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SOLUTIONS OF ABREU’S EQUATION WITH
ROTATION INVARIANCE ∗

A. N. W. HONE†

Abstract. We consider a fourth order nonlinear partial differential equation in n-dimensional
space introduced by Abreu in the context of Kähler metrics on toric varieties. Rotation invariant
similarity solutions, depending only on the radial coordinate in R

n, are determined from the solutions
of a second order ordinary differential equation (ODE), with a non-autonomous Lagrangian formu-
lation. A local asymptotic analysis of solutions of the ODE in the neighbourhood of singular points
is carried out, and the existence of a class of solutions on an interval of the positive real semi-axis is
proved using a nonlinear integral equation. The integrability (or otherwise) of Abreu’s equation is
discussed.

1. Introduction. In recent work Abreu has considered toric Kähler metrics on
toric varieties [4] or toric orbifolds [5] of dimension 2n. Following a construction
due to Guillemin [14], each such variety or orbifold is completely determined by its
moment polytope P in Rn, and the scalar curvature S of the Kähler metric is given
by a formula

S = −∂j∂kujk (1.1)

where the matrix elements ujk are functions of x = (x1, . . . , xn)T ∈ Rn, and ∂j
denotes the partial derivative ∂/∂xj (the summation convention is assumed). More
precisely, in terms of a symplectic potential function u(x) = u(x1, . . . , xn) on R

n, the
metric on the interior of the polytope P is

ds2 = ujk dx
jdxk, (1.2)

where ujk are the elements of the Hessian matrix H, i.e.

H = (ujk), ujk = ∂j∂ku, (1.3)

and in (1.1) the curvature is determined in terms of the inverse matrix

H−1 = (ujk).

The metric ds2 on the polytope P extends to a metric g given by

g = ujk dx
jdxk + ujk dθjdθk, (1.4)

where x1, . . . , xn and θ1 . . . , θn are symplectic coordinates on the toric variety, with
curvature given by (1.1).

In [4] Abreu was concerned with so called extremal toric metrics (in the sense of
Calabi), and it was shown that the condition for extremality is that the curvature is
an affine function of x, in other words

∂jS = constant, j = 1, . . . , n. (1.5)
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Abreu constructed such metrics from potentials of the form

u =
1
2

d∑
l=1

�l(x) log �l(x), (1.6)

where the �l(x) are affine functions which determine the facets of the polytope by the
equations �l(x) = 0, l = 1, . . . , d. For the simplest case of Guillemin’s construction
[14], the polytope is a cuboid in R

n, so that d = 2n, and the toric variety is just
(S2)×n, i.e. n copies of the 2-sphere obtained by attaching an n-torus T n to each
point in the interior of the cuboid. Toric varieties are currently of much interest
in string theory, where they play an important role in the construction of Calabi-
Yau manifolds, which are necessary for compact extra dimensions (see e.g. [6] and
references).

The purpose of this work is to construct other types of solution to the equation
(1.1) for the case of constant scalar curvature κ, that is

∂j∂ku
jk = −κ, constant. (1.7)

Henceforth, following [11], (1.7) is referred to as Abreu’s equation. The existence
of a Kähler metric of constant scalar curvature is intimately related to the notion
of stability of complex projective varieties [11], and for toric surfaces Donaldson has
shown the connection with the existence of a lower bound for the Mabuchi functional
[26]

F(u) = −
∫
P

log det(ujk) dµ+
∫
∂P

u dσ − κ

∫
P

u dµ. (1.8)

In the above, dµ is Lebesgue measure on Rn, dσ is a suitable measure on the boundary
∂P of the polytope, and the PDE (1.7) is the Euler-Lagrange equation δF = 0 for
the Mabuchi functional. For n > 1 we show that Abreu’s equation admits solutions
of a different form compared with (1.6), namely O(n) invariant similarity solutions,
which are presented in section 2. The ordinary differential equation for these rotation
invariant solutions can be derived from a Lagrangian which appears as a natural
reduction of the Mabuchi functional.

Rather than being geometric, our motivation for considering the partial differ-
ential equation (PDE) (1.7) comes from the theory of integrable systems. Taking
derivatives of (1.6) we have

ujk =
1
2

d∑
l=1

cl,jcl,k
�l(x)

, (1.9)

where the constants cl,j are the coefficients of the affine functions �l(x) = cl,0 +∑n
j=1 cl,jx

j . The expression (1.9) is reminiscent of the potential for vanishing rational
solutions [25, 34] of the integrable Kadomtsev-Petviashvili (KP) equation,

∂

∂x

(
4
∂u

∂t3
− 12u

∂u

∂x
− ∂3u

∂x3

)
− 3

∂2u

∂t22
= 0. (1.10)

which takes the form

w = −
d∑
l=1

1
x− xl(t)

, u = −2
∂w

∂x
, (1.11)
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where t denotes the dependence of the poles on the times t2, t3 (or an infinite sequence
of such times in the full KP hierarchy). The dynamics of the d poles xl(t) is governed
by the integrable Calogero-Moser system for d particles. The potential w in (1.11) is
a central object in the Sato formulation of KP theory [29], determining the dressing
operator W = 1 +w∂−1

x + . . . for the pseudo-differential Lax operator L = W∂xW
−1.

It is also interesting to note that the sixth Painlevé equation has special solutions
of the form (1.6) for n = 1 = d, and there is a similar class of solutions of the gener-
alised WDVV equations of topological field theory.1 More precisely, it was proved in
[36] that the function

F (x) =
∑
α∈A+

mα (α,x)2 log(α,x)2 (1.12)

is a prepotential for the generalised WDVV equations. The mα are multiplicities and
α are vectors in the (generalised) positive half root system A+, while ( , ) denotes
inner product. The derivative of the prepotential (1.12) with respect to any of its
arguments is of a form very similar to (1.6), modulo rescaling and the addition of an
affine function.

The similarity between (1.9) and the rational KP potential (1.11), as well as the
possible connection with the WDVV equations, raises the question of whether Abreu’s
equation (1.7) might be integrable in some sense. The conjecture of Ablowitz-Ramani-
Segur [2] asserts that (possibly after a change of variables) all reductions of integrable
PDEs should possess the Painlevé property that all solutions are single-valued around
all movable singularities. To avoid begging the question, the adjective “integrable”
applied to a PDE is taken to mean that it has a Lax pair, ensuring solvability by the
inverse scattering transform [3], and/or it has infinitely many commuting symmetries
[27]. In order to treat Abreu’s equation in the light of the Ablowitz-Ramani-Segur con-
jecture, it is necessary to seek similarity reductions of (1.7) and examine the structure
of their singularities in the complex plane. The similarity reduction to rotation invari-
ant solutions in section 2 yields a second order non-autonomous ordinary differential
equation (ODE). Having considered the basic local existence results for solutions of
the ODE in section 3, the asymptotic analysis around singular points is carried out
in section 4. In section 5 it is proved that solutions that are positive and monotone
increasing on the positive real semi-axis must reach a singularity at a finite point r∗.
Such solutions are constructed using a nonlinear integral equation in section 6; they
correspond to rotation invariant solutions of (1.7) on the interior of a ball of radius r∗

in Rn. Further discussion is reserved for the conclusions in the final section. Before
proceeding, we further outline the geometric background to Abreu’s equation in the
following subsection, where we also demonstrate its invariance under the action of the
affine group.

