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CAPPING OFF OPEN BOOKS AND THE
OZSVÁTH–SZABÓ CONTACT INVARIANT

John A. Baldwin

If (S, φ) is an open book with disconnected binding, then we can form
a new open book (S′, φ′) by capping off one of the boundary compo-
nents of S with a disc. Let MS,φ denote the 3-manifold with open book
decomposition (S, φ). We show that there is a U -equivariant map from
HF+(−MS′,φ′) to HF+(−MS,φ) which sends c+(S′, φ′) to c+(S, φ),
and we discuss various applications. In particular, we determine the
support genera of almost all contact structures that are compatible
with genus one, one boundary component open books. In addition, we
compute d3(ξ) for every tight contact manifold (M, ξ) supported by a
genus one open book with periodic monodromy.

1. Introduction

Giroux’s correspondence between contact structures up to isotopy and open
books up to positive stabilization allows us to translate questions from
contact geometry into questions about diffeomorphisms of compact surfaces
with boundary [16]. As a result, one is inclined to wonder about the contact-
geometric significance of certain natural operations which can be performed
on open books. For instance, let us define the “composition” of two open
books (S, φ1) and (S, φ2) to be the open book (S, φ1 ◦φ2). In [3], we use the
Ozsváth–Szabó contact invariant (see [31]) to study the relationship between
the contact structures supported by two such open books and the contact
structure supported by their composition. There, we prove the following.

Theorem 1.1 ([3]). If c(S, φ1) and c(S, φ2) are both non-zero, then so is
c(S, φ1 ◦ φ2).

In particular, Theorem 1.1 implies that if the contact structures supported
by (S, φ1) and (S, φ2) are both strongly fillable, then the contact structure
supported by (S, φ1 ◦φ2) is tight. (Work by Baldwin [5] and, independently,
by Baker et al. [1] has since greatly strengthened this result.)
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In this paper, we use the Ozsváth–Szabó contact invariant to study the
geometric effect of another natural operation on open books called “capping
off.” Consider the open book (Sg,r, φ), where Sg,r is a genus g surface with
r > 1 boundary components and φ is a diffeomorphism of Sg,r, which fixes
the boundary pointwise. By capping off one of the boundary components
of Sg,r with a disc, we obtain an open book (Sg,r−1, φ

′), where φ′ is the
extension of φ to Sg,r−1 by the identity on this disc. Let MS,φ denote the
3-manifold with open book decomposition (S, φ). There is a natural cobor-
dismW fromMSg,r,φ toMSg,r−1,φ′ obtained by attaching a 0-framed 2-handle
along the binding component in MSg,r,φ corresponding to the capped off
boundary component of Sg,r. Alternatively, we can think of W as a cobor-
dism from −MSg,r−1,φ′ to −MSg,r,φ. Our main theorem is the following.

Theorem 1.2. There exists a Spinc structure s0 on W for which the map

F+
W,s0

: HF+(−MSg,r−1,φ′) → HF+(−MSg,r,φ)

sends c+(Sg,r−1, φ
′) to c+(Sg,r, φ).

In some sense, Theorem 1.2 generalizes Ozsváth and Szabó’s original def-
inition of the contact invariant. Their definition begins with the fact that
every contact structure is supported by an open book of the form (Sg,1, φ) for
some g > 1. By capping off the one boundary component of Sg,1, we obtain
a closed surface Sg,0. If MSg,0,φ′ is the corresponding fibered 3-manifold
and t is the Spinc structure on MSg,0,φ′ represented by a vector field trans-
verse to the fibers, then HF+(−MSg,0,φ′ , t) is generated by a single element
c+(Sg,0, φ′) [30]. In [31], Ozsváth and Szabó define the contact invariant
c+(Sg,1, φ) to be the image of this element c+(Sg,0, φ′) under the map

F+
V : HF+(−MSg,0,φ′) → HF+(−MSg,1,φ)

induced by the corresponding 2-handle cobordism V .
At first glance, this 2-handle attachment does not seem like a very natural

contact-geometric operation, although Eliashberg proves in [10] that there
is a symplectic form Ω on the cobordism V which is positive on the fibers
of the fibration MSg,0,φ′ → S1, and for which the contact 3-manifold sup-
ported by (Sg,1, φ) is a weakly concave boundary component of (V,Ω). One
expects that a similar construction should produce a symplectic structure
on the cobordism W considered in Theorem 1.2. In fact, since this paper
first appeared, Gay and Stipsicz have shown that one can find a symplectic
form on W for which the contact 3-manifolds supported by (Sg,r, φ) and
(Sg,r−1, φ

′) are strongly concave and strongly convex, respectively, as long
as certain homological conditions are met [15] (cf. also [38]). On the other
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hand, the contact invariant in Heegaard Floer homology is not known, in
general, to behave naturally with respect to the map induced by a strong
symplectic cobordism, and so Theorem 1.2 provides new information in this
regard.1

Below, we explore some consequences and potential applications of
Theorem 1.2, and we discuss some natural questions that arise from
this result. To begin with, consider the following immediate corollary of
Theorem 1.2.

Corollary 1.3. If c+(Sg,r−1, φ
′) = 0 then c+(Sg,r, φ) = 0.

This prompts the question below.

Question 1.4. Is the contact structure supported by (Sg,r, φ) overtwisted
whenever the contact structure supported by (Sg,r−1, φ

′) is?

This question has recently been answered in the negative by the author
and Etnyre: in [6], we provide an infinite family of genus one, two bound-
ary component open books that support tight contact structures but whose
once-capped-off open books support overtwisted contact structures. Further-
more, we show that capping off is equivalent to performing an admissible
transverse surgery on the relevant binding component, proving that admis-
sible transverse surgery (the transverse analog of Legendrian surgery) does
not preserve tightness. In the same paper, we use Corollary 1.3 to provide
the first examples of hyperbolic, universally tight contact manifolds that are
not weakly fillable.

It is our hope that Corollary 1.3 will also be useful in understanding tight
contact structures supported by genus one open books. For example, the
genus one, one boundary component open books which support tight contact
structures are classified in [2, 17, 19]. Combined with this classification,
Corollary 1.3 places concrete restrictions on genus one open books with
multiple boundary components, which can support tight contact structures.
Similarly, Lekili has since used Corollary 1.3 to find a planar open book with
four boundary components which is right-veering and non-destabilizable,
but supports an overtwisted contact structure [22], answering a question of
Honda [17].

1By contrast, the contact invariant in monopole Floer homology is known to behave
naturally with respect to maps induced by exact symplectic cobordisms and certain strong
symplectic cobordisms; see [24]. See also [20].
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If W is the 2-handle cobordism in Theorem 1.2, then the map F+
W

(summing over all Spinc structures) fits into a surgery exact triangle,

HF+(−MSg,r−1,φ′)
F+

W �� HF+(−MSg,r,φ)

F+
X

����
��

��
��

��
��

HF+(−MSg,r,φ·t−1
γ

),

��������������

where t−1
γ is a left-handed Dehn twist around a curve γ parallel to the

boundary component B that we are capping off [28]. In this triangle, X is
the cobordism obtained by attaching a (−1)-framed 2-handle to −MSg,r,φ

along the binding component corresponding to B. According to the following
theorem, the contact invariant behaves naturally under the map induced by
X as well (strictly speaking, the theorem below is only proved in [17] for
curves γ, which are non-separating, but as long as r > 1, we can stabilize
the open book and then apply the result from [17]).

Theorem 1.5 ([17,31]). The map F+
X sends c+(Sg,r, φ) to c+(Sg,r, φ · t−1

γ ).

The surgery exact triangle has proved to be one of the most versatile tools
in Heegaard Floer homology. One therefore expects that the triangle above,
combined with Theorems 1.2 and 1.5, may be used to provide interesting
contact-geometric information in many settings. For example, we obtain the
following obstruction to there being a Stein structure on W (it is clear that
the 2-handle attachment used to form W cannot locally be done in a Stein
way; however, it may sometimes be possible to globally construct such a
Stein structure).

Corollary 1.6. The cobordism W : MSg,r,φ →MSg,r−1,φ′ has a Stein struc-
ture compatible with the contact structures on either end only if c+(Sg,r, φ ·
t−1
γ ) = 0.

For, if W has a Stein structure, then the map F+
W sends c+(Sg,r−1, φ

′) to
c+(Sg,r, φ) (see [31]), and the exactness of the triangle above implies that

c+(Sg,r, φ · t−1
γ ) = F+

X (c+(Sg,r, φ)) = 0.

Below, we describe a consequence of Theorem 1.2 for contact surgery on
stabilized Legendrian knots. Suppose K is an oriented Legendrian knot in
(M, ξ), and let (M±1(K), ξ±1(K)) be the contact 3-manifold obtained from
(M, ξ) via contact ±1-surgery on K. We denote by S+(K) and S−(K) the
positive and negative Legendrian stabilizations of K, as defined in [13]. Let
K ′ be either S+(K) or S−(K). As we shall see in Section 3, the following is
a special case of Theorem 1.2.
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Theorem 1.7. There is a U -equivariant map F+ : HF+(−M±1(K)) →
HF+(−M±1(K ′)), which sends c+(ξ±1(K)) to c+(ξ±1(K ′)).

Theorem 1.7 has since been used by Lisca and Stipsicz to study a new
transverse invariant, which they define in [23].

The operation of capping off is closely related to the operation of glu-
ing two open books together along some proper subset of their binding
components. More precisely, suppose that (S, φ) and (S′, φ′) are two open
books such that either S or S′ has more than n boundary components. Let
B1, . . . , Bn and B′1, . . . , B′n denote boundary components of S and S′, respec-
tively. One forms a surface S′′ by gluing S to S′ by a map that identifies
Bi with B′i for each i = 1, . . . , n. Moreover one can define a diffeomorphism
φ′′ of S′′ whose restriction to S ⊂ S′′ is φ and whose restriction to S′ ⊂ S′′
is φ′′. We say that (S′′, φ′′) is an open book obtained by gluing (S, φ) to
(S′, φ′).

