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TWO SHARP OSTROWSKI-LIKE INEQUALITIES
AND APPLICATIONS ∗

NENAD UJEVIĆ†

Abstract. Two sharp inequalities are derived. The first of them is a sharp inequality which
gives an error bound for a Gauss-Legendre quadrature rule. The second is a sharp inequality which
gives an error bound for a Radau quadrature rule. These inequalities enlarge the applicability of the
corresponding quadrature rules with respect to the obtained error bounds. Applications in numerical
integration are also given.

1. Introduction. In recent years a number of authors have considered inequali-
ties which give explicit error bounds for some known and some new quadrature formu-
las. For example, the Simpson’s inequality (which gives an error bound for the well-
known Simpson’s rule) is considered in [1], [4], [5], [7], [8] and [13]. Some Gaussian
and Gaussian-like quadrature rules are considered in [14]. Inequalities of Ostrowski
type are considered in [2], [5], [7] and [13].

In this paper we first derive a sharp inequality for absolutely continuous functions
with derivatives which belong to L2(a, b). The sharpness is demonstrated by showing
an equality for a particular absolutely continuous function. This inequality gives an
error bound for a Gauss-Legendre quadrature rule.

Second, we derive a sharp inequality which gives an error bound for a Radau
quadrature rule. It is obtained for the same class of functions as the above mentioned
inequality. The sharpness is demonstrated by showing an equality for a particular
absolutely continuous function, too.

The above mentioned results, which will be derived in this paper, enlarge ap-
plicability of the underlying quadrature rules. Namely, using the obtained estimates
we can apply these rules to a larger class of functions than previous obtained results
ensured. It is shown that the obtained inequalities can be applied in some cases where
the above mentioned inequalities cannot be applied. Similar results, which enlarge
the applicability of the trapezoidal rule and Simpson’s rule, can be found in [3].

Finally, applications in numerical integration are given.

2. Main results.

Lemma 1. Let

f(t) =
{

f1(t), t ∈ [a, x0]
f2(t), t ∈ (x0, b]

, (1)

where x0 ∈ (a, b), f1 ∈ C1(a, x0), f2 ∈ C1(x0, b) and f1(x0) = f2(x0) If

α1 = sup
t∈(a,x0)

|f ′
1(t)| < ∞ (2)

and

α2 = sup
t∈(x0,b)

|f ′
2(t)| < ∞ (3)
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then f is an absolutely continuous function.

The proof may be easily done utilizing elementary analysis. We omit the details.

Remark 2. Let

f(t) =

⎧⎨
⎩

f1(t), t ∈ [a, x1]
f2(t), t ∈ (x1, x2)
f3(t), t ∈ [x2, b] ,

where a < x1 < x2 < b, f1 ∈ C1(a, x1), f2 ∈ C1(x1, x2), f3 ∈ C1(x2, b) and f1(x1) =
f2(x1), f2(x2) = f3(x2). If

sup
t∈(a,x1)

|f ′
1(t)| < ∞,

sup
t∈(x1,x2)

|f ′
2(t)| < ∞,

sup
t∈(x2,b)

|f ′
3(t)| < ∞

then the above function f is an absolutely continuous function.

We define the Chebyshev functional

T (f, g) =
1

b − a

b∫
a

f(t)g(t)dt − 1
(b − a)2

b∫
a

f(t)dt

b∫
a

g(t)dt.

Then

T (f, f) =
1

b − a
‖f‖2

2 −
1

(b − a)2

⎛
⎝ b∫

a

f(t)dt

⎞
⎠

2

.

We also define

σ(f) = (b − a)T (f, f) (4)

and

S(f, g) = (b − a)T (f, g).

Theorem 3. Let f : [−1, 1] → R be an absolutely continuous function whose
derivative f ′ ∈ L2(−1, 1) and x1 = −

√
3

3 , x2 =
√

3
3 . Then∣∣∣∣∣∣f(x1) + f(x2) −

1∫
−1

f(t)dt

∣∣∣∣∣∣ ≤
√

4 − 2
√

3
3

σ(f ′)1/2, (5)

where σ is defined by (4). Inequality (5) is sharp in the sense that the constant√
4−2

√
3

3 cannot be replaced by a smaller one.
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Proof. We define the function

K(t) =

⎧⎨
⎩

t + 1, t ∈ [−1, x1]
t, t ∈ (x1, x2)
t − 1, t ∈ [x2, 1]

. (6)

Integrating by parts, we obtain

1∫
−1

K(t)f ′(t)dt =

x1∫
−1

(t + 1)f ′(t)dt +

x2∫
x1

tf ′(t)dt +

1∫
x2

(t − 1)f ′(t)dt (7)

= f(x1) + f(x2) −
1∫

−1

f(t)dt.