1.1. Geometrical background on toric varieties. Since their definition in
the 1970s, toric varieties have become important in algebraic geometry [10]. They have
also inspired a great deal of interest among theoretical physicists, since they play an
important part in the construction of mirror pairs of Calabi-Yau manifolds [6]. In the
algebro-geometric setting, a toric variety is naturally defined as an irreducible variety
V such that the complex torus (C∗)n is a Zariski open subset of V , and the action of
the complex torus on itself extends to an action on V (see [10] and references for other
definitions). Taking complex coordinates on (C∗)n given by (w1, . . . wn), so that the

1I am grateful to Tasos Tongas and Eugene Ferapontov for these interesting observations.
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action of the torus on itself is componentwise, we extend these to coordinates on V ,
and then it is convenient to change variables to

zj = logwj = ζj + iθj .

The action of the real torus T n = {(eiψ1 , . . . , eiψn)} on the real and imaginary parts
gives

ζj → ζj , θj → θj + ψj .

A toric variety, which is an n-dimensional complex manifold, can further be given
a symplectic structure compatible with its complex structure, or in other words it has
a Kähler structure. The Kähler two-form is

ω =
i

2
φjkdzj ∧ dzk,

where φjk denotes the Hessian of the Kähler potential φ = φ(ζ1, . . . , ζn), so that

φjk =
∂2φ

∂ζj∂ζk
.

Since φ is independent of the angle variables θ1, . . . , θn, the symplectic form ω is
invariant under the action of the real torus T n. In order to see how Abreu’s equation
(1.7) arises, we need to change to canonical symplectic coordinates on the toric variety
V .

In the symplectic picture, there is a Hamiltonian action of T n on V , considered
as a symplectic manifold of real dimension 2n, with moment map

m : V −→ R
n.

It turns out that the image of the moment map is m(V ) = P , a convex polytope in
Rn (see [14]). Moreover, the components of the moment map

mj(ζ1, . . . , ζn) =: xj =
∂φ

∂ζj

define a Legendre transformation, with {xj , θj}nj=1 being canonical symplectic coor-
dinates on V . The symplectic potential u, defined on the polytope P , is then given
by

u(x1, . . . , xn) = xjζj − φ(ζ1, . . . , ζn).

In the canonical coordinates, the Kähler form is

ω = dxj ∧ dθj ,

and the natural metric on V is given by (1.4). Moreover, Abreu has shown that
the curvature S = S(x1, . . . , xn) of such a metric is given in terms of the derivatives
of the symplectic potential by the formula (1.1) (see [4, 5]). In order to determine
which projective toric varieties admit a Kähler metric of constant scalar curvature,
the solution of the PDE (1.7) must be considered on the interior of a polytope P .
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As far as we are aware [12], the only exact solutions known at present correspond to
direct products of copies of complex projective space,

V = CP
n1 × CP

n2 × . . .× CP
nm .

In this case for the jth component CPnj the corresponding polytope is just a simplex
in real nj-dimensional space, and the solutions of (1.7) all have the form (1.6), with
the affine functions �l(x) defining the facets of the polytope.

The aim of what follows is not to seek solutions of Abreu’s equation (1.7) defined
on polytopes P , but rather to study the properties of another class of solutions, namely
rotation invariant solutions. Because Abreu’s equation (1.7) is an autonomous partial
differential equation, an arbitrary shift x → x + δ in the independent variables maps
solutions to solutions. Furthermore, because of the special structure of the equation,
it is natural to consider the action of the group GL(n,R) on the coordinate vector x.
These two group actions combine to give an action of the affine group, which is the
semi-direct product G = GL(n,R) � Rn.

Proposition 1.1. Abreu’s equation (1.7) is invariant under the action of the
group G = GL(n,R) � R

n, such that x → x̃ = Kx + δ.

Proof. Clearly the action of Rn by shifts in the coordinates has no effect, because
the PDE (1.7) is autonomous. Denoting an element of GL(n,R) by K = (Kj

k), we
have

x̃j = Kj
kx

k + δj .

It is also convenient to denote the inverse of K by L, so that

LqpK
r
q = δrp = Kq

pL
r
q.

under the action of the group G (with the Einstein summation convention being
assumed as before). Now suppose that u(x) is a solution of (1.7), and define

v(x) = u(x̃).

Then in terms of the transformed variables, we have that

∂̃j ∂̃kũ
jk = −κ.

To show invariance of the PDE, we must show that v is also a solution of (1.7).
The derivatives transform in the obvious way as

∂l = Kj
l ∂̃j ,

so that we have

∂j∂kv
jk = K l

jK
m
k ∂̃l∂̃mv

jk. (1.13)

But now the inverse Hessian of v satisfies

vjk(∂k∂lv) = δjl = vjkKm
k K

n
l ũmn,

where ũmn denotes the components of the Hessian of u(x̃), whence

vjk = Ljpũ
pqLkq .
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Substituting the latter expression into (1.13) gives

∂j∂kv
jk = K l

jK
m
k ∂̃l∂̃mL

j
pL

k
q ũ

pq = δlpδ
m
q ∂̃l∂̃mũ

pq = −κ
as required.

Fixing a choice of scale and origin naturally leads us to consider rotationally
invariant solutions in the next section.

2. Similarity solutions. For each n, Abreu’s equation (1.7) has rotation invari-
ant solutions, with the potential g being a function of the radial distance only, that
is

u = u(r), r = |x|.
In that case the Hessian matrix and its inverse are given by

H =
f

r
1 +

1
r

(
f

r

)′
xxT , H−1 =

r

f
1 +

(
1
r2f ′ −

1
rf

)
xxT , (2.1)

where

f = u′,

and the prime denotes d/dr. Since the Hessian H is given entirely in terms of the
function f and its derivative, and the potential u is obtained from f by a quadrature,
in what follows we need only consider the equation for f . We may formulate this
precisely as

Proposition 2.1. For any dimension n, Abreu’s equation (1.7) has rotation
invariant similarity solutions. The potential u is given by a quadrature,

u(x) =
∫ r

f(s) ds, r = |x|,

where f(r) is a solution of the second order differential equation

f ′′ =
(
κ

n
r − λ

rn−1
− (n− 1)

f

)
(f ′)2 +

(n− 1)
r

f ′, (2.2)

for arbitrary constant λ.

Proof. Substituting the form (2.1) of the inverse Hessian matrix into (1.7) yields
the following third order ordinary differential equation (ODE) for f :

(
n+ r

d

dr

) (
A′

r
+ rB′ + (n+ 1)B

)
= −κ.

In the above, A and B denote the quantities

A =
r

f
, B =

1
r2f ′ −

1
rf
. (2.3)

After an integration, the third order ODE yields

A′

r
+ rB′ + (n+ 1)B = λr−n − κ

n
, (2.4)
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for constant λ. Upon substituting for A, B from (2.3), the equation (2.4) is a second
order ODE for f = f(r), which takes the explicit form (2.2).

For the purposes of analysis, it is sometimes convenient to rewrite (2.2) in the
form

d

dr
log

(
fn−1f ′

rn−1

)
=

(κ
n
r − λr1−n

)
f ′. (2.5)

In the context of compact manifolds, κ is a positive constant, and for any (non-zero)
κ it is straightforward to rescale f → f/κ and set κ = 1, but we choose to leave κ
arbitrary. We now consider some explicit solutions.

Trivial solution: Clearly for any n the ODE (2.2) has the trivial solution

f = constant.

In this case the inverse Hessian H−1 in (2.1) becomes infinite, and hence this does
not correspond to a bona fide solution of Abreu’s equation (1.7).