Remark 1.8. When n = 1, the 3-manifold MS′′,φ′′ is homeomorphic to
that corresponding to the contact fiber sum of the open books (S, φ) and
(S′, φ′) (see [37] for a recent application of contact fiber sum). In contrast,
the contact structure supported by the glued open book (S′′, φ′′) is generally
different from that associated to the contact fiber sum.

We discuss the relationship between capping off and gluing in more
detail in Section 4; in particular, we prove the following consequence of
Theorem 1.2.

Theorem 1.9. Suppose that (S′′, φ′′) is an open book obtained by glu-
ing (S, φ) to (S′, φ′). If c(S, φ) and c(S′, φ′) are both non-zero, then so is
c(S′′, φ′′).

Our study of the effect of capping off on the Ozsváth–Szabó contact
invariant began as an attempt to better understand the support genus of
contact structures, as defined by Etnyre and Ozbagci in [14]. The support
genus of a contact structure ξ is defined to be the minimum, over all open
books (S, φ) compatible with ξ, of the genus of S; we denote this invariant
by sg(ξ). In 2004, Etnyre showed that all overtwisted contact structures
have support genus zero, while there are fillable contact structures with
sg(ξ) > 0 [12]. More recently, Ozsváth et al. have found a Heegaard–Floer
homology obstruction to sg(ξ) = 0. Their main result is the following.

Theorem 1.10 ( [34]). Suppose that ξ is a contact structure on the 3-
manifold M . If sg(ξ) = 0, then c+(ξ) ∈ Ud ·HF+(−M) for all d ∈ N.

Note that Theorem 1.10 follows as an immediate corollary of our
Theorem 1.2. For, if sg(ξ) = 0, then ξ is supported by an open book of
the form (S0,r, φ), and we may cap off all but one of the boundary com-
ponents of S0,r to obtain an open book (S0,1, φ

′). Since all diffeomorphisms
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of the disc S0,1 are isotopic to the identity, (S0,1, φ
′) is an open book for

S3. And, because every element of HF+(S3) is in the image of Ud for all
d ∈ N, Theorem 1.2 implies that the same is true of the contact invariant
c+(S0,r, φ) ∈ HF+(−M) (since the maps F+

W,s0
are U -equivariant).

In order to use Theorem 1.10 to prove that sg(ξ) > 0, one must be able to
show that c+(ξ) is not in the image of Ud for some d ∈ N. In practice, this
can be very difficult, although the proposition below is sometimes helpful in
this regard.

Proposition 1.11 ([30, 34]). Suppose that ξ is a contact structure on M ,
and let tξ be the Spinc structure associated to ξ. If c+(ξ) �= 0 and the first
Chern class c1(tξ) is non-torsion, then there is some d ∈ N for which c+(ξ) /∈
Ud ·HF+(−M); hence sg(ξ) > 0.

Theorem 1.2 may be used to extend the reach of this proposition a bit
further. This is illustrated by the following example in which we use a genus
one, two boundary component open book to prove that a certain genus
one, one boundary component open book (obtained from the former by
capping off) supports a contact structure (denote below by ξ′) with support
genus one.

Example 1.12. Let a, b, c and γ be the curves on S1,2 shown on the
left in Figure 1. If (M, ξ) is the contact 3-manifold supported by the open
book (S1,2, (tatb)5t2γt

2
c), then c1(tξ) is twice a generator of H1(M ; Z) ∼= Z

(see the proof of [14, Theorem 6.2]). Moreover, ξ is Stein fillable since the
diffeomorphism (tatb)5t2γt

2
c is a product of right-handed Dehn twists; hence,

c+(ξ) �= 0. By Proposition 1.11, there is some d ∈ N for which c+(ξ) /∈
Ud ·HF+(−M).

After capping off the boundary component of S1,2 labeled B, the curve c
becomes null-homotopic, and γ becomes isotopic to the curve b on S1,1. The
capped off open book is therefore (S1,1, (tatb)5t2b). If (M ′, ξ′) is the contact
3-manifold compatible with this open book, then Theorem 1.2 implies that
there is some d ∈ N for which c+(ξ′) /∈ Ud · HF+(−M ′) since the same is

Figure 1. Surfaces S1,2 and S1,1, and the curves a, b, c and γ.
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true for c+(ξ); hence, sg(ξ′) > 0. Note that we could not have drawn this
conclusion directly from Proposition 1.11 since c1(tξ′) = 0; indeed, the Spinc

structure associated to any contact structure compatible with a genus one,
one boundary component open book has trivial first Chern class [14].

In Section 7, we use Example 1.12 to determine the support genera of
almost all contact structures compatible with genus one, one boundary com-
ponent open books whose monodromies are pseudo-Anosov.

The support genus is not well understood in general, revealing a funda-
mental gap in our understanding of the link between open books and contact
geometry. To begin with, it is not known whether there exist contact struc-
tures with sg(ξ) > 1. Moreover, all of the contact structures that we know of
with sg(ξ) > 0 are at least weakly fillable. It is our hope that Theorem 1.2
may be helpful in addressing the first problem. Suppose we wished to find
an obstruction to sg(ξ) = 1. Every genus one open book can be reduced,
via capping off, to a genus one open book with one binding component, and
much is known about the contact structures compatible with (and the con-
tact invariants associated to) the latter sort of open book [2, 17, 19]. Any
property shared by the Ozsváth–Szabó invariants for such contact struc-
tures, which is preserved by the map induced by capping off, will provide
an obstruction to sg(ξ) = 1 (we used this principle above to rederive the
obstruction in Theorem 1.10 to sg(ξ) = 0).

So far, this approach has borne a very modest amount of fruit. A dif-
feomorphism φ of Sg,r is called reducible if φ is freely isotopic to a diffeo-
morphism which fixes an essential multi-curve on Sg,r (a free isotopy is not
required to fix points on ∂Sg,r). We say that φ is periodic if φm is freely
isotopic to the identity for some m ∈ N and φ is not reducible. Using the
strategy outlined above, we prove the following theorem in Section 5.

Theorem 1.13. Suppose that the contact 3-manifold (M, ξ) is supported by
a genus one open book with r binding components and periodic monodromy.
If ξ is tight, then r ≥ −1− 4d3(ξ).

Here, d3(ξ) is the “3-dimensional” invariant associated to ξ, which is well-
defined in Q as long as c1(tξ) is a torsion class. We strengthen Theorem 1.13
at the end of Section 5, giving an explicit formula for d3(ξ) whenever ξ is
supported by a genus one open book with periodic monodromy.

Related to the notion of support genus (and equally mysterious) is that of
binding number [14]. If sg(ξ) = g, then the binding number of ξ is defined
to be the minimum, over all open books (Sg,r, φ) compatible with ξ, of the
number of binding components of the open book, r; we denote this invariant
by bn(ξ). If sg(ξ) > 0 and ξ is supported by a genus one open book with
periodic monodromy, then Theorem 1.13 implies that bn(ξ) ≥ −1− 4d3(ξ).
Note that this inequality is sharp for the tight contact structure ξstd on S3,
as bn(ξstd) = 1 and d3(ξstd) = −1/2.
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If φ is neither reducible nor periodic, then φ is called pseudo-Anosov ;
these are the most abundant sort. In Section 6, we give a more intrinsic
definition of pseudo-Anosov diffeomorphisms, and we discuss properties of
these maps that are preserved under capping off.

2. Proof of Theorem 1.2

In this section, we construct a pointed Heegaard triple-diagram correspond-
ing to the capping off cobordism W and show explicitly that, for a certain
Spinc structure s0 on W , the induced map on Heegaard Floer homology
FW,s0 , obtained by counting holomorphic triangles, sends one contact invari-
ant to the other as prescribed by Theorem 1.2.

2.1. Heegaard diagrams and the contact class. Let S be a compact
surface with boundary, and suppose that φ is a diffeomorphism of S, which
restricts to the identity on ∂S. Recall that the open book (S, φ) specifies a
closed, oriented 3-manifold MS,φ = S×[0, 1]/∼, where ∼ is the identification
given by

(x, 1) ∼ (φ(x), 0), x ∈ S
(x, t) ∼ (x, s), x ∈ ∂S, t, s ∈ [0, 1].

MS,φ has a Heegaard splitting MS,φ = H1∪H2, where H1 is the handlebody
S × [0, 1/2] and H2 is the handlebody S × [1/2, 1]. Let St denote the page
S × {t}. The Heegaard surface in this splitting is

Σ := ∂H1 = S1/2 ∪ −S0.

If S = Sg,r then Σ has genus n = 2g + r − 1. To give a pointed Heegaard
diagram for MS,φ, it remains to describe the α- and β- attaching curves and
the placement of a basepoint z; the following construction is due to Honda,
Kazez and Matić [17].

Let a1, . . . , an be pairwise disjoint, properly embedded arcs in S for which
the complement S \ ∪ai is a disc. For each i = 1, . . . , n, let bi be an arc
obtained by changing ai via a small isotopy that moves the endpoints of
ai along ∂S in the direction specified by the orientation of ∂S, so that
ai intersects bi transversely in one point and with positive sign (where bi
inherits its orientation from ai). For i = 1, . . . , n, let αi and βi be the curves
on Σ defined by

αi = ai × {1/2} ∪ ai × {0},
βi = bi × {1/2} ∪ φ(bi)× {0}.

Place a basepoint z in the “big” region of S1/2 \∪αi \∪βi (that is, outside of
the thin strip regions), and let α = {α1, . . . , αn} and β = {β1, . . . , βn}. We
say that (Σ, α, β, z) is a standard pointed Heegaard diagram for the open
book (S, φ). See Figure 2 for an example.
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Figure 2. On the left is the surface S = S1,1. The figure in
the middle shows the arcs ai (in red) and bi (in blue). On the
right is a standard pointed Heegaard diagram for the open
book (S,Dx), where Dx is a right-handed Dehn twist around
the curve x.

