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TOWARDS GENERALIZING SCHUBERT CALCULUS IN
THE SYMPLECTIC CATEGORY

Rebecca F. Goldin and Susan Tolman

The main purpose of this article is to extend some of the ideas from
Schubert calculus to the more general setting of Hamiltonian torus
actions on compact symplectic manifolds with isolated fixed points.
Given a generic component Ψ of the moment map, which is a Morse
function, we define a canonical class αp in the equivariant cohomology
of the manifold M for each fixed point p ∈ M. When they exist, canon-
ical classes form a natural basis of the equivariant cohomology of M;
in particular, when M is a flag variety, these classes are the equivari-
ant Schubert classes. We show that the restriction of a canonical class
αp to a fixed point q can be calculated by a rational function which
depends only on the value of the moment map, and the restriction of
other canonical classes to points of index exactly two higher. Therefore,
the structure constants can be calculated by a similar rational function.
Our restriction formula is manifestly positive in many cases, including
when M is a flag manifold. Finally, we prove the existence of integral
canonical classes in the case that M is a GKM space (after Goresky,
Kottwitz and MacPherson) and Ψ is index increasing. In this case, our
restriction formula specializes to an easily computable rational sum
which depends only on the GKM graph.
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1. Introduction

Let T be a compact torus with Lie algebra t and lattice � ⊂ t. Suppose that
T acts on a compact symplectic manifold (M, ω) with isolated fixed points
and moment map Φ : M → t∗, where t∗ is dual to t. Then

ιXξ
ω = −dΦξ ∀ ξ ∈ t,

where Xξ denotes the vector field on M generated by the action and Φξ :

M → R is defined by Φξ(x) = 〈Φ(x), ξ〉. Here, 〈·, ·〉 is the natural pairing
between t∗ and t.

If ξ ∈ t is generic, that is, if 〈η, ξ〉 �= 0 for each weight η ∈ �∗ ⊂ t∗ in
the symplectic representation TpM for every p in the fixed set MT, then
Ψ = Φξ : M → R is a Morse function with critical set MT. Given p ∈ MT,
the negative tangent bundle ν−(p) is a representation with no fixed sub-
bundle. Hence, the index of Ψ at p is even; let λ(p) denote half the index
of Ψ at p. The individual weights of this representation are well defined and
non-zero; our convention for the moment map implies that these weights
are exactly the positive weights of the T action on TpM, that is, the
weights η such that 〈η, ξ〉 > 0. Let Λ−

p denote the product of these weights.
(Conversely, the weights in the positive tangent bundle are the negative
weights of the T action on TpM.) Finally, for all q ∈ MT the inclusion
q ↪→ M induces a map H∗

T(M) → H∗
T(q) in equivariant cohomology; let

α(q) denote the image of a class α ∈ H∗
T(M) under this map.

Definition 1.1. Let a torus T act on a compact symplectic manifold (M, ω)

with isolated fixed points and moment map Φ : M → t∗. Let Ψ = Φξ :

M → R be a generic component of the moment map. A cohomology class
αp ∈ H

2λ(p)

T (M; Q) is the canonical class at a fixed point p with respect
to Ψ if

(1) αp(p) = Λ−
p

(2) αp(q) = 0 for all q ∈ MT
� {p} such that λ(q) ≤ λ(p).1

Moreover, we say the canonical class αp is integral if αp ∈ H
2λ(p)

T (M; Z).2

We cannot always find canonical classes; see Example 2.2. However, each
canonical class is unique and can be thought of as an equivariant Poincaré
dual to the closure of the stable manifold. If αp exists for all p ∈ MT,
then {αp} forms a basis of H∗

T(M) as a module over H∗(BT). Since the fixed
set is isolated, the natural restriction map H∗

T(M; Z) → H∗(M; Z) is sur-
jective; under this map, the canonical classes also define a basis for the

1Note that (2) is stronger than the frequently encountered condition that αp(q) = 0

for all q ∈ MT
� {p} such that Ψ(q) ≤ Ψ(p). See Lemmas 2.5 and 2.8.