General solution for n = 1: In the case n = 1, Abreu’s equation is itself an ODE
equivalent to (2.2), which is easily integrated to obtain the general solution

f =
1
ρ

log
(
ρ− λ+ κr

ρ+ λ− κr

)
+ α,

so that the potential is

u = ρ−1(r − r−) log(r − r−) + ρ−1(r+ − r) log(r+ − r) + αr + β, r± = (λ± ρ)/κ,

for arbitrary constants ρ > 0, α, β. Up to shifting by an affine function, the solution
for n = 1 is of the form (1.6), with u(r) defined on a single interval (r−, r+) in R, which
by the construction of [14] leads to a toric metric on the sphere S2, or equivalently
CP1.

Special solution and symmetry reduction for λ = 0: When λ = 0 (and with
κ �= 0), there there is an exact solution that is singular at the origin, namely

f =
2n2

κ
r−1. (2.6)

Furthermore, (2.2) is invariant under the one-parameter group of scaling symmetries
r → µr, f → µ−1f , so by standard methods of symmetry reduction [30] it is possible
to reduce the order. Introducing the new scale-invariant independent variable y = rf ,
and the dependent variables v = v(y) = − log r, w = dv/dy, it reduces to a first order
equation for w(y):

dw

dy
= y(2n− κy)w3 + (3n− 2κy)w2 + ((n− 1)/y − κ)w.

(This was presented as an example in [20].)

Special solution for κ = 0: When κ = 0 and λ = 0 the equation (2.2) can be
integrated exactly to give

f = (C +Drn)1/n, (2.7)
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with two arbitrary constants C, D. Although zero curvature does not arise in the con-
text of compact toric varieties, it turns out that the special case n = 2 and κ = 0 is of
geometric interest for so called “self-dual” metrics that fit into the twistor framework
[12]. The special case κ = 0 also admits a scaling invariance under symmetry r → µr,
f → µn−1f , so as for the case λ = 0 it is possible to make a symmetry reduction to
a first order equation, which we omit here.

For n > 1 in general we are unable to integrate (2.2) explicitly, and must resort to
local and asymptotic analysis. Before embarking on this in the following sections, we
consider what sort of initial value problem for the ODE is relevant in the geometric
context. Since r is the radial coordinate in Rn, ideally we would like solutions defined
on some interval [0, r∗) of the positive real semi-axis (possibly with r∗ = ∞). Starting
from initial data specified away from the origin at r = η > 0, the ODE (2.2) is regular.
However, because r = 0 is a singular point, it is not possible to take initial data at
the origin - instead we would need to specify some asymptotic behaviour, depending
on whether this is a regular or irregular singularity [37, 35]. Clearly the right hand
side of (2.2) is also singular at f = 0. It is easy to see that given f ′(η) �= 0, the
solution (as long as it exists) cannot have stationary points for r > η, since the right
hand side of (2.2) vanishes when f ′ = 0; thus, by the uniqueness of the solution to
the initial value problem (see next section), integrating the ODE from any point ζ
where the gradient vanishes gives only the constant solution f(r) = f(ζ) = constant.
The following result is immediate:

Lemma 2.2. Suppose that initial data is specified for the ODE (2.2) at a point
r = η > 0, with f(η), f ′(η) both nonzero. Then the solution f(r) for r > η remains
positive (negative) for f(η) > 0 (f(η) < 0), and for f ′(η) > 0 or f ′(η) < 0 it is
monotone (increasing or decreasing, respectively), as long as it exists.

For a solution of the ODE on the interval [0, r∗), the components of the Hessian
matrix H determine a metric (1.2) on the ball of radius r∗. The eigenvalues of H
in (2.1) are f/r (repeated n − 1 times) and f ′. Thus if we require a Riemannian
metric given by a positive definite Hessian, then we should consider only solutions of
(2.2) defined with both initial data positive, i.e. f(η) > 0, f ′(η) > 0. The signs of f
and f ′ remain constant and the Lemma also holds when the solution is analytically
continued to r < η, provided it exists. However, a priori we have no guarantee that
when the solution is continued back towards r = 0 (solving the initial value problem
in reverse) it will not reach a singularity at some point r = η′ with 0 < η′ < η.
In the next section the local existence results in the complex plane are presented,
while the asymptotic analysis of section 4 shows that both algebraic and logarithmic
branch points are possible. The results in section 5 imply that the real solutions with
both initial data positive must hit a singularity at a finite point on the positive real
semi-axis.

Before analysing the ODE further, it is interesting to note that it admits a La-
grangian formulation.

Proposition 2.3. The ODE (2.2) can be derived as the stationarity condition
δS = 0 for the action

S =
∫ r2

r1

L(f, f ′, r) dr, (2.8)
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with the Lagrangian

L = rn−1 log(fn−1f ′) +
(
λ− κ

n
rn

)
f. (2.9)

Proof. This follows from a straightforward calculation of the Euler-Lagrange
equation

∂L

∂f
− d

dr

(
∂L

∂f ′

)
= 0.

The Lagrangian (2.9) is non-autonomous, since it depends explicitly on the inde-
pendent variable r (corresponding to time in the physical interpretation of Lagrangian
mechanics). In fact the action S in (2.8) must have its origin in the Mabuchi functional
F for the PDE (1.7). Observe that for the reduction to rotation invariant solutions,
the nonlinear part of (1.8) becomes

∫
log det(ujk) dµ =

∫
log detH dµ =

∫
log

(
fn−1f ′

rn−1

)
rn−1 dr dΩ, (2.10)

where dΩ, the angular part of the measure, is the volume element on the sphere Sn−1.
For O(n) invariant solutions the angular part decouples and gives an overall prefactor,
and then after removing a term depending only on r the final expression in (2.10) is
precisely equivalent to the logarithmic term in the action (2.8). The derivation of
the λ and κ terms in the Lagrangian (2.9) is not quite so obvious from the linear
part of the Mabuchi functional (1.8), since it requires careful evaluation of the surface
integral (converted to a volume integral with Stokes’ theorem), but the removal of
dependence on u could be achieved by introducing λ as a Lagrange multiplier for the
constraint u′ = f .

3. Local existence. The right hand side of equation (2.2) becomes singular
at r = 0 and f = 0. By standard existence theorems [21], if regular initial data
f(η) = fη �= 0, f ′(η) = pη is specified at any point 0 �= η ∈ C, then (2.2) has a unique
analytic solution in the neighbourhood of r = η. For the purposes of applications
to (positive definite) metric tensors, the important question is whether there are real
solutions around a point r = η > 0 with fη > 0, pη > 0, and with an analytic
continuation along the real axis. For completeness, below a lower bound is presented
on the radius of the domain of analyticity around a real point for the case of positive
initial data fη, pη; such bounds are easily modified in the general case.

It is convenient to rewrite (2.2) as the first order system

f ′ = p, p′ =
(
κr

n
− λ

rn−1
− (n− 1)

f

)
p2 +

(n− 1)
r

p. (3.1)

In that case given the real initial data fη > 0, pη > 0 at r = η > 0, then for any
a and b with 0 < a < η and 0 < b < fη, it is clear that the right hand sides of the
system (3.1) are analytic functions of r, f, p in the domain |r − η| ≤ a, |f − fη| ≤ b,
|p − pη| ≤ b. In this domain, the right hand sides of the system admit the upper
bounds

|p| ≤M1,

∣∣∣∣
(
κr

n
− λ

rn−1
− (n− 1)

f

)
p2 +

(n− 1)
r

p

∣∣∣∣ ≤M2,
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where

M1 := b+pη, M2 :=
(
κ

n
(a+ η) +

|λ|
(η − a)n−1

+
(n− 1)
(fη − b)

)
M2

1 +
(n− 1)
(η − a)

M1. (3.2)

Proposition 3.1. The unique analytic solution of the ODE (2.2) satisfying
f(η) = fη > b > 0, f ′(η) = pη > 0 must exist in a circle of minimum radius

ρ = a
(
1 − e−

b
3Ma

)
, (3.3)

around r = η, where the upper bound M is given in terms of the bounds (3.2) by

M = max{M1,M2}.