Figure 3. The surface S = Sg,r and the curve c1. The arcs
a1, . . . , an are drawn in red.

For each i = 1, . . . , n, let yi be the intersection point on S1/2 between αi
and βi. Then y = {y1, . . . , yn} represents an intersection point between
Tβ and Tα in Symn(Σ), and we may think of [y, 0] as a cycle in
CF+(Σ, β, α, z) = CF+(−MS,φ).

Theorem 2.1 ([17, Theorem 3.1]). The image of [y, 0] in HF+(−MS,φ) is
the Ozsváth–Szabó contact class c+(S, φ).

Now suppose that S = Sg,r, and let B denote the boundary component of
S that we wish to cap off. Let a1, . . . , an (where n = 2g+ r− 1) be pairwise
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disjoint, properly embedded arcs on S so that S \ ∪ai is a disc and only a1

intersects B, as shown in Figure 3. For each i = 1, . . . , n, let bi be an arc
obtained by changing ai via a small isotopy as described above. For each
i = 2, . . . , n, let ci be an arc obtained by changing bi via a similar isotopy
(so that ci intersects each of ai and bi transversely in one point and with
positive sign; we also require that ci intersects bi first when moving away
from ∂S — this is essentially the picture in Figure 5), and let c1 be a curve
on S parallel to the boundary component B. See Figure 3 for an illustration
of the curve c1 and the arcs ai.

For i = 1, . . . , n, let αi and βi be the curves on Σ = S1/2∪−S0 defined by

αi = ai × {1/2} ∪ ai × {0},
βi = bi × {1/2} ∪ φ(bi)× {0}

as above. In addition, define

γ1 = c1 × {1/2},
and let

γi = ci × {1/2} ∪ φ(ci)× {0}
for i = 2, . . . , n. Finally, place a basepoint z in the “big” region of S1/2\∪αi\
∪βi \ ∪γi (that is, neither in one of the thin strip regions nor in the region
between B and γ1), and let α, β and γ denote the sets of attaching curves
{α1, . . . , αn}, {β1, . . . , βn} and {γ1, . . . , γn}. Then (Σ, α, β, z) is a standard
pointed Heegaard diagram for (Sg,r, φ).

Let KB denote the binding component in MSg,r,φ which corresponds to
B. Observe that β1 is a meridian of KB, and that the Heegaard diagram
(Σ, α, β \ β1) specifies the knot complement MSg,r,φ \ KB. Since γ1 is a 0-
framed longitude of KB and γi is isotopic to βi for i ≥ 2, it follows that
(Σ, α, γ) is a Heegaard diagram for the 3-manifold MSg,r−1,φ′ obtained by
performing 0-surgery on KB. In fact, it is easy to see that (Σ, α, γ, z) is
the stabilization of a standard pointed Heegaard diagram for the open book
(Sg,r−1, φ

′).
For i = 1, . . . , n, let θi, xi and yi be the points in Σ defined by

θi = βi ∩ γi ∩ S1/2,

xi = γi ∩ αi ∩ S1/2,

yi = βi ∩ αi ∩ S1/2,

and let Θ, x and y be the corresponding points in Symn(Σ) defined by

Θ = {θ1, . . . , θn} ∈ Tβ ∩ Tγ ,

x = {x1, . . . , xn} ∈ Tγ ∩ Tα,

y = {y1, . . . , yn} ∈ Tβ ∩ Tα.
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According to Theorem 2.1, the image of [y, 0] in

HF+(Σ, β, α, z) = HF+(−MSg,r,φ)

is the contact class c+(Sg,r, φ); likewise, the image of [x, 0] in

HF+(Σ, γ, α, z) = HF+(−MSg,r−1,φ′)

is c+(Sg,r−1, φ
′). Meanwhile, [Θ, 0] represents the top-dimensional genera-

tor of
HF≤0(Σ, β, γ, z) = HF≤0(#n−1(S1 × S2)).

2.2. The map induced by capping off. Suppose thatW is the cobordism
from MSg,r,φ to MSg,r−1,φ′ obtained by attaching a 0-framed 2-handle to the
knot KB in MSg,r,φ. As mentioned in the introduction, W may be viewed as
a cobordism from −MSg,r−1,φ′ to −MSg,r,φ instead. If s is a Spinc structure
on W , then the map

F+
W,s : HF+(−MSg,r−1,φ′) → HF+(−MSg,r,φ)

is induced by the chain map,

f+
W,s : CF+(−MSg,r−1,φ′) → CF+(−MSg,r,φ),

which is defined using the pointed triple-diagram (Σ, β, γ, α, z). (Technically,
this is a left-subordinate triple diagram for the cobordism W , as opposed to
the more often used notion of a right-subordinate triple-diagram. Right- and
left-subordinate diagrams induce the same maps on homology [32, Lemma
5.2].) Recall that, for v ∈ Tγ ∩ Tα,
(2.1)
f+
W,s([v, i]) =

∑
w∈Tβ∩Tα

∑
{ψ∈π2(Θ,v,w) |μ(ψ)=0, sz(ψ)=s}

(#M(ψ)) · [w, i− nz(ψ)].

In this sum, π2(Θ,v,w) is the set of homotopy classes of Whitney trian-
gles connecting Θ, v, and w, where Θ is as in the previous subsection;
μ(ψ) is the expected dimension of the moduli space, M(ψ), of holomorphic
representatives of ψ; sz(ψ) is the Spinc structure on W corresponding to
ψ; and nz(ψ) is the algebraic intersection number of ψ with the subvariety
{z} × Symn−1(Σ) ⊂ Symn(Σ). Below, we review some relevant definitions;
for more details, see [29].

Let Δ denote the 2-simplex with vertices vβ , vγ and vα labeled clockwise,
and let eβ , eγ and eα, respectively, denote the edges opposite these vertices.
A Whitney triangle connecting points r, v and w in Tβ ∩ Tγ , Tγ ∩ Tα and
Tβ ∩ Tα is a smooth map

u : Δ → Symn(Σ)

with the boundary conditions that u(vα) = r, u(vβ) = v and u(vγ) = w,
and u(eβ) ⊂ Tβ , u(eγ) ⊂ Tγ and u(eα) ⊂ Tα. See Figure 4 for a schematic
depiction of this map.
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Figure 4. A Whitney triangle.

Let D1, . . . ,Dk denote the connected regions of Σ\∪αi\∪βi\∪γi. A triply-
periodic domain for the pointed Heegaard diagram (Σ, β, γ, α, z) is a 2-chain
P =

∑
i aiDi in C(Σ; Z) whose boundary is a sum of β, γ and α curves, and

whose multiplicity at the basepoint z is 0 (the multiplicity of a 2-chain at a
point refers to the coefficient, in the 2-chain, of the region containing that
point). The diagram (Σ, β, γ, α, z) is said to be weakly-admissible if every
non-trivial triply-periodic domain has both positive and negative multiplic-
ities (this is slightly stronger than the definition of weak-admissibility given
in [29]). In general, the map f+

W,s is not well-defined unless the pointed
triple-diagram (Σ, β, γ, α) is weakly-admissible. This is, therefore, our first
consideration.

Lemma 2.2. The pointed triple-diagram (Σ, β, γ, α, z) constructed above is
weakly-admissible.

Proof of Lemma 2.2. Figure 5 shows a local picture of Σ near the intersec-
tion points θi, xi and yi for i ≥ 2. Let P be a triply-periodic domain whose
multiplicities in the regions A, B, C, D, E and F are given by the integers a,
b, c, d, e and f , respectively. Note that c = 0 since the region C contains the
basepoint. Since ∂P consists of complete β, γ and α curves, it must be that

b = d− e = −f,
a = b− d = −e.

Therefore, P has both positive and negative multiplicities unless

a = b = c = d = e = f = 0.

We perform this local analysis for each i = 2, . . . , n and conclude that either
P has both positive and negative multiplicities or ∂P is a linear combination
of the curves β1, γ1 and α1. Let us assume the latter.

Now, consider the regions labeled A, B, and C in Figure 6, and suppose
that P has multiplicities a, b and c in these regions. Again, c = 0 since region
C contains the basepoint; and a = −b. Therefore, P has both positive and
negative multiplicities unless a = b = 0, in which case ∂P is some multiple
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Figure 5. The local picture near the intersection points θi,
xi and yi for i ≥ 2. The shaded region is Δi.

of the curve γ1. Since γ1 is not null-homologous in Σ, this multiple must
be zero, which implies that P is the trivial domain. To summarize, we have
shown that P has both positive and negative multiplicities unless P is trivial.
Hence, the diagram (Σ, β, γ, α, z) is weakly-admissible.

�

Recall that a homotopy class ψ of Whitney triangles has an associated
domain D(ψ) =

∑
i npi(ψ)Di, where pi is a point in Di. For each i = 1, . . . , n,

let Δi ⊂ S1/2 be the shaded triangular region with vertices at θi, xi and yi
shown in Figures 5 and 6. Then the homotopy class ψ0 ∈ π2(Θ,x,y) with

Figure 6. The local picture near the intersection points θ1,
x1 and y1. The shaded region is Δ1.
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domain D(ψ0) = Δ1 + · · ·+Δn has a unique holomorphic representative, by
the Riemann Mapping Theorem (in particular, μ(ψ0) = 0). Let s0 denote
the Spinc structure sz(ψ0), and observe that nz(ψ0) = 0.

Proposition 2.3. Suppose that ψ is a homotopy class of Whitney trian-
gles connecting Θ, x and any other point w ∈ Tβ ∩ Tα. Let wi denote the
component of w on γi. If ψ has a holomorphic representative and satisfies
nz(ψ) = 0, then wi = yi for i = 2, . . . , n, and D(ψ) = Δ′1 + Δ2 + · · ·+ Δn,
where Δ′1 is a (possibly non-embedded) triangle in Σ \ {z} with vertices at
θ1, x1, and w1. If, in addition, sz(ψ) = s0, then ψ = ψ0 and w = y.