We also have

1∫
−1

K(t)f ′(t)dt (8)

=

1∫
−1

⎡
⎣K(t) − 1

2

1∫
−1

K(s)ds

⎤
⎦

⎡
⎣f ′(t) − 1

2

1∫
−1

f ′(s)ds

⎤
⎦ dt

= 2T (K, f ′) = S(K, f ′),

since in this case a = −1, b = 1, and

1∫
−1

K(t)dt = 0. (9)

We now estimate

S(K, f ′)2 (10)

=

⎧⎨
⎩

1∫
−1

⎡
⎣K(t) − 1

2

1∫
−1

K(s)ds

⎤
⎦

⎡
⎣f ′(t) − 1

2

1∫
−1

f ′(s)ds

⎤
⎦ dt

⎫⎬
⎭

2

≤
1∫

−1

⎡
⎣K(t) − 1

2

1∫
−1

K(s)ds

⎤
⎦

2

dt

1∫
−1

⎡
⎣f ′(t) − 1

2

1∫
−1

f ′(s)ds

⎤
⎦

2

dt

=
4 − 2

√
3

3
S(f ′, f ′),

since

1∫
−1

⎡
⎣K(t) − 1

2

1∫
−1

K(s)ds

⎤
⎦

2

dt =
4 − 2

√
3

3
. (11)

From (7)-(11) we see that (5) holds.
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We have to prove that (5) is sharp. For that purpose, we define the function

f(t) =

⎧⎨
⎩

1
2 (t + 1)2, t ∈ [−1, x1]
1
2 t2 + x1 + 1

2 , t ∈ (x1, x2)
1
2 (t − 1)2, t ∈ [x2, 1]

. (12)

The function f , given by (12), is an absolutely continuous function (see Remark 2).
We now calculate

1∫
−1

f(t)dt (13)

=

x1∫
−1

1
2
(t + 1)2dt +

x2∫
x1

[
1
2
t2 + x1 +

1
2

]
dt +

1∫
x2

1
2
(t − 1)2dt = 0

and

f(x1) + f(x2) =
4 − 2

√
3

3
. (14)

From (13) and (14) we find that the left-hand side of (5) is equal to

L.H.S.(5) =
4 − 2

√
3

3
. (15)

On the other hand, for the right-hand side of (5) we find

R.H.S.(5) (16)

=

1∫
−1

f ′(t)2dt =

1∫
−1

K(t)2dt =
4 − 2

√
3

3
.

From (15) and (16) we see that L.H.S.(5) = R.H.S.(5), if the function f is given by
(12). This completes the proof.

Theorem 4. Let f : [−1, 1] → R be an absolutely continuous function whose
derivative f ′ ∈ L2(−1, 1) and x1 = −1, x2 = 1

3 . Then

∣∣∣∣∣∣
1
2
f(x1) +

3
2
f(x2) −

1∫
−1

f(t)dt

∣∣∣∣∣∣ ≤
1√
3
σ(f ′)1/2, (17)

where σ is defined by (4). Inequality (17) is sharp in the sense that the constant 1/
√

3
cannot be replaced by a smaller one.

Proof. We define the function

K(t) =
{

t + 1
2 , t ∈ [−1, x2]

t − 1, t ∈ [x2, 1] . (18)
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Integrating by parts, we obtain

1∫
−1

K(t)f ′(t)dt =

x2∫
−1

(t +
1
2
)f ′(t)dt +

1∫
x2

(t − 1)f ′(t)dt (19)

=
1
2
f(x1) +

3
2
f(x2) −

1∫
−1

f(t)dt.

We also have

1∫
−1

K(t)f ′(t)dt (20)

=

1∫
−1

⎡
⎣K(t) − 1

2

1∫
−1

K(s)ds

⎤
⎦

⎡
⎣f ′(t) − 1

2

1∫
−1

f ′(s)ds

⎤
⎦ dt

= 2T (K, f ′) = S(K, f ′),

since in this case a = −1, b = 1 and

1∫
−1

K(t)dt = 0. (21)

We now estimate

S(K, f ′)2 (22)

=

⎧⎨
⎩

1∫
−1

⎡
⎣K(t) − 1

2

1∫
−1

K(s)ds

⎤
⎦

⎡
⎣f ′(t) − 1

2

1∫
−1

f ′(s)ds

⎤
⎦ dt

⎫⎬
⎭

2

≤
1∫

−1

⎡
⎣K(t) − 1

2

1∫
−1

K(s)ds

⎤
⎦

2

dt

1∫
−1

⎡
⎣f ′(t) − 1

2

1∫
−1

f ′(s)ds

⎤
⎦

2

dt

=
1
3
S(f ′, f ′),

since

1∫
−1

⎡
⎣K(t) − 1

2

1∫
−1

K(s)ds

⎤
⎦

2

dt =
1
3
. (23)