2Since the fixed points are isolated, H∗
T (M; Z) is torsion free; see Lemma 2.5. Therefore,

we can naturally identify H∗
T (M; Z) with a subgroup of H∗

T (M; Q).
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ordinary cohomology H∗(M). In the case that M = G/B, where G is a com-
plex semi-simple Lie group (of any type) and B is a Borel subgroup, the
equivariant Schubert classes are canonical classes. Under the map to ordi-
nary cohomology, they are exactly the Poincaré duals to Schubert varieties
in ordinary cohomology. Hence, our work is a direct generalization of that
setting.

This paper is concerned with a new formula for how to restrict canonical
cohomology classes to fixed points. Since the fixed points are isolated, the
inclusion of the fixed point set MT into M induces an injection H∗

T(M; Z) →

H∗
T(MT ; Z), where the latter ring is a direct sum of polynomials rings. Thus

each cohomology class on M may be described by an integral polynomial
associated to each fixed point. Once the restriction of canonical classes is
known at each fixed point, one can easily derive a formula for the structure
constants in the (equivariant) cohomology ring. (See [GZ].) Recall that the
structure constants for H∗

T(M) are the set cr
pq ∈ H∗

T(M) given by

αpαq =
∑

r∈MT

cr
pqαr.

Conversely, the structure constants also provide a formula for the
restrictions.

Our formulas have some echoes in the literature; Billey [Bi] found a dif-
ferent manifestly positive formula for the restriction of equivariant Schubert
classes when M = G/B. Guillemin and Zara [GZ] found a non-positive path
formula for the restrictions in the case of GKM graphs, which we discuss in
more detail below.

Our main contribution in this article can be seen as an inductive formula
for the restriction of canonical classes to fixed points; we prove this in Sec-
tion 3. The formula depends on only the values of the moment map and
αr(r

′), where r and r ′ are fixed points whose indices differ by 2.
Given a directed graph with vertex set V and edge set E ⊂ V ×V, a path

from a vertex p to a vertex q is a (k + 1)-tuple r = (r0, . . . , rk) ∈ Vk+1 so
that r0 = p, rk = q, and (ri−1, ri) ∈ E for all 1 ≤ i ≤ k; let |r| = k denote
the length of r.

Theorem 1.2. Let a torus T act on a compact symplectic manifold (M, ω)

with isolated fixed points and moment map Φ : M → t∗. Let Ψ = Φξ be a
generic component of the moment map. Assume that there exists a canonical
class αp ∈ H

2λ(p)

T (M; Q) for all p ∈ MT.
Define an oriented graph with vertex set V = MT and edge set

E =

{

(r, r ′) ∈ MT × MT
∣
∣
∣ λ(r ′) − λ(r) = 1 and αr(r

′) �= 0
}

.
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Given p and q in MT, let Σ
q
p denote the set of paths from p to q in (V, E);

then

(1.1) αp(q) = Λ−
q

∑

r∈Σ
q
p

|r|
∏

i=1

Φ(ri) − Φ(ri−1)

Φ(q) − Φ(ri−1)

αri−1
(ri)

Λ−
ri

.

Remark 1.3 (Positivity). We say that α ∈ S(t∗) is positive if α(ξ) > 0

and negative if α(ξ) < 0. In some cases, the restriction αp(q) is itself nega-
tive; see Example 5.2. A fortiori, in these examples some of the summands in
(1.1) are negative. However, whenever αp(q) ≥ 0 for all p and q ∈ MT such
that λ(q) = λ(p)+1, our formula is manifestly positive, in the sense that
each summand is positive. To see this, note that Λ−

q and Λ−
ri

are positive by
definition, Φ(ri)−Φ(ri−1) and Φ(q)−Φ(ri−1) are positive by Corollary 2.9,
and αri−1

(ri) is positive by assumption.
For example, for flag varieties G/B of semi-simple Lie groups the canonical

classes are Schubert classes; see [BGG]. In this case, the restriction αp(q)

is positive for all p and q by [Bi]. Alternatively, it is very easy to check this
directly when λ(q) = λ(p) + 1; see Section 5 for the case G = Sl(n, C) and
[ST] for the general case.