This proposition, together with the above remark that ψ0 has a unique
holomorphic representative, implies that the map f+

W,s0
sends [x, 0] to [y, 0],

proving Theorem 1.2.

Proof of Proposition 2.3. Suppose ψ has a holomorphic representative and
satisfies nz(ψ) = 0. Then every coefficient in the domain D(ψ) is non-
negative, and D(ψ) must have multiplicity 0 in the region containing the
basepoint z. Moreover, the oriented boundary of D(ψ) consists of arcs along
the β curves from the points w1, . . . , wn to the points θ1, . . . , θn; arcs along
the γ curves from the points θ1, . . . , θn to the points x1, . . . , xn; and arcs
along the α curves from the points x1, . . . , xn to the points w1, . . . , wn.

Let a, b, c, d, e and f be the multiplicities of D(ψ) in the regions A, B,
C, D, E and F shown in Figure 5. We have already established that c = 0.
The boundary constraints on D then imply that

a+ d = b+ 1,(2.2)
d = b+ e+ 1.

Subtracting one equation from the other, we find that a = −e. Since all
coefficients of D(ψ) are non-negative, a = e = 0. If wi �= yi, then the
constraints on ∂D(ψ) force f + d = 0, which implies that f = d = 0.
However, plugging this back into equation (2.2), together with a = 0, implies
that 0 = b+1, which contradicts the fact that b is non-negative. As a result,
it must be the case that wi = yi. Then the constraints on ∂D(ψ) (together
with the fact that e = c = 0) require that d + f = 1. Combined with
equation (2.2), this implies that d = 1 and f = b = 0. So, we have found
that d = 1 and a = b = c = e = f = 0; that is, the domain D(ψ) is locally
just Δi.

We perform this local analysis for each i = 2, . . . , n and conclude that
wi = yi for i = 2, . . . , n and that D(ψ) = Δ′1 + Δ2 + · · ·+ Δn, where Δ′1 is
a region whose oriented boundary consists of arcs along β1 from w1 to θ1;
along γ1 from θ1 to x1; and along α1 from x1 to w1. In fact, since Δ2, . . . ,Δn

are triangles in Σ and D(ψ) is the image of a map from the n-fold branched
cover of a triangle into Σ (see [29]), Δ′1 must be a (possibly non-embedded)
triangle in Σ as well which avoids the basepoint z.
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Now, suppose that ψ also satisfies sz(ψ) = s0. The only thing left to
prove is that w1 = y1 and Δ′1 = Δ1. Since sz(ψ) = s0 = sz(ψ0), it follows
from [29, Proposition 8.5] that

D(ψ)−D(ψ0) = D(φ1) +D(φ2) +D(φ3),

where φ1, φ2 and φ3 are homotopy classes of Whitney discs in π2(y,w),
π2(Θ,Θ) and π2(x,x), respectively. Since D(ψ)−D(ψ0) = Δ′1−Δ1, and γ1

is homologically independent of both α1 and β1, D(φ2) = D(φ3) = 0, and
D(φ1) is a disc in Σ \ {z} whose oriented boundary consists of arcs along α1

from y1 to w1, and arcs along β1 from w1 to y1.
Let a, b, d and e be the multiplicities of Δ′1 in the regions labeled A, B,

D and E in Figure 6 (the multiplicity of Δ′1 in region C is 0). Since Δ′1−Δ
is the disc D(φ1), the multiplicity of Δ′1 −Δ in the region labeled D must
be the same as its multiplicity in the region labeled A; that is,

(2.3) d = a− 1

(the multiplicities of Δ in these regions are 0 and 1, respectively). However,
the boundary constraints on D(ψ) imply that

a+ e = d+ 1.

Combining this equation with the former, we find that e = 0. If w1 �=
y1, then the same boundary constraints require that a + b = 0. However,
combined with equation (2.3), this implies that either a, b or d is negative,
which contradicts our assumption that ψ has a holomorphic representative.
Therefore, w1 = y1, and the boundary constraints on D(ψ) imply that

a+ b = 1.

It follows that a = 1 and b = d = 0, and, hence, that Δ′1 = Δ. Thus, ψ = ψ0,
completing the proof of Proposition 2.3. �

3. Contact surgery and Legendrian stabilization

In this section, we describe how contact ±1-surgery on a stabilized Leg-
endrian knot fits into the framework of capping off. Suppose that K is an
oriented Legendrian knot in a contact 3-manifold (M, ξ), and let R3

y denote
the quotient R3/(y ∼ y+ 1). There is a contactomorphism from a neighbor-
hood of K to (N, ξ′), where

N = {(x, y, z) ∈ R3
y |x2 + z2 < ε},

ξ′ = ker(dz+xdy), and K is sent to the image of the y-axis in N . There is a
natural “front” projection in N defined by the map which sends (x, y, z) to
(y, z). In [13], Etnyre and Honda define the positive and negative Legendrian
stabilizations of K, S+(K) and S−(K), to be the Legendrian knots in M
corresponding to the curves in N shown in Figure 7. Note that this definition
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Figure 7. The Legendrian stabilizations S+(K) and S−(K),
as seen via their front projections in N .

agrees with the usual definition of stabilization for Legendrian knots in the
standard tight contact structure on S3.

By incorporating K into the 1-skeleton of a contact cell decomposition
for (M, ξ), we can find an open book (Sg,r, φ) compatible with ξ so that K
lies on a page of this open book and the contact framing of K agrees with
the framing induced by this page. The lemma below is based upon this idea
as well.

Lemma 3.1 ([12, Lemma 3.3]). Suppose the oriented Legendrian knot K
lies on a page of the open book (Sg,r, φ). If we positively stabilize (Sg,r, φ)
twice as shown in Figure 8, then we may isotop the page of the stabilized
open book so that both S+(K) and S−(K) appear on the page as in Figure 8.
The contact framings of these stabilized Legendrian knots agree with their
page framings.

Proof of Theorem 1.7. Let (Sg,r+2, φ
′) refer to the twice stabilized open book

in Lemma 3.1, and let K ′ be either S+(K) or S−(K). We think of K ′ as
lying in a page of this open book, per Lemma 3.1. Since the contact fram-
ings of K and K ′ agree with their page framings, the contact 3-manifolds
(M±1(K), ξ±1(K)) and (M±1(K ′), ξ±1(K ′)) are supported by the open books
(Sg,r, φ · t∓1

K ) and (Sg,r+2, φ
′ · t∓1

K′ ), respectively. Note that (Sg,r, φ · t∓1
K ) is

obtained from (Sg,r+2, φ
′ · t∓1

K′ ) by capping off the boundary components

Figure 8. On the left is a neighborhood of a piece of K in
Sg,r. On the right is a portion of the twice stabilized open
book with the curves S+(K) and S−(K). We have labeled
the two new boundary components B+ and B−.
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B+ and B−. Therefore, by two applications of Theorem 1.2, there is a U -
equivariant map

F+ : HF+(−M±1(K)) → HF+(−M±1(K ′))

which sends c+(ξ±1(K)) to c+(ξ±1(K ′)). �
Theorem 1.7 has a nice interpretation in terms of contact surgery. Recall

that, for n ∈ Z<0, contact n-surgery on a Legendrian knot K ⊂ M may
be performed by stabilizing K a total of −n − 1 times to obtain K ′, and
then performing contact −1-surgery on K ′ [8,9]. In particular, such contact
surgery is not unique unless n = −1; the ambiguity corresponds to the vari-
ous ways of stabilizing K. By applying Theorem 1.7 to K ′, we obtain, under
the appropriate interpretations of the contact manifolds (Mn(K), ξn(K))
and (Mn−1(K), ξn−1(K)), a map

F+ : HF+(−Mn(K)) → HF+(−Mn−1(K)),

which sends c+(ξn(K)) to c+(ξn−1(K)).

4. Gluing open books

Let (S′′, φ′′) denote the result of gluing (S, φ) to (S′, φ′) along boundary
components B and B′ of S and S′, respectively. The open book (S′′, φ′′)
may also be obtained by taking the boundary connected sum of the open
books (S, φ) and (S′, φ′) along B and B′, and then capping off the boundary
component B#B′ of the resulting surface, as illustrated in Figure 9. Since
the boundary connected sum of these open books supports the contact con-
nected sum ξS,φ # ξS′,φ′ , Theorem 1.2 and [31, Proposition 2.1] imply the
following.

Figure 9. An example of gluing via boundary connected
sum and capping off.



542 JOHN A. BALDWIN

Figure 10. An example of self-gluing via 1-handle attach-
ment and capping off.

Lemma 4.1. Suppose that (S′′, φ′′) is the open book obtained by gluing (S, φ)
to (S′, φ′) along boundary components B,B′. If c(S, φ) and c(S′, φ′) are both
non-zero, then so is c(S′′, φ′′).

One further observation is needed to complete the proof of Theorem 1.9.
Namely, suppose that (S, φ) is an open book with at least three boundary
components. Let B and B′ denote two of them, and consider the open book
(S′, φ′) obtained from (S, φ) by gluing B to B′ (we shall refer to this oper-
ation as self-gluing). (S′, φ′) may alternatively be obtained by attaching a
1-handle to (S, φ) with feet on B and B′, and then capping off the boundary
component B#B′ of the resulting surface; see Figure 10. Since this 1-handle
attachment corresponds to taking a contact connected sum with the Stein
fillable contact structure on S1×S2, Theorem 1.2 and [31, Proposition 2.1]
combine to give the lemma below.

Lemma 4.2. Suppose that (S′, φ′) is the open book obtained from (S, φ) by
self-gluing along B,B′. If c(S, φ) is non-zero, then so is c(S′, φ′).