Proof. This follows by a direct application of the result of section 12.21 in [21].

Starting from points within this circle, the solution may be analytically continued
in any direction in the complex plane, until it reaches a singularity. In the next section
we see that both movable algebraic and logarithmic branch points are possible, and
the fixed singular points of the ODE are also analysed.

4. Asymptotic analysis. In order to analyse the different possible singular be-
haviours of the solutions of the ODE (2.2), it is necessary to find all the dominant
balances [23] and thence obtain asymptotic expressions in the neighbourhood of sin-
gular points. Linear differential equations can have only fixed singularities at the
points in the complex plane where the coefficient functions are singular. However, in
the case of nonlinear equations such as (2.2) there can also be movable singularities,
whose position is not fixed but depends on the initial conditions. In this section for-
mal asymptotic expansions around both fixed and movable singularities are presented
for solutions of equation (2.2). The reader is referred to [16, 21] for more detailed
discussions of singularity analysis.

4.1. Expansions at r = 0 . There are several different types of asymptotic
behaviour near the origin.

Proposition 4.1. For n ≥ 3 and λ �= 0 there are three types of asymptotic
behaviour of the solutions of (2.2) as r → 0:
(a) f → f0 �= 0, with the leading order behaviour of the derivative given by

f ′′ ∼ (n− 1)
r

f ′; (4.1)

(b) f → f0 �= 0, with the leading order behaviour of the derivative given by

f ′′ ∼ − λ

rn−1
(f ′)2 +

(n− 1)
r

f ′; (4.2)

(c) f → 0, with

f ∼ −n(n− 2)
λ(n− 1)

rn−1. (4.3)
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Proof. To determine the possible asymptotic behaviours at the origin, it is nec-
essary to determine which combinations of terms in the differential equation (2.2)
can balance at leading order. Clearly the κr/n term is always of lower order than
the λ/rn−1 term in front of (f ′)2, and hence does not enter into the leading order
analysis. By Lemma 2.2 we know that f is a monotone function. First we consider
the case that rn−1/f = o(1) as r → 0, so that only the three terms f ′′, λ(f ′)2/rn−1

and (n− 1)f ′/r can potentially balance each other at leading order. It turns out that
only two possible balances of this kind are consistent. In case (a) given by 4.1, two
terms balance and upon integration we have f ′ ∼ cnrn−1 for some constant c, whence
f ∼ f0 + crn with f0 �= 0 to ensure rn−1/f = o(1). There are no other consistent
balances with just two of these three terms balancing, so the remaining possibility is
that all three terms are of the same order, which yields case (b) above. Integrating
the equation (4.2) leads to f ′ ∼ rn−2/λ and hence f ∼ f0 + rn−1/(λ(n − 1)) with
f0 �= 0 for rn−1/f = o(1).

Next we consider f/rn−1 = o(1). The f ′′ and (n− 1)f ′/r terms are always of the
same magnitude, but in order to avoid reducing to case (a) (which would contradict
f/rn−1 = o(1)) we are forced to assume that these terms balance with (n−1)(f ′)2/f .
This gives

f ′′ +
(n− 1)
f

(f ′)2 − (n− 1)
r

f ′ = f ′ d
dr

log
(
f ′fn−1

rn−1

)
∼ 0,

and integrating gives leading order behaviour as in (2.7), which again contradicts
f/rn−1 = o(1). The last case we must consider is f = O(rn−1) as r → 0, which
immediately yields case (c) as in (4.3).

We can develop these leading order asymptotics into formal series around r = 0,
as follows:

• For any λ, (2.2) admits the formal expansion

f ∼ f0 +
∞∑
j=0

ajr
n+j , r → 0, (4.4)

where f0 �= 0 and a0 �= 0 are arbitrary constants, and the other coefficients
are determined recursively by

j(n+j)aj = −λ
j−1∑
k=0

(n+k)(n+j−k−1)akaj−k−1+Gj(f0, a0, . . . , aj−2), j ≥ 1,

for certain functionsGj . These functions Gj are difficult to write in a compact
form, since while the first term on right hand side of the recurrence is of
degree two in ak, the degree of Gj increases with j; nevertheless they are
easily obtained recursively by substitution in the differential equation (2.2).
For solutions with this asymptotic behaviour, detH(r) → na0f

n−1
0 as r → 0.

• For λ �= 0 there is an alternative expansion

f ∼ f0 +
1

λ(n− 1)
rn−1 +

∞∑
j=0

bjr
n+j , r → 0, (4.5)

which depends on just one arbitrary parameter f0 �= 0, with the coefficients
determined by a recursion

(j + 2)(j + n)bj = Hj(f0, b0, . . . , bj−1)
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with a sequence of functions Hj , whose exact form is omitted. For n = 2,
b0 = −1/(4λ2f0), while b0 = 0 for n ≥ 3. In this case detH(r) → ±∞ as
r → 0.

• For λ �= 0 and n �= 2 there is another formal expansion in (2.2) that contains
no arbitrary parameters, namely

f ∼ −n(n− 2)
λ(n− 1)

rn−1 +
∞∑
j=0

cjr
n+j (4.6)

for n �= 2. The coefficients satisfy a recurrence of the form
(
(j + 2)(j + n) − (n− 1)3

)
cj = Jj(c0, . . . , cj−1), (4.7)

for certain functions Jj ; it turns out that c0 = 0. With these asymptotics at
the origin, detH(r) → 0 as r → 0. However, while the leading part of the
asymptotic series (4.6) is certainly correct, the complete expansion may break
down at a resonance, i.e. if the quadratic in j on the left hand side of (4.7)
vanishes. This can only occur for some value of j and for particular n such
that the discriminant 4n3−11n2 +8n is a perfect square; this is equivalent to
the existence of integer points (x, y) on the elliptic curve y2 = 4x3−11x2+8x.
It turns out that (0, 0), (1,±1) and (2,±2) are the only integer points on this
curve,2 but none of these values are relevant here since the leading order in
(4.6) requires x = n ≥ 3; hence there are no resonances and the expansion
(4.6) is consistent.

• In the case λ = 0, there is also the exact solution (2.6) that is singular at the
origin.

Remark. We are grateful to one of the referees for pointing out that, with refer-
ence to the type (a) asymptotic behaviour, setting f = f0 + rnψ leads to a regular
singularity for ψ(r) at r = 0. In that case we can make use of some standard results
on asymptotic series [37, 35]. However, in section 6 we prefer to present a direct
approach to these solutions, using an integral equation.

4.2. The point at infinity. Although it will become clear that this will be
irrelevant for the construction of a solution of (1.7) in a neighbourhood of the origin,
here we present the two types of asymptotic expansion at infinity for the equation
(2.2):

• In one case, f tends to zero:

f ∼ 2n2

κ
r−1 +

∞∑
j=0

djr
−j−2, r → ∞, (4.8)

with the coefficients dj determined uniquely by a recurrence
(
j2 − (n− 2)j − 3n+ 1

)
dj = Kj(d0, . . . , dj−1).

The discriminant of the quadratic j2− (n−2)j−3n+1 is n2 +8n, and n = 1
is the only positive integer for which this can be a perfect square, so there
are no resonances.

2Thanks to John Merriman for checking this.
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• In the other case, f is asymptotic to a nonzero constant, i.e.

f = �0 + �1r
−1 + o(r−1), r → ∞, (4.9)

with

�0 �= 0 (arbitrary), �1 =
n(n+ 1)

κ
.

