Ty) (t2) — (Ty) (t) < ( 2 1F (1, (t - 1)a, a) dt) " 50, a8 gty — 00

Then, in all these cases, for any compact interval I in [1, +00[ and arbitrary € > 0,
there is a corresponding § > 0, independent of ¢1,ts and y € Kg, such that

|(Ty) (t2) — (Ty)' ()] <

for all ti,ta €1 with |f,1 — t2| < 4.

The local equicontinuity of T' (Kg) can be verified in the same way, and the local
uniform boundedness is obvious.

Therefore the Schauder-Tychonoft fixed point theorem ([5]; lemma 1 and [6];
Theorem 4.5.1.) implies that T has a fixed point u € Kg, satisfying the integro-
differential equation (3) for any R such that (8) holds. It remains to prove that
u € ClL.

For ¢t > 1, we have

n

vo=|[ (s 1) G () s

Since é(l) # 0, then v’ € C' |1, +o0[ and
W () = (- 1) G (1) [ff s (s — 1) G (s) ds}

1
=1

11

n

— (=) LG @) [fol [(t—1)s+1]" "G ((t—1)s+ 1)ds}
which gives
0, ifl>n-—1

lim u” (t) = 19

=1 [HLJ TG ifl=n—1
Hence, u € C?[1, +oc[. It is not to be noted that u is a solution of (1) satisfying

u(l)=0and u' (1) =0.

Furthermore, the relation (3) and the inequality (8) imply that the limit

n

im O = ) = [/lm ns"1F (s, (s) 1 (5)) ds

is positive and finite, proving the asymptotic property in theorem A.
Since any non-negative constant b will serve as initial value ¢’ (1) = b, there exists
an infinitude of radial convex solutions to our problem.

3. Proof of theorem B. In this section, we study the regularity of the solution
u given by theorem A. To prove the C**2 regularity of u, let us proceed by induction
on k € N. For k = 0, we have established in section 2, that u € C?. Suppose that

FeCF!=ue k!

for some fixed k > 1. Assume now that F € C*. It follows in particular that
u € Ck*1. Hence, from the integral formula (7) and the hypothesis (Hy), we get
u € C**2(]1, +o0]). It remains to check the regularity of u at the boundary ¢ = 1.

The following preliminary result will be needed

LEMMA ([4] corollary 4.2). The k' derivative of g7, can be written as a sum of
terms of the form

9= P (99", g TIY)
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where Pj is a monomial of degree A < k and of weighted degree k.

Now, using the notation

H, (t) = / = s G (- 1) s+ 1)ds, (9)
0
we can write

i+

W () = (t—1)" Hy (t)

where, by the induction hypothesis, H, € C*. Then,

wlk D) () = ij ( f ) [(t — 1)1%’}@ (Hj)uH) (t)

i=0
furthermore, applying the above lemma, we get the following
NGO b / +1-0\ | 1gm—lgO®
(HJ) - ;ciHﬁL P (Hua ey Hy ) + HH“” Ha?, Vi< k
Since, Vj < k,

1
0

i ] 1\ =9 ~— (4)
(H)D (1) = e [(t—1)s+1""" s, (t—1)s+1)ds
i=0 / ( )

it suffices then to prove that

F) =@E—1)" hp e C (1,400

where hy (t) = [ [(t— 1) s+ 1" s#*@, " (£ — 1) s+ 1) ds.
Differentiating f, yields

VEs 1 () =(t—1)" " {t"‘la(k) (t) + chy (t)}

which implies
0 ifl>n-—1
lim () ={
r—1F Gu( ) (1) [1 + cfol s”kds}, ifl=n-1

Consequently, f € C! ([1,4+oc[) . Which completes the proof of theorem B.
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