Now, suppose that the open book (S′′, φ′′) is obtained by gluing (S, φ) to
(S′, φ′) along boundary components B1, . . . , Bn of S and B′1, . . . , B′n of S′,
as in the introduction. Note that (S′′, φ′′) is result of gluing (S, φ) to (S′, φ′)
along B1, B

′
1, followed by n− 1 self-gluings along the other Bi, B′i. Theorem

1.9 therefore follows from Lemmas 4.1 and 4.2.

Remark 4.3. Gluing has an inverse operation called splitting. More pre-
cisely, suppose that φ is a reducible diffeomorphism of S which fixes disjoint
simple closed curves C1, . . . , Cn pointwise. Splitting S along the Ci, one
obtains open books (S(1), φ(1)), . . . , (S(m), φ(m)); conversely, we can recover
(S, φ) from the (S(j), φ(j)) via a combination of gluings and self-gluings.
Lemmas 4.1 and 4.2 then tell us that c(S, φ) is non-zero as long as all of the
c(S(j), φ(j)) are.
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5. Capping off and periodic open books

In this section, we study the 3-dimensional invariants associated to contact
structures supported by genus one open books with periodic monodromy.

5.1. Periodic diffeomorphisms and the first Chern class. Recall that
HF+(M, t) comes equipped with a Q-grading whenever c1(t) is a torsion
class. We denote the grading of a homogeneous element x ∈ HF+(M, t) by
gr(x). The proposition below appears in a slightly different form in [31].

Proposition 5.1 ([31, Proposition 4.6]). If (M, ξ) is a contact 3-manifold
for which c1(tξ) is torsion, then d3(ξ) = −gr(c+(ξ))− 1/2.

Suppose that φ is a diffeomorphism of Sg,r such that φm is freely isotopic
to the identity for some m ∈ N≥0. Let B1, . . . , Br denote the boundary
components of Sg,r, and let ci be a curve on Sg,r parallel to Bi for each
i = 1, . . . , r. It follows that φm is isotopic to a product of Dehn twists of
the form tk1c1 · · · tkr

cr . For each i = 1, . . . , r, we define the fractional Dehn twist
coefficient (FDTC) of φ around Bi to be ki/m (see [7]). If φ is periodic,
Colin and Honda show that the contact structure compatible with the open
book (Sg,r, φ) is tight if and only if the FDTC of φ around every boundary
component is non-negative [7]. In this case, the contact structure is also
Stein fillable [7]. So, in particular, if (M, ξ) is supported by an open book
with periodic monodromy, then ξ is tight if and only if c+(ξ) �= 0. Therefore,
Theorem 1.13 may be reformulated as follows.

Theorem 5.2. Suppose that (M, ξ) is supported by a genus one open book
with r binding components and periodic monodromy. If c+(ξ) �= 0, then
r ≥ 1 + 4gr(c+(ξ)).

To prove this theorem, we bound the grading shifts associated to the maps
induced by capping off, and we use the fact that gr(c+(ξ)) ≤ 0 whenever
ξ is tight and is supported by a genus one open book with one boundary
component and periodic monodromy (see Table 1). Before we compute these
grading shifts, we must know that they are well-defined. To this end, we
establish the following.

Proposition 5.3. Suppose the contact 3-manifold (M, ξ) is supported by an
open book (S, φ) for which φm is freely isotopic to the identity. If the FDTCs
of φ are non-negative, then c1(tξ) is a torsion class.

Proof of Proposition 5.3. It suffices to show that 〈c1(tξ), h〉 = 0 for every
h ∈ H2(M,Z). Let (Σ, α, β, z) be a standard pointed Heegaard diagram for
the open book (Sg,r, φ), and let D1, . . . ,Dk denote the connected regions of
Σ \ ∪αi \ ∪βi. Recall that a doubly-periodic domain for this pointed Hee-
gaard diagram is a 2-chain P =

∑
i aiDi whose boundary is a sum of α

and β curves, and whose multiplicity at the basepoint z is 0. It is often
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Table 1. Grading versus fractional Dehn twist coefficient.
In this table, k ≥ 0; otherwise, ξ is overtwisted.

FDTC gr(c+(ξ))
(6k + 5)/6 −2
(4k + 3)/4 −7/4
(3k + 2)/3 −3/2
(6k + 1)/6 −1/2
(4k + 1)/4 −1/4
(3k + 1)/3 0
(2k − 1)/2 −1
k −1

convenient to think of a periodic domain as a linear relation in H1(Σ; Z)
among the α and β curves. Doubly-periodic domains are in one-to-one cor-
respondence with elements of H2(M ; Z); we denote by H(P) the homol-
ogy element corresponding to P. Suppose that y = {y1, . . . , yn} is the
intersection point between Tβ and Tα described in Section 2.1 for which
[y, 0] ∈ CF+(Σ, β, α, z) represents c+(ξ) (here, n = 2g + r − 1). Then tξ is
the Spinc structure associated to y; that is, tξ = sz(y) [31]. So, our goal is
to show that 〈c1(sz(y)), H(P)〉 = 0 for every doubly periodic domain P.

The Euler measure of a region Di is the quantity

χ̂(Di) = χ(int Di)−
1
4
(#corner points of Di),

where corner points are to be counted with multiplicity [32]. We extend the
definition of Euler measure to 2-chains linearly. Let ny(P) be the sum of the
local multiplicities of P at the points yi ∈ y. By [28, Proposition 7.5],

〈c1(sz(y)), H(P)〉 = χ̂(P) + 2ny(P).

Below, we prove that both χ̂(P) and ny(P) vanish for every doubly-periodic
domain P.

Suppose that the arcs a1, . . . , an on S = Sg,r, used to form the α and β
curves, are those shown in Figure 3. Let Bi be the boundary component of
S which intersects the arcs ai and ai−1 (unless i = 1, in which case B1 is
the boundary component that intersects only a1). For i = 1, . . . , r, let di be
the oriented curve on Σ = S1/2 ∪ −S0 defined by di = Bi × {1/2}, where di
inherits its orientation from the boundary orientation on Bi. We orient the
α and β curves, so that the orientation of the arc αi ∩S1/2 agrees with that
of βi ∩ S1/2. Furthermore, we require that αi · di = +1 for i = 1, . . . , r − 1.

We may assume that for some fixed integer m, the FDTC of φ around
each Bi is given by ki/m for some integer ki ≥ 0. Then, φm is isotopic to
a product of Dehn twists tk1c1 · · · tkr

cr , as discussed at the beginning of this
section. Recall that the arc bi on S is obtained from ai via a small isotopy,
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as described in Subsection 2.1. Let b(1)
i denote the arc bi, and let b(j)i be the

arc on S obtained from b
(j−1)
i via a similar isotopy for each j = 2, . . . ,m (so

that b(j)i intersects b(j−1)
i transversely in one point and with positive sign).

Recall that αi and βi are defined by

αi = ai × {1/2} ∪ ai × {0},
βi = bi × {1/2} ∪ φ(bi)× {0}.

For j = 2, . . . ,m, we define

β
(j)
i = b

(j)
i × {1/2} ∪ φj(b(j)i )× {0}.

Suppose P is a doubly periodic domain specified by the relation

(5.1)
∑
i

siαi +
∑
i

tiβi = 0

in H1(Σ; Z). Let δi be a curve on S which intersects the arc ai exactly
once (and does not intersect the other aj). The curve δi × {1/2} ⊂ Σ must
algebraically intersect ∂P zero times; that is, (δi×{1/2}) ·∂P = ±(si+ti) =
0. We can therefore express the relation in equation (5.1) by

(5.2)
∑
i

si(αi − βi) = 0.

However this implies that ny(P) = 0 (see figure 11 for the local picture of
P near the intersection point yi). To see that χ̂(P) = 0 as well, we consider
the pointed Heegaard multi-diagram (Σ, α, β, β(2), . . . , β(m), z).

The relation in equation (5.2) implies that

(5.3)
∑
i

si(β
(j−1)
i − β(j)

i ) = 0

in H1(Σ; Z) as well, for each j = 2, . . . ,m. Let Pj be the doubly-periodic
domain specified by the relation in equation (5.3). The doubly-periodic
domain Psum = P + P2 + · · ·+ Pm is therefore specified by the relation

(5.4)
∑
i

si(αi − β(m)
i ) = 0

obtained by summing the relation in equation (5.2) with those in equation (5.3).
Since χ̂(Pj) = χ̂(P) for each j = 2, . . . ,m, and Euler measure is additive,

(5.5) χ̂(Psum) = mχ̂(P).

Observe that (Σ, α, β(m), z) is a standard pointed Heegaard diagram for
(Sg,r, φm), and recall that φm is isotopic to tk1c1 · · · tkr

cr . Then, in H1(Σ; Z),

(5.6) αi − β(m)
i =

{
−kidi + ki+1di+1, 1 ≤ i < r,

0, r ≤ i ≤ n.
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Figure 11. The coefficients of P near the intersection point yi.

So, if the relation in equation (5.4) holds, then
∑

i<r si(−kidi+ki+1di+1) = 0
in H1(Σ; Z) as well. However any relation in H1(Σ; Z) among the curves
d1, . . . , dr is of the form t(d1 + · · ·+ dr) = 0. Hence,∑

i<r

si(−kidi + ki+1di+1) = t(d1 + · · ·+ dr).

On the other hand, since all of the ki are non-negative, this can only happen
if t = 0. It follows that si = si−1 if ki �= 0 (unless i = 1, in which case k1 �= 0
implies that s1 = 0).

Therefore, the relation in equation (5.4) breaks up into smaller relations
of the form

(5.7) si(αi − β(m)
i ) = 0,

for i ≥ r, and

(5.8)
∑

i1≤i≤i2<r
si(αi − β(m)

i ) = 0,

where si = sj for i and j between i1 and i2. It is not hard to see
directly that the doubly periodic domains given by the relations in equa-
tions (5.7) and (5.8) have vanishing Euler measure. In either case, these peri-
odic domains, thought of as linear combinations of regions in Σ\∪αi\∪β(m)

i ,
each consist of two canceling bigon regions together with square regions
(whose Euler measures are zero). See Figures 12 and 13 for reference. It
follows that χ̂(Psum) = 0, which, in turn, implies that χ̂(P) = 0, by equa-
tion (5.5). This completes the proof of Proposition 5.3.

