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LOCAL TIME DECAY FOR A NONLINEAR BEAM EQUATION ∗

J. E. LIN†

Abstract. Using the Morawetz’ Radial Identity, we show that the local energy of a solution
is integrable in time and the local L2 norm of the solution approaches zero as time approaches the
infinity for a nonlinear beam equation with the spatial dimension > 5.

1. Introduction. Consider a nonlinear beam equation

utt + ∆2u + f(u) = 0 (1)

where u = u(x, t), x = (x1, x2, . . . , xn) ∈ Rn, Rn is the n-dimensional Euclidean
space, n > 5, t ≥ 0, ∆ = Laplacian in x, and f(u) satisfies

c1(uf(u) − 2F (u)) + c0u
2 ≥ F (u) ≥ c0u

2 (2)

for some positive constants c0 and c1, where F ′(u) = f(u) with F (0) = 0. As usual,
the subscript in variables denotes the partial derivative, thus, ut = ∂u/∂t, etc... We
also use the notations ∂j = ∂/∂xj , and ur = (x/r) · ∇u, where ∇ is the gradient
in x, and r = |x|. Moreover, for a function of one variable g(s), g′(s) = d(g(s))/ds
denotes the derivative of g in s. Finally, that a function is Cn means that its nth

partial derivatives are continuous. In this work, we show that the local energy of a
solution is integrable in time and the local L2 norm of a solution approaches zero as
time approaches the infinity. Our method follows [1] in utilizing the Morawetz’ Radial
Identity [5].

The global scattering problem was considered in [1] along with several inequalities.
It was conjectured in [1] that the local energy is integrable in t and tends to zero
as t approaches the infinity. This work proves the first part of this conjecture. The
well-posedness, low-energy scattering, stability and instability of solitary and standing
waves, and the time decay of solutions for the nonlinear beam equation with a slightly
different f(u) can be found in [2, 3]. In the one-spatial dimension, a similar equation
to (1) with a different nonlinear term has been studied as a model for a suspension
bridge [4].

We shall need the following result from [1]:
The energy E[u] =

∫
Rn [(1/2)u2

t + (1/2)|∆u|2 + F (u)]dx is a constant, and for n > 5,
assuming that u is a solution that is smooth enough and small enough at the spatial
infinity, then there is a positive constant c such that∫ ∞

0

∫
Rn

(1/r)[uf(u) − 2F (u)]dxdt ≤ cE[u] (3)

∫ ∞

0

∫
Rn

(1/r3)|∇u|2dxdt ≤ cE[u] , and (4)

∫ ∞

0

∫
Rn

(1/r5)|u|2dxdt ≤ cE[u] , provided n ≥ 6 (5)
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2. The Morawetz’ radial identity. Let ζ be a C4 radially symmetric function
of x. Multiplying (1) by ζ(ur +((n−1)/(2r))u) we get the following identity, assuming
that u is C2 in t and C4 in x,

0 = (utt + ∆2u + f(u))ζ(ur + (n − 1)u/(2r)) (6)
= Xt + ∇ · Y + Z

where

X = utζ(ur + (n − 1)u/(2r)),

Y = −((n− 1)u2/4)(∇(∆(ζ/r)))+ a function depending on ζ, ζ′, ζ′′, ζ′′′, x, u, F (u),
∇u, ∆u, ∇(∆u), ur, ∇ur, ut , 1/r, 1/r2 and 1/r3,

and

Z = (ζ′/2)(ut)2 + (∆u)2[3ζ′/2] + A(ur)2 + B(|∇u|2 − (ur)2) + Cu2 + (n − 1)ζ(uf(u)
− 2F (u))/(2r) − ζ′F (u) + (ζ − rζ′)P,

where

A = −7ζ′′′/2 − ζ′(n − 1)(n − 3)/(2r2) + ζ(n − 1)(n − 3)/(2r3),
B = −3ζ′′′/2 + ζ′′(n − 5)/r − ζ′(n2 + 2n − 19)/(2r2) + ζ(n2 + 2n − 19)/(2r3),
C = ((n − 1)/2)[ζ′′′′/(2r) + ζ′′′(n − 3)/(r2) + ζ′′(n − 3)(n − 7)/(2r3) − 3ζ′(n − 3)(n

− 5)/(2r4) + 3ζ(n − 3)(n − 5)/(2r5)],
P = (2/r)[

∑
i,j(Siju)2 − ∑

i(
∑

j(xj/r)Siju)2] ≥ 0

with Siju = ((xi)/r3)
∑

k[xk(xk∂j − xj∂k)ur] + ∂j

∑
k[(xk/r2)(xk∂i − xi∂k)u].

Remark. If ζ = 1, this identity is the identity shown in the proof of Theorem 1
of [1].