From (19)-(23) we see that (17) holds.
We have to prove that (17) is sharp. For that purpose, we define the function

f(t) =
{

1
2 (t + 1

2 )2, t ∈ [−1, x2]
1
2 (t − 1)2 + 1

8 , t ∈ [x2, 1] . (24)

The function f , given by (24), is an absolutely continuous function (see Lemma 1).
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We now calculate

1∫
−1

f(t)dt (25)

=

1
3∫

−1

1
2
(t +

1
2
)2dt +

1∫
1
3

(
1
2
(t − 1)2 +

1
8
)dt =

1
4

and

1
2
f(x1) +

3
2
f(x2) =

7
12

. (26)

From (25) and (26) we find that the left-hand side of (17) is equal to

L.H.S.(17) =
1
3
. (27)

On the other hand, for the right-hand side of (17) we find

R.H.S.(17) (28)

=

1∫
−1

f ′(t)2dt =

1∫
−1

K(t)2dt =
1
3
.

From (27) and (28) we see that L.H.S.(17) = R.H.S.(17), if the function f is given
by (24). This completes the proof.

The estimations (5) and (17) are not the best possible. We have better estimations
of errors. For example, in [15] we can find the following results. Let I be an open
interval and [−1, 1] ⊂ I. If f : I → R is a differentiable function and there exist real
numbers γ,Γ such that γ ≤ f ′(t) ≤ Γ, t ∈ [−1, 1] then we have∣∣∣∣∣∣f(x1) + f(x2) −

1∫
−1

f(t)dt

∣∣∣∣∣∣ ≤
Γ − γ

6
(5 − 2

√
3), (29)

where x1 = −
√

3
3 and x2 =

√
3

3 and∣∣∣∣∣∣
1
2
f(x1) +

3
2
f(x2) −

1∫
−1

f(t)dt

∣∣∣∣∣∣ ≤
25
72

(Γ − γ) , (30)

where x1 = −1 and x2 = 1
3 .

It is obvious that (29) and (30) are better than (5) and (17), respectively. How-
ever, we also have the following example.

Example 5. Let us consider the integral
1∫
0

3
√

sin t2dt. We have

f(t) = 3
√

sin t2 and f ′(t) =
2t cos t2

3 3
√

sin2 t2
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such that f ′(t) → ∞, t → 0 and we cannot apply the estimates (29) and (30). On
the other hand, we have

1∫
0

[f ′(t)]2 dt ≤ 4
9

max
t∈[0,1]

t2 cos t2

sin t2

1∫
0

dt
3
√

sin t2
≤ 16

9
,

i.e. ‖f ′‖2 ≤ 4
3 and we can apply the estimates (5) and (17).

Remark 6. Hence, although the estimates (29) and (30) are better than the
estimates (5) and (17) the last mentioned estimates have their field of application.
Furthermore, they are sharp and they are proved for a larger class of functions.

3. Composite quadrature rules. With the aid of the quadrature formulas
given in Theorems 3 and 4, which will be called canonical, we can form the composite
quadrature formulas on an arbitrary interval [a, b]. To this end, divide the interval
[a, b] into n equal subintervals [xk,xk+1], xk = a+ k(b− a)/n, k = 0, 1, 2, ..., n− 1 and
xn = b. On each subinterval [xk,xk+1] we specify two nodes

xkj
=

xk + xk+1

2
+ yj

b − a

2n
, j = 1, 2, (31)

where yj are the nodes of the corresponding canonical formulas. By virtue of this, we
get the quadrature formula

xk+1∫
xk

f(t)dt =
b − a

n

2∑
j=1

wjf(xkj
) + Rk(f), (32)

where wj are the weights of the corresponding canonical formulas. Summing the
relation (32) over k from 0 to n − 1, we obtain the composite quadrature formula

b∫
a

f(t)dt =
b − a

n

2∑
j=1

wj

n−1∑
k=0

f(xkj
) + R(f). (33)

We define

σn(f) =
n−1∑
k=0

√
b − a

n
‖f ′‖2

2 − [f(xk+1) − f(xk)]2 (34)

and

ωn(f) =
[
(b − a) ‖f ′‖2

2 −
1
n

(f(xn) − f(x0))
2

]1/2

. (35)

Theorem 7. Under the notations defined above let f : [a, b] → R be an absolutely
continuous function such that f ′ ∈ L2(a, b). Then∣∣∣∣∣∣

b∫
a

f(t)dt − h

2

n−1∑
k=0

[f(xk1) + f(xk2)]

∣∣∣∣∣∣ ≤
b − a

2
√

3n

√
2 −

√
3σn(f) (36)

≤ b − a

2
√

3n

√
2 −

√
3ωn(f),
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where

xk1 =
xk + xk+1

2
−

√
3

6
h, xk2 =

xk + xk+1

2
+

√
3

6
h

and h = (b − a)/n.