�

5.2. Grading shifts and the proof of Theorem 1.13. Below, we study
the grading shifts associated to the maps induced by capping off. Suppose
(Sg,r−1, φ

′) is the open book obtained from (Sg,r, φ) by capping off one of
the boundary components of Sg,r. Let W be the corresponding 2-handle
cobordism from −MSg,r−1,φ′ to −MSg,r,φ. If φ is periodic with non-negative
FDTCs, then the same is true of φ′, and it follows from Proposition 5.3
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Figure 12. Shown here are αi and β
(m)
i for some i ≥ r.

The region bounded by these curves is a periodic domain
corresponding to a relation as in equation (5.7). Note that
it consists of square regions and two canceling bigon regions
(which we have shaded). In this figure, kr = 3.

Figure 13. The region bounded by these α and β(m) curves
is a periodic domain corresponding to a relation as in equa-
tion (5.8). It consists of square regions and two canceling
bigon regions (which we have shaded). In this figure, ki1 = 0,
ki1+1 = 4, ki1+2 = 3, ki1+3 = 4, ki2 = 2 and ki2+1 = 0.

that the contact invariants c+(Sg,r−1, φ
′) and c+(Sg,r, φ) have well-defined

Q-gradings. Since F+
W,s0

sends c+(Sg,r−1, φ
′) to c+(Sg,r, φ), by Theorem 1.2,

the grading shift formula in [32] gives

(5.9) gr(c+(Sg,r, φ))− gr(c+(Sg,r−1, φ
′)) =

c1(s0)2 − 2χ(W )− 3σ(W )
4

.

Lemma 5.4. The cobordism W either has trivial intersection form, or
b+2 (W ) = 0 and σ(W ) = −1.

Since W is obtained from a single 2-handle attachment, χ(W ) = 1.
Together with Lemma 5.4, this implies that

(5.10) gr(c+(Sg,r, φ))− gr(c+(Sg,r−1, φ
′)) ≤ 1/4.
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Suppose that after capping off all but one of the boundary components of
Sg,r, we are left with an open book (Sg,1, φ′′). It follows from Inequality
(5.10) that

gr(c+(Sg,r, φ)) ≤ (r − 1)/4 + gr(c+(Sg,1, φ′′)).

Now, suppose g = 1. As mentioned in the beginning of this section,
gr(c+(S1,1, φ

′′)) ≤ 0 (see table 1). As a result,

gr(c+(S1,r, φ)) ≤ (r − 1)/4,

which is equivalent to the statement of Theorem 5.2. All that remains is to
prove Lemma 5.4. We assume below that it is the boundary component B1

that is getting capped off.

Proof of Lemma 5.4. Let Δ denote the 2-simplex with edges, eβ , eγ and eα,
described in Section 2.2. The pointed Heegaard triple-diagram (Σ, β, γ, α, z)
associated to the capping off operation above (and defined in Section 2.1)
specifies an identification space

Xβ,γ,α =
(Δ× Σ)� (eβ ×Hβ)� (eγ ×Hγ)� (eα ×Hα)
(eβ × Σ) ∼ (eβ × ∂Hβ), (eγ × Σ) ∼ (eγ × ∂Hγ),

(eα × Σ) ∼ (eα × ∂Hα)

,

where Hβ, Hγ and Hα are the handlebodies corresponding to the β, γ and
α curves (see the diagram on the left of figure 14 for a schematic picture of
Xβ,γ,α). After rounding corners,Xβ,γ,α is a smooth cobordism with boundary
−Mβ,γ −Mγ,α +Mβ,α. (Here, Mβ,γ is the 3-manifold specified by the Hee-
gaard diagram (Σ, β, α), and similarly for Mγ,α and Mβ,α.) In fact, Xβ,γ,α is
just the complement of a neighborhood of a 1-complex in the cobordism W ,
so the intersection form of Xβ,γ,α is the same as that of W (refer to [29,32]
for more details).

Elements of H2(Xβ,γ,α; Z) are in one-to-one correspondence with triply-
periodic domains for the Heegaard diagram (Σ, β, γ, α, z). If P is a triply-
periodic domain, we denote the β, γ and α components of ∂P by ∂βP, ∂γP

Figure 14. From left to right: the cobordism Xβ,γ,α, a
homology class H(P), and the intersection of two classes,
H(P) and H(P ′).
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and ∂αP. The homology class corresponding to a triply-periodic domain
P is constructed as follows. Pick a point p ∈ Δ, and consider the copy of P
contained in {p} × Σ. Attach cylinders, connecting each component of ∂βP
in {p} × Σ with the corresponding component in {u} × Σ for some u ∈ eβ .
Then cap off these boundary components with discs inside {u}×Hβ. Do the
same for the components of ∂γP and ∂αP. We denote this homology class
by H(P).

The middle diagram in Figure 14 shows a schematic picture of this con-
struction. The point labeled p represents the copy of P in {p} ×Σ, and the
three legs represent the attaching cylinders for the components of ∂βP, ∂γP
and ∂αP. The rightmost diagram is meant to represent the intersection of
two such homology classes, H(P) and H(P ′). The β attaching cylinders of
H(P) intersect the γ attaching cylinders of H(P ′) at points in {q}×Σ, and
it is not hard to check that the algebraic intersection number

(5.11) H(P) ·H(P ′) = (∂βP) · (∂γP ′).

In particular, note that if P is a doubly-periodic domain (by which we mean
that ∂P consists of only two of the three types of attaching curves) then
H(P) pairs trivially with every element in H2(Xβ,γ,α; Z).

Suppose that the intersection form of Xβ,γ,α is non-trivial. Let P be a
triply-periodic domain given by the relation

Nγ1 +
∑
i

siαi +
∑
i

tiβi = 0

in H1(Σ; Z), where N �= 0. Since γi is isotopic to βi for i = 2, . . . , n, every
triply-periodic domain differs from some multiple of P by a sum of doubly-
periodic domains. Let d1, . . . , dr be the curves defined in the proof of Propo-
sition 5.3, and orient the α and β curves as before. We orient γ1 in the same
direction as d1. The same argument used in the proof of Proposition 5.3
shows that ri = −si for each i, so P is given by the relation

(5.12) Nγ1 +
∑
i

si(αi − βi) = 0.

By equation (5.11),

H(P)2 = (∂βP) · (∂γP) = −Ns1(β1 · γ1) = −Ns1,

so Lemma 5.4 follows if we can show that Ns1 > 0.
As before, we assume that the FDTC of φ around Bi is ki/m, where

ki ≥ 0. The relation in equation (5.12) implies that

(5.13) Nγ1 +
∑
i

si(β
(j−1)
i − β(j)

i ) = 0
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in H1(Σ; Z) for j = 2, . . . ,m. Adding the relations in equations (5.12)
and (5.13), we find that

(5.14) mNγ1 +
∑
i

si(αi − β(m)
i ) = 0

in H1(Σ; Z). After making the substitutions from equation (5.6), and noting
that γ1 = d1, it follows that

mNd1 +
∑
i<r

si(−kidi + ki+1di+1) = 0

in H1(Σ; Z) as well. As in the proof of Proposition 5.3, this implies that

(5.15) mNd1 +
∑
i<r

si(−kidi + ki+1di+1) = t(d1 + · · ·+ dr)

for some t. If t = 0, then mN = s1k1. We are assuming that Xβ,γ,α has non-
trivial intersection form, so H(P)2 = −Ns1 �= 0. Therefore, k1 is strictly
greater than zero, and it follows that Ns1 > 0, as hoped. If t �= 0, we
can assume, without loss of generality, that t > 0. Then all ki and si are
strictly greater than zero, and mN − s1k1 > 0, which implies that Ns1 > 0
as well. �

5.3. A formula for the d3 invariant. Below, we explicitly compute the
grading shift in equation (5.9) in terms of the FDTCs of φ. If the intersection
form of W is trivial, then this grading shift is simply −1/2. Otherwise,
b+2 (W ) = 0 and σ(W ) = −1 (by Lemma 5.4), and the grading shift is
(c1(s0)2 + 1)/4. According to Proposition 5.3, c1(s0) is sent to zero by the
restriction map

H2(W ; Q) → H2(∂W ; Q).
Therefore, c1(s0) is the image of a class k · PD(λ) under the map

H2(W,∂W ; Q)→ H2(W ; Q),

where λ is a generator of the dimension one subspace of elements B−2 (W ) ⊂
H2(W ) with negative self-intersection. By definition,

c1(s0)2 = (k · PD(λ))2 = k2 · λ2 =
〈c1(s0), λ〉2

λ2
.

Recall from Section 2.2 that s0 = sz(ψ0), where ψ0 is the homotopy class of
Whitney triangles whose domain D(ψ0) is Δ1 + · · ·+ Δn, and let H(P) be
a class, which generates B−2 (Xβ,γ,α). Then, the equation above becomes

(5.16) c1(s0)2 =
〈c1(sz(ψ0)), H(P)〉2

H(P)2
.

To compute 〈c1(sz(ψ0)), H(P)〉, we recall the dual spider number of a
Whitney triangle

u : Δ → Symn(Σ)
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and a triply-periodic domain P, following the exposition in [32]. First, note
that the orientations on the β, γ and α curves induce “leftward” pointing
normal vector fields along the curves. Let β′i, γ

′
i and α′i be copies of the

attaching curves βi, γi and αi, translated slightly in these normal directions,
and let Tβ′ , Tγ′ and Tα′ denote the corresponding tori in Symn(Σ). By
construction, u(eβ) misses Tβ′ , u(eγ) misses Tγ′ and u(eα) misses Tα′ .