Corollary 1.4. Consider the situation described in Theorem 1.2. If there
is no path in (V, E) from a fixed point p to a fixed point q, then αp(q) = 0.
Moreover, if αp(q) ≥ 0 for all p and q in MT such that λ(q) = λ(p) + 1,
then αp(q) ≥ 0 for all p and q in MT and αp(q) > 0 exactly if there is at
least one path from p to q.

We now restrict our attention to an important special case where it is
especially easy to make these calculations: GKM spaces. Let a torus T act
on a compact symplectic manifold (M, ω) with moment map Φ : M → t∗.
We say that (M, ω, Φ) is a GKM space if M has isolated fixed points and
if, for every codimension one subgroup K ⊂ T , every connected component
of the fixed submanifold MK has dimension two or less.

Definition 1.5. Let (M, ω, Φ) be a GKM space. We define the GKM
graph to be the labelled directed graph (V, EGKM) given as follows. The
vertex set V is the fixed set MT; we label each p ∈ MT by its moment
image Φ(p) ∈ t∗. The edge set EGKM consists of pairs of distinct points
(p, q) ∈ V × V such that there exists a codimension one subgroup K ⊂ T so
that p and q are contained in the same component N of MK. We label the
edge (p, q) by the weight η(p, q) ∈ �∗ associated to the representation of T

on TqN 
 C.

Let Ψ = Φξ be a generic component of the moment map. Note that λ(p)

is the number of edges (r, p) ∈ EGKM such that Ψ(r) < Ψ(p); moreover,
Λ−

p =
∏

η(r, p), where the product is over all such edges. We say that
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Ψ is index increasing if Ψ(p) < Ψ(q) implies that λ(p) < λ(q) for all
(p, q) ∈ EGKM. See Remark 4.3.

Given any weight η ∈ �∗, the projection which takes X ∈ t∗ to X−
〈X,ξ〉
〈η,ξ〉η ∈

ξ⊥ ⊂ t∗ naturally induces a endomorphism ρη of S(t∗), the symmetric alge-
bra on t∗. Since M is a GKM space, the weights at each fixed point are pair-

wise linearly independent; hence, ρη(r,r′)(Λ
−
r ) �= 0 and ρη(r,r′)

(
Λ−

r ′
η(r,r′)

)

�= 0

for all (r, r ′) ∈ EGKM. Following [GZ], we define

(1.2) Θ(r, r ′) =
ρη(r,r′) (Λ−

r )

ρη(r,r′)

(
Λ−

r ′
η(r,r′)

) ∈ S(t∗)0 ∀ (r, r ′) ∈ EGKM,

where S(t∗)0 is the field of fractions of S(t∗).

Theorem 1.6. Let (M, ω, Φ) be GKM space. Let Ψ = Φξ be a generic
component of the moment map; assume that Ψ is index increasing. Define
an oriented graph with vertex set V = MT and edge set

E =
{

(r, r ′) ∈ EGKM

∣
∣ λ(r ′) − λ(r) = 1

}

,

where (V, EGKM) is the GKM graph associated to M. Then

• there exists a canonical class αp ∈ H
λ(p)

T (M; Z) for all p ∈ MT,
• given p and q in MT, let Σ

q
p denote the set of paths from p to q in

(V, E), then

(1.3) αp(q) = Λ−
q

∑

r∈Σ
q
p

|r|
∏

i=1

Φ(ri) − Φ(ri−1)

Φ(q) − Φ(ri−1)

Θ(ri−1, ri)

η(ri−1, ri)
.

• Θ(r, r ′) ∈ Z � {0} for all (r, r ′) ∈ E.

Remark 1.7. A straightforward calculation shows that, since Θ(r, r ′) is an
integer,

(1.4)
Λ−

r′

η(r, r ′)
Θ(r, r ′) = Λ−

r mod η(r, r ′).

Moreover, since
Λ−

r ′
η(r,r′) is not a multiple of η(r, r ′), equation (1.4) has a unique

solution and so provides an alternative definition of Θ.