Proof. From (31), (32) and Theorem 3 we have

xk+1∫
xk

f(t)dt =
h

2
[f(xk1) + f(xk2)] + Rk(f), (37)

where

|Rk(f)| ≤ h3/2

2
√

3

√
2 −

√
3σ(f ′)1/2. (38)

If we now sum (37) over k from 0 to n − 1 then we get

b∫
a

f(t)dt =
h

2

n−1∑
k=0

[f(xk1) + f(xk2)] +
n−1∑
k=0

Rk(f). (39)

From (39) and (38) we easily find that the first inequality in (36) holds.
Using the Cauchy inequality we get

σn(f) =
n−1∑
k=0

√
b − a

n
− [f(xk+1) − f(xk)]2

≤ √
n

[
(b − a) ‖f ′‖2

2 −
n−1∑
k=0

[f(xk+1) − f(xk)]2
]1/2

≤ √
n

√
(b − a) ‖f ′‖2

2 −
1
n

(f(xn) − f(x0))
2
,

since

n−1∑
k=0

[f(xk+1) − f(xk)] = f(xn) − f(x0).

This proves the second inequality in (36).

Theorem 8. Under the assumptions of Theorem 7 we have∣∣∣∣∣∣
b∫

a

f(t)dt − h
N−1∑
k=0

[
1
4
f(xk1) +

3
4
f(xk2)

]∣∣∣∣∣∣ ≤
b − a

2
√

6n
σn(f) (40)

≤ b − a

2
√

6n
ωn(f),

where

xk1 = xk, xk2 =
xk + xk+1

2
− h

6
.
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Proof. From (31), (32) and Theorem 4 we have

xk+1∫
xk

f(t)dt = h

[
1
4
f(xk1) +

3
4
f(xk2)

]
+ Rk(f), (41)

where

|Rk(f)| ≤ h3/2

2
√

6
σ(f ′)1/2. (42)

If we now sum (41) over k from 0 to n − 1 then we get

b∫
a

f(t)dt = h
n−1∑
k=0

[
1
4
f(xk0) +

3
4
f(xk1)

]
+

n−1∑
k=0

Rk(f). (43)

From (43) and (42) we easily find that the first inequality in (40) holds. A proof of
the second inequality is similar to the prof of second inequality in Theorem 7.

Remark 9. The second inequalities in (36) and (40) are coarser than the first
inequalities. They may be used to predict the number of steps needed in the compound
rule for a given accuracy of the approximations. Of course, we shall use the first in-
equalities in (36) and (40) to obtain the error bounds. Note also that in this last case

we use the same values f(xi) to calculate the approximations of the integral
b∫

a

f(t)dt

and to obtain the error bounds and recall that function evaluations are generally con-
sidered the computationally most expensive part of quadrature algorithms.

REFERENCES

[1] P. Cerone, Three points rules in numerical integration, Nonlinear Anal.-Theory Methods
Appl., 47:4 (2001), pp. 2341–2352.

[2] X. L. Cheng, Improvement of some Ostrowski-Grüss type inequalities, Comput. Math. Appl.,
42 (2001), pp. 109–114.

[3] D. Cruz-Uribe and C. J. Neugebauer, Sharp error bounds for the trapezoidal rule and Simp-
son’s rule, J. Inequal. Pure Appl. Math., 3(4), Article 49, (2002), pp. 1–22.

[4] S. S. Dragomir, R. P. Agarwal and P. Cerone, On Simpson’s inequality and applications,
J. Inequal. Appl., 5 (2000), pp. 533–579.

[5] S. S. Dragomir, P. Cerone and J. Roumeliotis, A new generalization of Ostrowski’s inte-
gral inequality for mappings whose derivatives are bounded and applications in numerical
integration and for special means, Appl. Math. Lett., 13 (2000), pp. 19–25.

[6] S. S. Dragomir and S. Wang, An inequality of Ostrowski–Grüss type and its applications to
the estimation of error bounds for some special means and for some numerical quadrature
rules, Comput. Math. Appl., 33 (1997), pp. 16–20.

[7] S. S. Dragomir, J. Pečarić and S. Wang, The unified treatment of trapezoid, Simpson
and Ostrowski type inequalities for monotonic mappings and applications, Math. Comput.
Modelling, 31 (2000), pp. 61–70.

[8] I. Fedotov and S. S. Dragomir, An inequality of Ostrowski type and its applications for
Simpson’s rule and special means, Math. Inequal. Appl., 2:4 (1999), pp. 491–499.

[9] A. Ghizzetti and A. Ossicini, Quadrature formulae, Birkhäuser Verlag, Basel/Stuttgart, 1970.
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