Let x be an interior point of Δ so that u(x) misses the β′, γ′ and α′
curves, and choose three oriented paths, b, c and a, from x to eβ , eγ and
eα, respectively. Let ∂β′(P), ∂γ′(P) and ∂α′(P) be the 1-chains obtained by
translating the corresponding components of ∂P in the normal directions
described above. The dual spider number of u and P is given by

σ(u,P) = nu(x)(P) + ∂β′(P) · b+ ∂γ′(P) · c+ ∂α′(P) · a.
In [32, Proposition 6.3], Ozsváth and Szabó prove that

〈c1(sz(ψ0)), H(P)〉 = χ̂(P) + #(∂P) + 2σ(u,P)

for any Whitney triangle u representing ψ0.
Suppose φ is a periodic diffeomorphism of S = Sg,r with FDTCs 0 ≤

k1/m ≤ · · · ≤ kr/m. We shall cap off the boundary component B1. Let W
denote the associated 2-handle cobordism and suppose that the intersection
form of W is non-trivial. Let P be the triply-periodic domain specified by
the relation in equation (5.12). To compute χ̂(P), we consider the pointed
Heegaard multi-diagram (Σ, α, β, β(2), . . . , β(m), γ, z). Let Pj be the triply-
periodic domain specified by the relation in equation (5.13) for j = 2, . . . ,m.
Then Psum = P + P2 + · · · + Pm is specified by the relation in equa-
tion (5.14), and

χ̂(Psum) = mχ̂(P),
as before. Per equation (5.6), this relation breaks up into relations in
H1(Σ; Z) of the form

si(αi − β(m)
i ) = 0,

for i ≥ r, and

(5.17) mNd1 +
∑
i<r

si(−kidi + ki+1di+1) = 0.

As noted previously, the doubly periodic domains specified by the former
relations have Euler measure zero, and the latter relation implies that

mNd1 +
∑
i<r

si(−kidi + ki+1di+1) = t(d1 + · · ·+ dr)

for some t. Suppose that t = 0. If no ki is zero, then all of the si must
vanish. However, this implies that H(P)2 = −Ns1 = 0, which contradicts
our assumption on the intersection form of W . If some ki vanishes, then k1

must vanish since 0 ≤ k1 ≤ ki by assumption. But this too implies that
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H(P)2 = 0. So, it must be the case t �= 0 and ki > 0 for all i. We may
assume (rescaling as necessary) that t = −kr. Then

(5.18) si = −kr(1/kr + 1/kr−1 + · · ·+ 1/ki+1).

We define s0 using this formula as well; note that s0 = mN/k1.
The triply periodic domain P ′sum, given by the relation in Equation (5.17),

is composed of square regions, two triangular regions, a pentagonal region
and a region F that has genus g, one boundary component, and 4(r − 1)
corners (see figure 15). It is easy to check that the contributions of the
triangular regions and the pentagonal region to χ̂(Psum′) cancel. Since the
region F has multiplicity kr in P ′sum,

χ̂(Psum) = χ̂(P ′sum) = kr(2− 2g − r),
and, hence,

(5.19) χ̂(P) = kr(2− 2g − r)/m.
Let u : Δ → Symn(Σ) be a representative of the homotopy class ψ0. The

local contribution of Δi to the dual spider number σ(u,P) is −|si|. On the
other hand, the number of boundary components of P is |N |+ 2|s1|+ · · ·+
2|sn|. So, the quantity

〈c1(sz(ψ0)), H(P)〉 = χ̂(P) + #(∂P) + 2σ(u,P)

is simply

kr(2− 2g − r)/m+ |N |
= kr(2− 2g − r)/m−N
= kr(2− 2g − r)/m− k1s0/m.

And we saw in the previous subsection that H(P)2 = −Ns1 = −k1s0s1/m.
As a result,
(5.20)

c1(s0)2 =
(kr(2− 2g − r)/m− k1s0/m)2

−k1s0s1/m
=

(kr(2− 2g − r)− k1s0)2

−mk1s0s1
,

by equation (5.16).
We now restrict our focus to genus one open books. Suppose that ξ is a

tight contact structure supported by an open book (S1,1, φ) with periodic φ.
The table below lists the grading of c+(ξ) as a function of the FDTCs of φ.
This follows from the grading calculations in [4, Section 6] (for non-integral
FDTC’s) and [21, Proposition 9] (for integral FDTC’s).

Let f be the function, specified by this table, which takes an FDTC c and
outputs f(c) = gr(c+(ξ)). The theorem below then follows from Proposition
5.1, the grading shift formula in equation (5.9), and the expression for c1(s0)2

in equation (5.20).
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Figure 15. A portion of the surface Σ. The region bounded
by the α, β(m) and γ curves is the periodic domain P ′sum.
It is composed of squares, two triangular regions (gray), a
pentagonal region (dark gray) and the region F .

Theorem 5.5. Suppose (M, ξ) is compatible with a genus one open book
(S1,r, φ), where φ is periodic with FDTCs 0 ≤ k1/m ≤ · · · ≤ kr/m. Let I be
the smallest integer such that kI �= 0. For i = I − 1, . . . , r − 1, define

si = −kr(1/kr + 1/kr−1 + · · ·+ 1/ki+1).

Then

d3(ξ) = −f
(
kr
m

)
+

3I − r − 4
4

+
1
4

r−2∑
j=I−1

(kr(j − r)− kj+1sj)2

mkj+1sjsj+1
.

6. Capping off and pseudo-Anosov open books

If φ is a boundary-fixing diffeomorphism of S which is neither periodic nor
reducible, then φ is said to be pseudo-Anosov. In this case (and only in this
case), φ is freely isotopic to a homeomorphism φ0 for which there exists a
transverse pair of singular measured foliations, (Fs, μs) and (Fu, μu), of S
such that φ0(Fs, μs) = (Fs, λμs) and φ0(Fu, μu) = (Fu, λ−1μu) for some
λ > 1 [36]. The singularities of Fs and Fu which lie in the interior of S are
required to be “p-pronged saddles” with p ≥ 3, as shown in Figure 16. Each
foliation must have at least one singularity on every boundary component,
and each boundary singularity must have a neighborhood of the form shown
in figure 17.

The FDTC of φ around a boundary component of S measures the amount
of twisting around this component that takes place in the free isotopy from
φ to φ0. More precisely, let x1, . . . , xn be the singularities of Fs which
lie on some boundary component B, labeled in order as one traverses B
in the direction specified by its orientation. The map φ0 permutes these
singularities; in fact, we may assume that there exists an integer k for
which φ0 sends xi to xi+k for all i (where the subscripts are taken mod-
ulo n). If H : S × [0, 1] → S is the free isotopy from φ to φ0, and
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Figure 16. Neighborhoods of interior singularities. The sin-
gular leaves in each neighborhood are called “prongs”. From
left to right, x is a p-pronged singularity with p = 3, 4, 5.

Figure 17. A neighborhood of a boundary singularity x.
The thickened segment represents a portion of the boundary.

β : B × [0, 1] → B × [0, 1] is the map that sends (x, t) to (H(x, t), t), then
β(xi× [0, 1]) is an arc from (xi, 0) to (xi+k, 1). The FDTC of φ around B is
defined to be the fraction c ∈ Q, where c ≡ k/n modulo 1 is the number of
times that β(xi × [0, 1]) wraps around B × [0, 1] (see [18] for more details).

Suppose that (Sg,r, φ) is an open book with pseudo-Anosov φ, and let
B1, . . . , Br denote the boundary components of Sg,r. Let ci be the fractional
Dehn twists coefficient of φ around Bi, and suppose that Fs and Fu are
the singular foliations associated to φ. If each of these foliations has p > 1
singularities on Br (Fs and Fu will have the same number), then they can
be extended to transverse singular measured foliations, F ′s and F ′u, of the
surface Sg,r−1 obtained by capping off the boundary component Br. To see
this, remove the leaf corresponding to Br in each of these foliations, and
extend them across the capping disc, creating a p-pronged singularity at the
center of the disc (if p = 2, then the foliations extend without singularity over
the disc). The induced diffeomorphism φ′ of the capped off surface Sg,r−1 is
then pseudo-Anosov with associated foliations F ′s and F ′u. Moreover, ci is
the FDTC of φ′ around the boundary component Bi for i = 1, . . . , r−1 since
this modification took place locally. The requirement that Fs and Fu have
p > 1 singularities on Br is critical in order for this to work; otherwise, there
is no obvious way of extending these foliations across the capping disc so that
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the new interior singularities have p ≥ 3 prongs. In fact, there are pseudo-
Anosov diffeomorphisms of Sg,r for which the induced diffeomorphism on
the capped off surface Sg,r−1 is not pseudo-Anosov.

In [2], we show that if φ is a pseudo-Anosov diffeomorphism of S1,1 with
FDTC less than 1 then MS1,1,φ is an L-space, which implies that c+(S1,1, φ)
is in the image of Ud for all d ∈ N.2 The corollary below follows immediately
from this fact.

Corollary 6.1. Suppose that (M, ξ) is supported by a genus one open
book (S1,r, φ) with pseudo-Anosov φ such that the associated foliations have
exactly two singularities on every boundary component of S1,r. If any of the
fractional Dehn twists coefficients of φ are less than 1, then c+(ξ) is in the
image of Ud for all d ∈ N.

Remark 6.2. The assumption in Corollary 6.1 that there are exactly two
singularities on every boundary component is equivalent to the condition
that there are at least two singularities on each boundary component (and
no interior singularities), and is also equivalent to the condition that the
foliations associated to φ are orientable. Finally, note that any open book
(S1,r, φ) of the sort considered in the corollary above arises from an Anosov
map φ0 of S1,0 by puncturing the torus (creating boundary components) at
r fixed points of φ0.