Remark 1.8. In fact, since Φ(r ′)−Φ(r) is a positive multiple of η(r, r ′) for
all (r, r ′) ∈ EGKM, formula (1.3) is a manifestly positive exactly if Θ(r, r ′) >

0 for all (r, r ′) ∈ EGKM; cf. Remark 1.3. However, Θ(r, r ′) is not always
positive; see Example 5.2.

Example 1.9. e1, . . . , en+1 denote the standard basis for R
n+1, and

x1, . . . , xn+1 denote the dual basis for (Rn+1)∗. Let S1
Δ ⊂ (S1)n+1 be
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the diagonal circle, and T = (S1)n+1/S1
Δ the quotient torus. The stan-

dard action of (S1)n+1 on C
n+1 induces a symplectic action of T on com-

plex projective space (CP
n, ω) with moment map Φ : CPn

→ t∗, where
t∗ =

{∑

aixi ∈ (Rn+1)∗
∣
∣

∑

ai = 0
}

, and

Φ([z1 : · · · : zn+1]) =

n+1
∑

i=1

(

1

n + 1
−

|zi|
2

∑

j |zj|2

)

xi.

It is straightforward to check that (CPn, ω, Φ) is a GKM space, and that
the associated GKM graph is the complete directed graph on n + 1 vertices
p1, . . . , pn+1, where pi = [ei ⊗ C]. Moreover, Φ(pi) = 1

n+1

∑

j xj − xi for all
i, and η(pi, pj) = xi − xj for all i �= j.

Let Ψ = Φξ, where ξ = −(0, 1, 2, . . . , n). Then Ψ(pi) − Ψ(pj) =

〈−xi + xj, ξ〉 = i − j is positive exactly if j < i, and so Λ−
pi

=
∏

j<i(xj −

xi) and λ(pi) = i − 1 for all i. Therefore, Ψ is index increasing and
E = {(p1, p2), . . . , (pn, pn+1)}. In particular, there is exactly one path
(pi, pi+1, . . . , pj) from pi to pj in E if i ≤ j; otherwise, there is none. Finally,
since ρxl−1−xl

(xl) = ρxl−1−xl
(xl−1),

Θ(pl−1, pl) =
ρη(pl−1,pl)

(

Λ−
pl−1

)

ρη(pl−1,pl)

(
Λ−

pl

η(pl−1,pl)

)

=
ρxl−1−xl

(∏

m<l−1(xm − xl−1)
)

ρxl−1−xl

(∏

m<l−1(xm − xl)
) = 1 ∀ l.

Thus, by Theorem 1.6,

αpi
(pj) = Λ−

pj

j
∏

l=i+1

Φ(pl) − Φ(pl−1)

Φ(pj) − Φ(pl−1)

Θ(pl−1, pl)

η(pl−1, pl)

=

j−1
∏

l=1

(xl − xj)

j
∏

l=i+1

xl−1 − xl

xl−1 − xj

1

xl−1 − xl

=

j−1
∏

l=1

(xl − xj)

j−1
∏

l=i

1

xl − xj

=

i−1
∏

l=1

(xl − xj).

Remark 1.10. Guillemin and Zara also give a formula for αp(q) for GKM
spaces as a sum over paths in [GZ]. In fact, their formula is identical to
ours in the case that λ(q) − λ(p) = 1, and also works in a slightly broader
context. However, in general the formulas are quite different. For example,
their formula for αp(q) includes a contribution for each path r from p to q

in (V, EGKM) such that Ψ(ri) > Ψ(ri−1) for each edge (ri−1, ri); our formula
only includes a contribution from a subset of such paths — those such that
λ(ri) = λ(ri−1) + 1. In practice, this means that we sum over many fewer
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paths. For example, if M = CPn their formula for αp(q) contains 2λ(q)−λ(p)−1

terms, whereas ours contains just one term; see Example 1.9. Moreover, their
formula is almost never manifestly positive, in the sense described above.