However, if this is to be extended to a complete asymptotic expansion

f ∼
∞∑
j=0

�jr
−j

then the recurrence for the coefficients takes the form

j(j − n− 2)�j = Lj(�0, . . . , �j−1), L0 ≡ 0,

which clearly has a resonance at j = n + 2 (as well as the resonance j = 0
corresponding to the fact that �0 is arbitrary). Thus the simple power series
expansion is inconsistent unless Ln+2 is identically zero. For example, when
n = 2 we find at order r−4 that

L4 = −3�41
4�30

�= 0, since �1 =
6
κ
,

so the inconsistency can only be rectified by including a term proportional to
r−4 log r in the asymptotics, which in turn requires infinitely many terms of
the form r−j(log r)k to ensure a consistent asymptotic expansion.

There are some standard theorems concerning asymptotic expansions of ODEs
around irregular singular points at infinity [37], and these have recently been extended
to more general classes of equations [35]. To consider (2.2) in the light of such results,
it should be rewritten as a system

1
r

d

dr

(
f
q

)
=

(
fqr−1

(κ/n− λr−n)fq2 − nq2r−1 + (n− 1)qr−2

)
, q :=

d

dr
log f.

(4.10)

The vector function on the right hand side is holomorphic for (r, f, q) ∈ (C∗∪{∞})×
C2, and r = ∞ is an irregular singular point of Poincaré rank 2 for the system (4.10).
As a function of (f, q) ∈ C2, the linear part of this vector is degenerate (in fact,
zero) at r = ∞, which means that Wasow’s Theorem 33.1 in [37] does not apply.
Nevertheless, recent developments (see [35] and references therein) imply that given
the formal expansion (4.8) in powers of r−1, there must exist a proper solution of
the system (4.10) which has this asymptotic expansion in some sector of angle π/2.
However, these considerations do not apply to more general asymptotics such as (4.9),
since in that case the formal power series must be augmented by logarithmic terms
due to resonances. Clearly the same framework can be applied to the singular point
at r = 0 by transforming it to z = ∞ for the variable z = r−1, but in section 6 below
we prefer to make a direct construction of solutions with the asymptotics (4.4) at
r = 0.
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4.3. Other fixed singularities. The ODE (2.2) also admits singular expansions
at n special points in the complex plane. The function

Q(r) =
κ

n
r − λ

rn−1
(4.11)

appearing on the right hand side of (2.2) vanishes at the points r = ρj , where

ρj = e2πij/n
(
λn

κ

)1/n

, j = 0, . . . , n− 1. (4.12)

In the neighbourhood of these points f can have the singular behaviour

f =
(n+ 1)
Q′(ρj)

(r − ρj)−1 +
(

(n+ 1)
ρjQ′(ρj)

− Q′′(ρj)
2(n− 1)

)
+ o(1), r → ρj . (4.13)

This can be extended to a full formal expansion

f ∼ E(r) ≡ (n+ 1)
Q′(ρj)

(r − ρj)−1 +
∞∑
j=0

ej(r − ρj)j ,

where the recurrence to determine the higher terms takes the general form

(j2 + 3j − n+ 1)ej = Ej(e0, e1, . . . , ej−1),

for suitable functions Ej . The recurrence determines all of the coefficients ej uniquely
unless it happens that j2+3j−n+1 = 0 for some j. This can only arise for particular
values of n, namely n = k2 + k− 1, for k = 2, 3, . . ., in which case the coefficient ek−1

is arbitrary, subject to the resonance condition Ek−1 = 0. In general the resonance
condition will not be satisfied, so the power series expansion E(r) must be augmented
with terms in log(r − ρj).

4.4. Movable singularities. The ODE (2.2) admits movable singularities at
arbitrary points r0 �= 0, r0 �= ρj in the complex r plane; the position of such singulari-
ties is dependent on the initial data. The movable singularities can take the following
forms:

• Algebraic branching: The asymptotic behaviour in the neighbourhood of
an algebraic branch point is

f ∼
∞∑
j=1

kj(r − r0)j/n, r → r0, (4.14)

where both r0 and the constant k1 are arbitrary. The coefficients are deter-
mined uniquely by a recurrence of the form

(j − 1)(j + n− 1)
n2

kj = Gj(k1, . . . , kj−1), G1 ≡ 0;

j = 1 is the only resonance, corresponding to the arbitrariness of k1.
• Logarithmic branching: The leading order behaviour in the neighbour-

hood of a logarithmic branch point is

f = log(r − r0)
(
− 1
Q(r0)

+ o(1)
)
, r → r0, (4.15)

with the function Q as in (4.11).
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Due to the movable algebraic branching (4.14), the ODE (2.2) is outside the
Painlevé class of second order equations whose general solution has no movable sin-
gularities other than poles, as described in chapter 14 of [21]. If it has only algebraic
branching around movable singularities, an ODE can possess the weak Painlevé prop-
erty as defined in [32], and there are many examples of integrable ordinary and partial
differential equations which have this property (see for instance [1, 9, 18]). However,
the ODE (2.2) also admits movable logarithmic branch points in its solutions. Loga-
rithmic branching such as (4.15) is taken as a strong indicator of non-integrability in
differential equations [2]. A further question is whether the ODE can have movable
essential singularities.

5. Connection problems. In order that the solution of the ODE (2.2) should
determine a Riemannian metric (1.2) in some spherically symmetric neighbourhood
of the origin in R

n, it is necessary to consider positive initial data at a point r = η > 0
on the positive real semi-axis as in section 3. This solution is then required to have
an analytic continuation for r < η back to the fixed singular point r = 0, but upon
continuing the solution to r > η it must reach a singularity, as we now demonstrate.

Proposition 5.1. Suppose that positive initial data f(η) = fη > 0, f ′(η) = pη >
0 is specified for the ODE (2.2) at any point r = η > 0 on the positive real semi-axis.
Then the analytic continuation of the solution reaches a singularity at some finite
point r = r∗ > η.

Proof. Suppose that the solution exists for all r ≥ η. By Lemma 2.2 f ′ is positive
and f is monotonically increasing, so that f(r) > fη for r > η and

f ′′ = f ′
(
(Q(r) − (n− 1)/f)f ′ + (n− 1)/r

)
>

(
Q(r) − (n− 1)/fη

)
(f ′)2,

with Q(r) given by (4.11). It is clear that for any Q∗ > 0 we have

Q(r) > Q∗ + (n− 1)/fη, r > r̂ ≥ η,

for sufficiently large r̂. Hence for r > r̂ the second derivative is bounded by

f ′′ > Q∗(f ′)2,

and this inequality may be integrated to yield

− 1
f ′(r)

−Q∗r > − 1
f ′(r̂)

−Q∗r̂.

But then rearranging gives

1
f ′(r)

< Q∗(r̂ − r) +
1

f ′(r̂)
→ −∞ as r → ∞,

which is a contradiction since f ′ must be positive.

Since the positive, monotone increasing solutions have a singularity with f(r) →
∞ as r → r∗ for some finite r∗, the analysis of section 4 can be used to determine the
asymptotic behaviour there. However, it is well known [21] that second order nonlinear
equations may have movable essential singularities which cannot be detected by local
asymptotic analysis. Subject to this caveat, we can state the following

Proposition 5.2. Suppose that positive initial data is specified for the ODE
(2.2) at r = η > 0 as in Proposition 5.1, and that the solution reaches a singularity
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at r = r∗ > η. Then assuming that the ODE does not admit movable essential
singularities, the only possible asymptotic behaviour of the solution as r → r∗ is the
logarithmic branching (4.15) with r0 = r∗ for λ ≤ 0, and similarly for λ > 0 provided
that r∗ > ρ0, the principal value nth root in (4.12).