Proof of Corollary 6.1. Suppose the FDTC of φ around some boundary
component is less than 1. After capping off every other boundary component,
we obtain an open book (S1,1, φ

′) where φ′ is pseudo-Anosov with FDTC
less than 1 (we may do this since the foliations associated to φ have more
than one singularity on every boundary component). Then, c+(S1,1, φ

′) is in
the image of Ud for all d ∈ N. Combined with Theorem 1.2, this proves the
corollary. �

In [19, Theorem 1.1], Honda et al. show (using the taut foliations con-
structed by Roberts in [35] along with a result of Eliashberg and Thurston
[11]) that if a pseudo-Anosov diffeomorphism φ of S1,1 has FDTC at least
1, then the contact structure compatible with the open book (S1,1, φ) is
weakly symplectically fillable by a filling W with b+2 (W ) > 0. This prompts
the following question.

Question 6.3. Suppose that φ is a pseudo-Anosov diffeomorphism of S1,r

whose FDTCs are all at least 1. Is the contact structure compatible with the
open book (S1,r, φ) necessarily weakly symplectically fillable by a filling with
b+2 (W ) > 0?

2The results in [2] are not stated in terms of FDTC; the translation is provided by the
fact that the FDTC of φn,d, to borrow the notation of Section 7, is d/2.
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This question has recently been answered in the negative by the author
and Etnyre in [6]. There, we provide an infinite family of genus one, two
boundary component open books whose monodromies have arbitrarily large
FDTCs such that the genus one, one boundary component open books
resulting from capping off either boundary component support overtwisted
contact structures. In our genus one, two boundary component examples, the
associated stable and unstable foliations each have exactly one singularity
on every boundary component, so capping off does not preserve the foliation
structure. We therefore propose the following modification of Question 6.3:

Question 6.4. Suppose that φ is a pseudo-Anosov diffeomorphism of S1,r

whose FDTCs are all at least 1 and whose associated foliations have two
singularities on every boundary components of S1,r. Is the contact struc-
ture compatible with the open book (S1,r, φ) necessarily weakly symplectically
fillable by a filling with b+2 (W ) > 0?

In [27], Ozsváth and Szabó show that if (M, ξ) is weakly symplectically
fillable by such a filling, and b1(M) = 0 (in which case this weak filling may
be perturbed to a strong filling [26]), then there exists some d ∈ N for which
c+(ξ) is not in the image of Ud. The conjecture below follows from this fact,
together with Corollary 6.1 and a positive answer to Question 6.4.

Conjecture 6.5. Suppose that (M, ξ) is supported by a genus one open book
(S1,r, φ) with pseudo-Anosov φ such that the associated foliations have two
singularities on every boundary component of S1,r. If b1(M) = 0, then ξ is
strongly symplectically fillable by a filling with b+2 (W ) > 0 if and only if there
exist some d ∈ N for which c+(ξ) is not in the image of Ud.

One may view Conjecture 6.5 as a potential obstruction, via Heegaard
Floer homology, to a contact structure being supported by a certain type of
genus one open book. Even if true, however, this obstruction appears rather
cumbersome. One wonders whether there is a more geometric interpretation
of the condition that the foliations associated to φ have two singularities
on every boundary component. Such a condition, combined with a result of
the sort proposed in Conjecture 6.5 could be helpful in formulating a usable
obstruction to sg(ξ) = 1.

7. The support genera of contact structures compatible with
(S1,1, φ)

The mapping class group of S1,1 is generated by Dehn twists around
the curves a and b shown on the right in Figure 1. It is well known
that this group is isomorphic to the braid group B3 by an isomorphism
Φ : MCG(S1,1, ∂S1,1) → B3, which sends the Dehn twists ta and tb to the
standard generators σ1 and σ2 of B3. So, by a theorem of Murasugi on
3-braids [25], we have the following.
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Lemma 7.1. Let h = (tatb)3. Any diffeomorphism of S1,1 that fixes the
boundary pointwise and is freely isotopic to a pseudo-Anosov map is, up to
conjugation, isotopic (rel. ∂) to a diffeomorphism

φn,d = hd · tbt−n1
a · · · tbt−nk

a

for some k-tuple of non-negative integers n = (n1, . . . , nk) for which some
ni �= 0, and some d ∈ Z.

The diffeomorphism h represents a “half-twist” around a curve δ parallel
to the boundary of S1,1; that is, h2 = tδ. Let ξn,d denote the contact structure
compatible with the open book (S1,1, φn,d). In this short section, we prove
the following.

Proposition 7.2. The support genus of ξn,d is zero for d ≤ 0, and one for
d > 1.

Note that this proposition is inconclusive for d = 1.

Proof of Proposition 7.2. In [2,17], it is shown that ξn,d is tight if and only
if d > 0. Recall from the introduction that sg(ξ) = 0, if ξ is overtwisted [12].
It therefore follows immediately that sg(ξn,d) = 0 for d ≤ 0.

To simplify notation in this proof, we let Mn,d denote the 3-manifold with
open book decomposition (S1,1, φn,d). Observe that Mn,d is the double cover
of S3 branched along the closed braid Bn,d corresponding to the braid word
Φ(φn,d) ∈ B3 (see [4, Section 2], for example). Note that Bn,d is obtained
from the alternating braid Bn,0 by adding d full positive twists. It is clear
that, as manifolds, links and contact structures, Mn,d, Bn,d and ξn,d are
invariant under the action of cyclic permutation on the tuple n (the image
Φ(h) is central in B3).

The contact structure ξ′ in Example 1.12 associated to the open book
(S1,1, (tatb)5t2b) is simply ξ(1),2 in our notation. In that example, we showed
that there is some d ∈ N for which c+(ξ(1),2) /∈ Ud · HF+(−M(1),2); let us
call this condition on c+(ξ(1),2) Condition R. Recall that if c+(ξ) satisfies
Condition R, then sg(ξ) > 0, by Proposition 1.11.

For a k-tuple n as above, let n− denote the k-tuple obtained from n by
adding 1 to its kth entry, and let n0 denote the (k + 1)-tuple obtained by
appending a 0 to n. Starting from the 1-tuple n = (1), we can obtain any
k-tuple of the form described in Lemma 7.1 by repeated applications of the
operations n �→ n−, n �→ n0, together with cyclic permutation. Moreover, for
d ≥ 2, the monodromy φn,d is obtained from φn,2 by composition with 6d−12
right handed Dehn twists around the curves a and b. Hence, by the naturality
of the contact invariant under maps induced by Stein cobordisms [17, 31],
c+(ξn,d) satisfies Condition R as long as c+(ξn,2) does.

Thus, in order to prove Proposition 7.2, it suffices to show that if ξn,2
satisfies Condition R, then so do ξn−,2 and ξn0,2. For the latter, observe
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that φn0,2 = φn,2 · tb. So, the naturality of the contact invariant under maps
induced by Stein cobordisms implies that c+(ξn0,2) satisfies Condition R as
long as c+(ξn,2) does. Proving the other implication takes slightly more work.

Observe that φn,2 = φn−,2 · ta, and consider the map Ĝ : ĤF (−Mn,2) →
ĤF (−Mn−,2) induced by the corresponding Stein 2-handle cobordism (or,
equivalently, by −1-surgery on a copy of the curve a in the open book
for Mn−,2). To understand Ĝ, it helps to think of Mn,d and Mn−,d as the
branched double covers Σ(Bn,d) and Σ(Bn−,d). Note that Bn,d is obtained
from Bn−,d by taking the oriented resolution of Bn−,d at a negative crossing.
Let us denote the unoriented resolution at this crossing by Bu

n−,d. It is not
hard to see that Bu

n−,d is an alternating link and does not depend on d.
Moreover, the double covers of S3 branched along these braids fit into the
surgery exact triangle below (for d = 2) [33].

ĤF (−Σ(Bn,2))
Ĝ �� ĤF (−Σ(Bn−,2))

����
��

��
��

��
�

ĤF (−Σ(Bu
n−,2)).

�������������

Let F denote the field with two elements, and let T + denote the F[U ]-
module F[U,U−1]/F[U ]. From the grading calculations in [4, Section 6], it
follows that

(7.1) HF+(−Σ(Bn,2)) ∼= (T +
0 )det(Bn,0) ⊕ F1.

Here, the subscripts denote absolute Z2 gradings. The long exact sequence
relating ĤF and HF+ therefore implies that

ĤF (−Σ(Bn,2)) ∼= (F0)det(Bn,0)+1 ⊕ F1.

In particular,
rk(ĤF (−Σ(Bn,2))) = 2 + det(Bn,0).

Of course, the analogous formula holds for rk(ĤF (−Σ(Bn−,2))). Moreover,
since Bu

n−,2 = Bu
n−,0 is alternating, we know from [33] that

rk(ĤF (−Σ(Bu
n−,2))) = det(Bu

n−,0).

And, since Bn−,0 is an alternating link, its determinant satisfies

(7.2) det(Bn−,0) = det(Bn,0) + det(Bu
n−,0).

Combined with the rank formulae above, equation (7.2) implies that

rk(ĤF (−Σ(Bn−,2))) = rk(ĤF (−Σ(Bn,2))) + rk(ĤF (−Σ(Bu
n−,2))).
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Therefore, our surgery exact triangle splits into a short exact sequence; in
particular, the map Ĝ is injective.

Now, let us assume that c+(ξn,2) satisfies Condition R. Then, according to
equation (7.1), c+(ξn,2) must have absolute Z2 grading 1 (and, hence, so does
c(ξn,2)). Since Ĝ sends c(ξn,2) to c(ξn−,2), and maps induced by cobordisms
preserve relative Z2 gradings (and are homogeneous with respect to these
gradings) [28], the injectivity of Ĝ forces c(ξn−,2) (and, hence, c+(ξn−,2))
to have absolute Z2 grading 1 as well. But since c+(ξn−,2) has absolute Z2

grading 1, it must satisfy Condition R, by the analogue of equation (7.1)
for HF+(−Σ(Bn−,2)). �
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