In [Kn99], Knutson gives a positive formula for the Duistermaat–
Heckman measure of a torus action on a smooth algebraic variety3 with
an invariant Palais–Smale metric, and suggests a technique for computing
the Duistermaat–Heckman measure of certain subvarieties. In fact, in the
case that M is an algebraic variety and there exists an invariant Palais–
Smale metric, it is possible to use the results of [Kn99] to give an alternate
proof of Theorem 1.2. We hope to do this in our next paper; we also plan
to use Theorem 1.2 to extend his formula for the Duistermaat–Heckman
measure to the non-algebraic case. However, in this greater generality, the
summands in the formula are not always positive. This occurs, for example,
in the manifold considered in Example 5.2. After we initially announced
these results, Knutson showed that he could extend his results in [Kn99] by
dropping the condition that there exist an invariant Palais–Smale metric;
see [Kn10].

Finally, several techniques have recently been discovered which use the
ideas in this paper to find a positive integral formula in certain important
cases, including when M is a flag manifold ([ST, Za]).

We would like to thank Victor Guillemin, whose questions inspired this
project. We would also like to thank Sara Billey, Allen Knutson, Catalin
Zara, and Silvia Sabatini for many helpful discussions.

2. Canonical classes

In this section, we demonstrate some properties of canonical classes. In
particular, we show that if they exist then they form a natural basis for
H∗

T(M; Z) as a H∗(BT ; Z) module. Additionally, they do exist in a number
of important cases.

For this purpose, it is natural to work in a slightly more general context.
Let a torus T act on a compact oriented manifold M with isolated fixed
points. An invariant Morse function Ψ : M → R is a formal moment
map4 if the critical set of Ψ is exactly the fixed point set MT. As we saw
in the introduction, if M is symplectic and the action is Hamiltonian, then
any generic component of the moment map is a formal moment map. The
cohomological properties of symplectic manifolds with Hamiltonian actions
described in the introduction continue to hold in the more general case of
formal moment maps; see Appendix G of [GGK]. In particular, the restric-
tion map from H∗

T(M; Z) to H∗
T(MT ; Z) is injective in this case.

3The restriction to the algebraic category is only implicit.
4In [GGK], these are called “non-degenerate abstract moment maps.”
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Let p be a critical point for a formal moment map Ψ : M → R. Since
ν−(p) is a real representation with no fixed subbundle, the index of Ψ at p

is even; let λ(p) denote half the index of Ψ at p. The signs of the individual
weights of this representation are not well defined. However, if we fix an
orientation on the negative normal bundle ν−(p) then the product of the
weights — which we will denote Λ−

p — is well defined.

Definition 2.1. Let a torus T act on a compact oriented manifold M with
isolated fixed points, and let Ψ : M → R be a formal moment map. We
say that a cohomology class αp ∈ H

2λ(p)

T (M; Q) is a canonical class (with
respect to Ψ) at a fixed point p if there exists an orientation on ν−(p) such
that

(1) αp(p) = Λ−
p and

(2) αp(q) = 0 for all q ∈ MT
� {p} such that λ(q) ≤ λ(p).

Moreover, the canonical class is integral if αp ∈ H
2λ(p)

T (M; Z).

Canonical classes do not always exist.

Example 2.2. Let the torus T = (S1)2 act on CP
2 by

(t1, t2)[z1 : z2 : z3] = [t1z1 : t2z2 : z3].

Let M be the blow-up of CP
2 at [0 : 0 : 1], and let Φ : M → R

2 be the
moment map for the induced T action. Let Ψ = Φξ, where ξ = (1,−1) ∈
R

2. Label the four fixed points p1, . . . , p4 so that Ψ(p1) < · · · < Ψ(p4).
There exists a basis γ1, . . . , γ4 for H∗

T(M; Z) as a H∗(BT ; Z) module so that
γi(pj) = 0 ∀ j < i and

γ1(p1) = γ1(p2) = γ1(p3) = γ1(p4) = 1; γ2(p2) = γ2(p3) = x1;

γ2(p4) = x1 − x2; γ3(p3) = γ3(p4) = x1 − x2; and γ4(p4) = − x2(x1 − x2).

A straightforward calculation shows that there is no canonical class for p2.
(Although this example is a GKM space, it is consistent with Theorem 1.6
because Ψ is not index increasing.)

However, if canonical classes do exist, they give a natural basis for H∗
T(M).