Proof. Having assumed that there are no movable essential singularities, the only
possible asymptotic behaviours at singular points are those given in section 4. For
λ ≤ 0 if f → ∞ as r → r∗ with r < r∗, then there must be a logarithmic branch
(4.15), which for real positive f takes the form

f = log(r∗ − r)
(
− 1
Q(r∗)

+ o(1)
)
, r → r∗, r < r∗. (5.1)

For λ > 0 the same is true except that r∗ > ρ0 is necessary to ensure that Q(r∗) > 0,
so that f has the correct sign in (5.1) as r → r∗.

A proof of freedom from movable essential singularities for the first Painlevé
equation, using the approach originally due to Painlevé, appears in chapter 14 of
Ince’s book [21], but these arguments have only been made completely rigorous quite
recently [17]. Here we shall not attempt to prove the non-existence of movable essential
singularities for the ODE (2.2), since this is a very delicate issue. Such essential
singularities can be isolated or non-isolated; moreover for equations of third order
and above, such as Chazy’s equation [8]

w′′′ = 2ww′′ − 3(w′)2,

it is known that there can be natural boundary of analyticity. Bearing this in mind, it
is nevertheless straightforward to determine which of the local asymptotic behaviours
enumerated in section 4 are allowed as the solution of the initial value problem for
(2.2) is analytically continued to r < η, back towards the origin.

Proposition 5.3. Suppose that positive initial data is given for the ODE (2.2)
at r = η > 0 as in Proposition 5.1. Assuming the absence of movable essential
singularities, then, if the solution is analytically continued back to r < η, it can either
reach the origin with one of the following behaviours as r → 0:

(a) asymptotics (4.4) with f0 > 0, a0 > 0 ,
(b) asymptotics (4.5) with f0 > 0, for λ > 0 only ,
(c) asymptotics (4.6) for λ < 0, n �= 2 only;

or otherwise:
(d) it has an algebraic branch point (4.14) at some point r0, with 0 < r0 < η and

k1 > 0.

Proof. This is obvious, by a simple enumeration of the various possibilities ob-
tained in section 4. The constraints on the parameters f0, a0 and k1 in the various
asymptotic expansions are necessary to ensure that f and f ′ are both positive.

Similarly it is possible to consider the different singularities that can occur when
the solution of (2.2) is analytically continued along the real axis with one or both of
the initial data f(η), f ′(η) being negative. This programme was carried out in the
preprint [19], although there both the possibility of movable essential singularities and
the special fixed singularities (4.12) were neglected. If we restrict to the case where f
and f ′ are positive, then given a solution defined on the interval (0, r∗) it is natural
to wonder how the position of the movable singularity at r = r∗ is related to the
asymptotics as r → 0. This can be stated more precisely thus:
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Connection problem: Given the existence of a solution of (2.2) defined on (0, r∗)
with a singularity at r = r∗, satisfying f(r) > 0 and f ′(r) > 0 for r ∈ (0, r∗), and
having the asymptotic behaviour (a) in Proposition (5.3) as r → 0, determine the
dependence of r∗ on the parameters f0 > 0, a0 > 0 in the asymptotic expansion (4.4).

Similarly one may formulate analogous connection problems for the other cases
(b) − (d) in Proposition (5.3). The reason why we focus particularly on case (a)
is that in that case the Hessian matrix H is positive definite and detH(r) remains
positive and finite in the limit r → 0. Thus a solution of the ODE (2.2) of type
(a) yields a metric (1.2) on the interior of a ball of radius r∗ in Rn. Also note that,
because the local expansion (4.4) depends on two arbitrary constants f0, a0, type (a)
corresponds to the general solution of this second order ODE. In the next section we
prove the existence of a type (a) solution, by a direct construction using a nonlinear
integral equation. The corresponding connection problem seems more difficult, but
one possible approach would be to consider the inverse function r(f). It is interesting
to observe that the differential equation for the inverse function has an almost identical
form to (2.2), namely

d2r

df2
= − (n− 1)

r

(
dr

df

)2

+
(

(n− 1)
f

−Q(r)
)
dr

df
. (5.2)

The leading order asymptotics (4.15) in the neighbourhood of the logarithmic branch
point at r = r∗ extends to a corresponding double asymptotic series

r(f) ∼ r∗ +
∞∑
j=1

Sj(f) e−jQ(r∗)f , S1(f) = −1 + o(1), f → ∞

in the equation (5.2); each of the Sj is a series in powers of f−1.

6. Solution of a nonlinear integral equation. Although the origin is a sin-
gular point of the ODE (2.2), it is possible to construct the general solution which
is analytic on an interval (0, R), with the behaviour (4.4) as r → 0, by converting it
to a nonlinear integral equation and then applying a variety of Picard iteration using
Lipschitz type arguments. The integral equation produces the solution on a fixed in-
terval, and then its analytic continuation must have a singularity at some r∗ > R by
the results of the previous section. The key to the integral equation is in expressing
the ODE in the form (2.5), which leads to the following

Proposition 6.1. For any fixed r1, r2 and arbitrary constants C1, C2, the ODE
(2.2) is equivalent to the nonlinear integral equation

f(r) =
(
C1

∫ r

r2

tn−1eΨ[f ](t) dt+ C2

)1/n

, (6.1)

where

Ψ[f ](t) :=
(
κ

n
t− λ

tn−1

)
f(t) −

∫ t

r1

(
κ

n
+ (n− 1)

λ

sn

)
f(s) ds. (6.2)

Proof. Using integration by parts followed by exponentiation, the expression
(2.5) yields immediately

nfn−1f ′ = C1r
n−1eΨ[f ](r),
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for arbitrary constant C1, with the endpoint of integration r1 fixed as in (6.2). But
the left hand side above is just the derivative of fn, so after integrating from the point
r2, with constant of integration C2, and taking the nth root, (6.1) results.

Observe that that for a fixed choice of r1, r2, the two constants C1, C2 represent
the integration constants in the general solution of the ODE. Alternatively r1 and
r2 can be allowed to vary, so that (6.1) has the form of a nonlinear variation of
parameters formula. We remark that nonlinear integral equations like (6.1) have
been used in [22] to analyse the solutions of Painlevé equations in the neighbourhood
of movable pole singularities. The monograph by Sachdev [33] includes numerous
further examples and references on integral equations applied to the asymptotics of
ODEs. Iteration of nonlinear integral operators has also been used to prove existence
of solutions to differential equations with proscribed asymptotics around an irregular
singular point at infinity [35]. However, here we will employ the integral equation to
construct the general solution of the ODE (2.2) on an interval of the real line starting
at the fixed singularity at r = 0, concentrating on the case of solutions that are
positive and monotone increasing near the origin. To do so we construct a sequence
of functions that successively approximate the solution with asymptotics (4.4) for
f0 > 0, a0 = f0δ > 0.