3. The integrability of the local energy. We now state the main result of
this work.

Theorem. Consider the nonlinear beam equation (1) with the condition (2) on
f(u). Assume that the spatial dimension n is > 5. Assume also that u is C2 in t and
C4 in x, ut is bounded, and u and all its partial derivatives in x up to the 4th order
approach zero as |x| approaches the infinity. Then the local energy is integrable in t.

Proof. Assume that ζ and ζ′ are non-negative functions and ζ, ζ′, ζ′′, and ζ′′′are
bounded functions. We integrate both sides of (6) with respect to x in Rn and t from
0 to T . With the assumption on the smoothness and smallness of u at the spatial
infinity, we have

∫
Rn ∇ · Y dx = 0 for n >5.

Thus

0 ≥
∫

Rn

X(x, T )dx −
∫

Rn

X(x, 0)dx +
∫ T

0

∫
Rn

Zdxdt.

Now we can rewrite X into two ways:

X =−(ζ/2)(u2
t + |∇u|2) + (ζ/2)[u2

t + |W |2 + 2((x/r) · W )ut] (7)
−∇ · [(n − 1)ζu2x/(4r2)] + (n − 1)(n − 3)ζu2/(8r2) + (n − 1)ζ′u2/(4r),
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and

X =(ζ/2)(u2
t + |∇u|2) − (ζ/2)[u2

t + |W |2 − 2((x/r) · W )ut] (8)
+∇ · [(n − 1)ζu2x/(4r2)] − (n − 1)(n − 3)ζu2/(8r2) − (n − 1)ζ′u2/(4r),

where W = ∇u + (n − 1)ux/(2r2).

Using the first way (7) for X(x, T ) and the second way (8) for X(x, 0), we get
∫

Rn

(1/2)ζ(u2
t + |∇u|2)(x, 0)dx +

∫
Rn

(1/2)ζ(u2
t + |∇u|2)(x, T )dx ≥

∫ T

0

∫
Rn

Zdxdt.

Let T approach the infinity, we get
∫ ∞

0

∫
Rn

Zdxdt ≤ c2E[u] , for some positive constant c2, (9)

where c2 depends on c0, c1 and the bound for ζ.

Now, let ζ(x) = ζ(r) = 1 − 1/(r2 + 4)2, where r = |x|. Since ζ and ζ′ are
non-negative and ζ, ζ′, ζ′′, and ζ′′′ are bounded functions, the inequality (9) holds.
Substituting ζ into (9), we get

∫ ∞

0

∫
Rn

[(u2
t + (∆u)2)r/(r2 + 4)3 + |∇u|2/(r3(r2 + 4)5) + P/(r2 + 4)3

+u2/(r5(r2 + 4)6) + (uf(u) − 2F (u))/(r(r2 + 4)2)]dxdt

≤
∫ ∞

0

∫
Rn

4F (u)r/(r2 + 4)3dxdt + c2E[u]

≤
∫ ∞

0

∫
Rn

[4c1(uf(u) − 2F (u)) + 4c0u
2]r/(r2 + 4)3dxdt + c2E[u]

≤
∫ ∞

0

∫
Rn

[4c1(uf(u) − 2F (u))/r + 4c0u
2/r5]dxdt + c2E[u]

≤ c3E[u]

for some positive constant c3. Note that we have used (3) and (5) in the above
inequality.

Let h > b > 0, we get
∫ ∞

0

∫
b≤|x|≤h

[u2
t + (∆u)2 + |∇u|2 + u2 + (uf(u) − 2F (u))]dxdt ≤ c4E[u]

for some positive contant c4 depending on b and h.

Therefore,
∫ ∞
0

∫
b≤|x|≤h

[u2
t + (∆u)2 + F (u)]dxdt ≤ c5E[u], for some positive con-

stant c5 depending on c0, c1, b and h. Since the equation (1) is invariant under spatial
translation, we get

∫ ∞

0

∫
|x|≤h

[u2
t + (∆u)2 + F (u)]dxdt ≤ c6E[u] , for some positive constant c6.

Therefore the local energy is integrable in time.
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4. Time decay of the local L2 norm. Now, we are going to show that the
local L2 norm of u approaches 0 as t approaches the infinity. The idea of the proof is
from [5]. Let h > 0 and t > t1 > 0, then

(t − t1)
∫
|x|≤h

u2(x, t)dx =
∫ t

t1

∂[(τ − t1)
∫
|x|≤h

u2(x, τ)dx]/∂τdτ

=
∫ t

t1

∫
|x|≤h

u2(x, τ)dxdτ +
∫ t

t1

(τ − t1)
∫
|x|≤h

2uut(x, τ)dxdτ.

Let t1 = t − 1, we get
∫
|x|≤h

u2(x, t)dx ≤
∫ t

t−1

∫
|x|≤h

u2(x, τ)dxdτ +
∫ t

t−1

∫
|x|≤h

(u2 + u2
t )(x, τ)dxdτ.

Hence
∫
|x|≤h

u2(x, t)dx approaches 0 as t approaches the infinity since the local energy
is integrable in time.
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