Proposition 6.2. Given the positive constant f0 > 0, the recurrence

fj+1(r) = f0

(
1 + n2δ

∫ r

0

tn−1eψ[fj ](t) dt
)1/n

, j = 0, 1, 2, . . . (6.3)

with

ψ[f ](t) :=
∫ t

0

(
κ

n
s− λ

sn−1

)
f ′(s) ds, (6.4)

and δ > 0 being another positive constant, defines a sequence of C1 functions on the
interval [0, R]. The endpoint of the interval R > 0 is chosen to satisfy

κ

n(n+ 1)
Rn+1 + |λ|R = M̃−1, M̃ = f0nδe, (6.5)

and the functions fj and their derivatives are bounded by

f0 ≤ fj(r) ≤ f0(1 + nδern)1/n, 0 ≤ f ′
j(r) ≤ M̃rn−1, r ∈ [0, R]. (6.6)

Proof. The bounds (6.6) are trivially true when j = 0, and the proof proceeds
by induction. Note that for j = 1 we have

f1(r) = f0

(
1 + nδrn

)1/n

, (6.7)

corresponding to the special solution (2.7), which is analytic on [0, R]. Now by induc-
tion

|ψ[fj ](r)| ≤
∫ r

0

(
κ

n
s+

|λ|
sn−1

)
|f ′
j(s)| ds ≤

∫ r

0

(
κ

n
s+

|λ|
sn−1

)
M̃sn−1 ds

= M̃

(
κ

n(n+ 1)
rn+1 + |λ|r

)
≤ M̃

(
κ

n(n+ 1)
Rn+1 + |λ|R

)
= 1, (6.8)
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with the upper bound R chosen as the unique positive real root of the equation (6.5).
It follows that ψ[fj ](r) exists and is continuous with ψ[fj ](0) = 0. Defining

Xj(r) = n2δ

∫ r

0

tn−1eψ[fj ](t) dt, (6.9)

it is clear that Xj is also continuously differentiable and by (6.8) satisfies

0 ≤ Xj(r) ≤ n2δe

∫ r

0

tn−1 dt = nδe rn

for r ∈ [0, R], withXj(0) = 0, so that fj+1(0) = f0, and (by monotonicity of (1+X)1/n

in X) the first bound (6.6) is satisfied by fj+1 = f0(1 + Xj)1/n. Furthermore (6.3)
may be differentiated to give

0 ≤ f ′
j+1 = f0nδ(1 +Xj)

1
n−1 rn−1eψ[fj ] ≤ f0nδ e

|ψ[fj ]| rn−1,

and this derivative is continuous with f ′
j+1(r) ≤ f0nδe r

n−1 = M̃rn−1 as required,
which completes the induction.

Remark. We can further assert that the functions fj are analytic on the interval,
with Taylor series at the origin given by

fj(r) = f0 + f0δr
n + O(rn+1), j = 1, 2, . . . , (6.10)

since from (6.3) they are defined recursively by successive integrations of analytic
functions starting from the constant function f0. However, this is not needed for
what follows.

Theorem 6.3. The sequence of functions {fj(r)}∞j=0 defined on [0, R] by the
recurrence (6.3) as in Proposition 6.2 converges uniformly on [0, R) to the function
f∞(r) which is a solution of the ODE (2.2) on this interval (except for the singular
point r = 0).

Proof. We take the inductive hypothesis

|fj+1(r) − fj(r)| ≤ f0δ
rn+j

Rj
(6.11)

for r ∈ [0, R]. By the Mean Value Theorem

(1 +X)1/n − (1 + Y )1/n = (1 + Z)1/n−1(X − Y )/n

for some Z ∈ (X,Y ), which gives

|f1 − f0| = f0|(1 + nδrn)1/n − 1| ≤ f0δr
n

as required, and using the notation (6.9) this also implies

|fj+2 − fj+1| = f0|(1 +Xj+1)1/n − (1 +Xj)1/n|

≤ f0n
−1|Xj+1 −Xj |

= f0nδ
∣∣∫ r

0 t
n−1(eψ[fj+1](t) − eψ[fj ](t)) dt

∣∣ ,



60 A. N. W. HONE

since Xj ≥ 0 for all j as in the proof of Proposition 6.2. Thus we have

|fj+2 − fj+1| ≤ f0nδ
∫ r
0
tn−1|eψ[fj+1](t) − eψ[fj ](t)| dt

≤ f0nδe
∫ r
0 t

n−1|ψ[fj+1](t) − ψ[fj](t)| dt

= M̃
∫ r
0 t

n−1
∣∣∣∫ t0 (

κ
ns− λ

sn−1

)
(f ′
j+1(s) − f ′

j(s)) ds
∣∣∣ dt,

where the Mean Value Theorem has been used once more to bound the difference of
the two exponentials, together with the fact that | expψ[fj ](r)| ≤ e for all j by (6.8).
Integrating by parts and using the fact that |fj+1(s) − fj(s)| = O(sn+j) to evaluate
the boundary term at s = 0, then further using the inductive hypothesis (6.11) to
bound each of the terms that follow results in∣∣∣∫ t0 (

κ
ns− λ

sn−1

)
(f ′
j+1(s) − f ′

j(s)) ds
∣∣∣

=
∣∣∣∣
(
κ

n
t− λ

tn−1

)
(fj+1(t) − fj(t)) −

∫ t

0

(
κ

n
+

(n− 1)λ
sn

)
(fj+1(s) − fj(s)) ds

∣∣∣∣

≤ f0δR
−j

(
κn−1tn+j+1 + |λ|tj+1 +

∫ t
0

(
κn−1sn+j + (n− 1)|λ|sj) ds)

= f0δR
−j

(
κ(n+j+2)
n(n+j+1) t

n+j+1 + |λ|(n+j)
(j+1) tj+1

)
.

Substituting into the previous bound and integrating yields

|fj+2 − fj+1| ≤ M̃f0δR
−j

(
κ(n+j+2)

n(n+j+1)(2n+j+1)r
2n+j+1 + |λ|(n+j)

(j+1)(n+j+1)r
n+j+1

)

≤ M̃f0δR
−j

(
κ

n(n+1)R
n + |λ|

)
rn+j+1 = f0δ r

n+j+1R−(j+1),

using (6.5), and the hypothesis is proved. Hence on any interval 0 ≤ r ≤ R∗ < R the
series

∞∑
j=0

|fj+1(r) − fj(r)| ≤
∞∑
j=0

f0δ
rn+j

Rj
= f0δr

n
(
1 − r

R

)−1

≤ f0δ(R∗)n
(

1 − R∗

R

)−1

(6.12)

converges uniformly by the Weierstrass M-test. Also each of the functions fj is
positive with non-negative derivative bounded by (6.6). It follows that the se-
quence of functions converges uniformly on [0, R) to a function f∞(r) satisfying
f∞(r) ≤ f0 + f0δr

n(1 − r/R)−1. Similarly, using the inequalities

|f ′
j+1(r) − f ′

j(r)| = f0nδr
n−1

∣∣∣(1 +Xj)1/n−1eψ[fj ] − (1 +Xj−1)1/n−1eψ[fj−1]
∣∣∣

≤ f0nδr
n−1

(
eψ[fj ]|(1 +Xj)1/n−1 − (1 +Xj−1)1/n−1|+

+(1 +Xj−1)1/n−1|eψ[fj ] − eψ[fj−1]|
)

≤ f0nδer
n−1 ((1 − 1/n)|Xj −Xj−1| + |ψ[fj ] − ψ[fj−1]|)

≤ δrn−1
(
M̃(n− 1)rn + f0(n+ j + 1)

)
(r/R)j (6.13)
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it is straightforward to prove that the sequence of derivatives f ′
j converges uniformly.

The Weierstrass M-test is satisfied by bounding the sum of the two terms in (6.13) with
a geometric series and derivative of a geometric series respectively, and by standard
theorems (such as Theorem 8.1 in [13]) it follows that the sequence {f ′

j}∞j=0 has as its
limit the derivative f ′

∞. From (6.6) the limit function and its derivative satisfy the
bounds

f0 ≤ f∞(r) ≤ f0(1 + nδern)1/n, 0 ≤ f ′
∞(r) ≤ M̃rn−1. (6.14)

Clearly f∞(0) = limj→∞fj(0) = f0, and f∞ is monotone increasing. Furthermore,
note that the inequality (6.13) also implies that the sequence of functions f ′

j(r)/r
n−1

converges uniformly, and thus there is a sequence of constants εj such that

|f ′
∞(r) − fj(r)|

rn−1
≤ εj → 0 as j → ∞.

Hence

|X∞ −Xj+1| ≤ n2δ
∫ r
0 t

n−1|eψ[f∞] − eψ[fj ]| dt ≤ n2δe
∫ r
0 t

n−1|ψ[f∞] − ψ[fj]| dt
≤ n2δe

∫ r
0 t

n−1
∣∣∣∫ t0 (

κ
ns− λ

sn−1

)
(f ′∞(s) − f ′

j(s)) ds
∣∣∣ dt

≤ n2δe
∫ r
0
tn−1

(∫ t
0

(
κ
ns

n + |λ|) εj ds
)
dt→ 0 as j → ∞.

Then taking the limit j → ∞ in the right hand side of (6.3) we see that the function
f∞ satisfies the integral equation

f∞(r) = f0

(
1 + n2δ

∫ r

0

tn−1eψ[f∞](t) dt
)1/n

≡ f0(1 +X∞)1/n. (6.15)

It follows immediately that f∞ is a solution of the ODE (2.2), upon differentiating
(6.15); this is just a reversal of the steps of the proof of Proposition 6.1. This completes
the proof of the Theorem.

Corollary 6.4. The ODE (2.2) has a solution of the type (a) in Proposition 5.3,
given by the function f∞(r) from Theorem 6.3 on the interval (0, R). This solution
has the asymptotic behaviour (4.4) as r → 0 with parameter a0 = f0δ, and it has an
analytic continuation along the real axis for R ≤ r < r∗ with a singularity at some
point r = r∗.

Proof. From the Theorem and its proof, the function f∞(r) is a solution of
the ODE on (0, R) with the limit value f∞(0) = f0, which is the first term in the
asymptotic series (4.4), and by Proposition 3.1 the solution is analytic on the open
interval. The limit as r tends to zero from the right can be seen directly from the fact
that it satisfies the integral equation (6.15), with the limits X∞(r) → 0, ψ[f∞](r) → 0
as r → 0+. Differentiating (6.15) and using l’Hôpital’s rule gives

lim r→0+
(f∞(r) − f0 − f0δr

n)
rn

= lim r→0+
(f ′

∞(r) − f0δnr
n−1)

nrn−1

= lim r→0+ f0δ

(
eψ[f∞](r)

(1 +X∞(r))1−1/n
− 1

)
= 0,

which gives the second nonzero term in (4.4), with the coefficient of rn being a0 = f0δ.
It is clear that f∞(r) is C∞ at the endpoint r = 0, by repeated differentiation of (6.15),
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since all the right limits exist as r → 0+, and thus the terms in the series (4.4) can be
obtained recursively from the integral equation. Given that derivatives of all orders
exist, this is just the Taylor series at the endpoint r = 0. Although the function f∞
has been constructed as the limit of a uniformly convergent sequence upper bounded
by a geometric series (6.12) that diverges at r = R, the bounds (6.14) imply that the
limit values f∞(R) and f ′

∞(R) must be finite. Thus by Proposition 3.1, taking these
limits as initial data at the point η = R, the solution of the ODE can be analytically
continued to r > R, up to a minimum distance ρ given by (3.3). Then by Proposition
5.1 it must reach a singularity at a point r∗ ≥ R+ ρ.

Remark. Due to the remark by one of the referees, that setting f(r) = f0+rnψ(r)
leads to a regular singularity in ψ(r) at r = 0, further results on asymptotic series
(see e.g. [37, 35]) mean that the solution of the ODE can be analytically continued
off the positive semi-axis to a disc around r = 0, in which case this is just a removable
singularity and (4.4) acquires the status of a convergent Taylor series. It would be
interesting to attempt to bound this series by direct estimates.

7. Conclusions. For any dimension n > 1, new solutions of Abreu’s equation
(1.7) have been found by making a similarity reduction to O(n) invariant solutions.
The similarity solutions are determined in terms of a single function f(r) depending
only on the radial coordinate r, which satisfies a second order ODE (2.2) including an
arbitrary parameter λ. Due to a singularity in the ODE at the origin, a standard initial
value problem is not defined at r = 0. Nevertheless we have shown that there is a class
of solutions, with f(r) being positive and monotone increasing, that exist on some
interval (0, r∗), having a finite limit as r → 0+ and a singularity at r = r∗. For these
solutions, the Hessian H(r) is positive definite on this interval, and its matrix elements
ujk (1.3) define a metric (1.2) on the interior of a ball of radius r∗ in Rn. Although
this is not specifically relevant to the case of toric varieties, where Abreu’s equation
(1.7) is solved on a polytope P , it fits within the more general setting outlined in [11],
with the Mabuchi functional F (1.8) defined on a bounded open convex subset of Rn.
This raises the question of whether a rotation invariant solution might be a minimizer
of F defined on the ball. However, whether the corresponding metric (1.2) on the
interior of the ball could be extended to a metric on a 2n-dimensional symplectic
manifold is uncertain.

It would also be interesting to find an analogue of Theorem 6.3 for consideration
of the other asymptotic behaviours at the origin, i.e. cases (b) and (c) in Proposition
4.1. However, in that case the Hessian and inverse Hessian of u would no longer both
be finite at r = 0.

There are many remarkable connections between integrable systems and differen-
tial geometry [7], going back to classical work of Darboux and Bianchi on the geom-
etry of surfaces. There is considerable evidence [2] that the concept of integrability
is strongly related to the Painlevé property, that the general solution of an equation
should have only poles as movable singularities. Recently the Painlevé property (or a
weaker version thereof) has been used to derive explicit metrics for relativistic fluids
[15]. The various Painlevé tests are good heuristic tools for analysing ordinary and
partial differential equations, and have been used to isolate new integrable systems
(see chapter 7 of [3] for a review).

The motivation behind the preceding analysis was to see whether the elegant
fourth order PDE (1.7) might be integrable, by examining the singularity structure
of the similarity reduction in the light of the Ablowitz-Ramani-Segur conjecture [2].
The ODE (2.2) has not only algebraic branching (4.14) but also movable logarithmic
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branch points (4.15), and so certainly fails the standard Painlevé test or its weak
extension [32]. This would seem to indicate that Abreu’s equation (1.7) is not inte-
grable. However, as originally emphasized by the authors of [2], the Painlevé property
is extremely sensitive to changes of variables. For example, transformations of hodo-
graph type can change equations with movable algebraic branch points into equations
that have only poles [9, 18]. It has also been observed [31] that when an equation is
written in potential form it can have a single (or finitely many) logarithmic terms in
a local expansion around singular points, and still be integrable.

In the case of the KP equation (1.10), the potential w is given by the logarithmic
derivative of the tau-function:

w = − ∂

∂x
log τ.

The tau-function for the rational solutions (1.11) takes the form

τ =
d∏
l=1

(x− xl(t)),

and this is a polynomial both in x and the times t. For the more general algebro-
geometric solutions of KP [24], the tau-function is a theta-function of an arbitrary
Riemann surface. The rational and soliton solutions arise as degenerate limits of
the theta-functions. It would be interesting to see if Abreu’s equation could admit
quasiperiodic generalizations of (1.9), by dropping the extremality condition (1.5) on
the the curvature, allowing S in (1.1) to be a (non-constant) periodic function.

Other methods of testing for integrability might provide useful information about
Abreu’s equation. Since (1.7) is not of evolution type, a promising method would be
the symmetry approach of Shabat et al [27], which has recently been extended [28] in
order to deal with non-evolutionary equations. It would also be interesting to apply
the methods of [30] to look for other sorts of group invariant solutions of Abreu’s
equation.
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