Proposition 2.3. Let a torus T act on a compact oriented manifold M

with isolated fixed points, and let Ψ : M → R be a formal moment map. Fix
an orientation on ν−(p) for all p ∈ MT. If there exists a canonical class
αp ∈ H∗

T(M; Q) for all p ∈ MT, then the classes {αp}p∈MT are a natural
basis for H∗

T(M; Q) as a module over H∗(BT ; Q). Moreover, if the canonical
classes are integral then they are a natural basis for H∗

T(M; Z) as a module
over H∗(BT ; Z).

Proof. This is an immediate consequence of Lemmas 2.5, 2.7, and 2.8
below. �



TOWARDS GENERALIZING SCHUBERT CALCULUS 457

Remark 2.4. This basis does not depend very sensitively on the choices
that we have made; it only depends on the Λ−

p ’s at each fixed point. For
example, let a torus T act on a compact symplectic manifold (M, ω) with
isolated fixed points and moment map Φ : M → t∗. Let Ψ = Φξ be a generic
component of the moment map. Let αp ∈ H

2λ(p)

T (M; Z) be a canonical class
at p for Ψ. If Ψ ′ = Φξ′

is another generic component, then αp is also a
canonical class for Ψ ′, as long as

〈ξ, η〉 > 0 ↔ 〈ξ ′, η〉 > 0 ∀ η ∈ Πp and p ∈ MT,

where Πp denotes the set of weights at p. Similarly, if ω ′ ∈ Ω2(M) is
another invariant symplectic form with moment map Φ ′ : M → t, then αp

is also a canonical class for Ψ ′ = (Φ ′)ξ as long as ω and ω ′ are deformation
equivalent.

The following lemma is a key ingredient in our proof that canonical classes
exist in certain cases. In particular, the existence of these closely related
classes is guaranteed by straightforward Morse theoretic arguments.

Lemma 2.5 (Kirwan). Let a torus T act on a compact oriented manifold
M with isolated fixed points, and let Ψ : M → R be a formal moment map.
For every fixed point p and for each orientation on ν−(p), there exists an
integral cohomology class γp ∈ H

2λ(p)

T (M; Z) so that
(1) γp(p) = Λ−

p, and
(2′) γp(q) = 0 for every q ∈ MT

� {p} such that Ψ(q) ≤ Ψ(p).
Moreover, for any such classes, the {γp}p∈MT are a basis for H∗

T(M; Z) as a
module over H∗(BT ; Z).

Kirwan proved this result for rational cohomology classes on compact
symplectic manifolds with Hamiltonian actions [Ki] (see also [TW]). The
proof generalizes easily to the case of formal moment maps, and to integral
cohomology when the fixed points are isolated.

Corollary 2.6. Let a torus T act on a compact oriented manifold M with
isolated fixed points, and let Ψ : M → R be a formal moment map. Given
a point p ∈ MT and a class β ∈ H2i

T (M; Q) such that β(q) = 0 whenever
q ∈ MT satisfies Ψ(q) < Ψ(p),

• the restriction β(p) = xΛ−
p , where x ∈ H∗(BT ; Q),

• in particular, if λ(p) > i then β(p) = 0, and
• if β ∈ H∗

T(M; Z) is integral then β(p) = xΛ−
p, where x ∈ H∗(BT ; Z) is

integral.

Proof. By Lemma 2.5 for each q ∈ MT, we can fix an orientation on ν−(q)

and choose a class γq ∈ H∗
T(M; Z) which satisfies properties (1) and (2′).

Moreover, we can write β =
∑

q∈MT xqγq, where xq lies in H∗(BT ; Q) for
all q. If β is integral, then each xq lies in H∗(BT ; Z).



458 R. F. GOLDIN AND S. TOLMAN

If xq = 0 for all q ∈ MT so that Ψ(q) < Ψ(p), then properties (1) and
(2′) together imply that β(p) = xpΛ−

p . Otherwise, there exists q ∈ MT so
that Ψ(q) < Ψ(p) and xq �= 0, but xr = 0 for all r such that Ψ(r) < Ψ(q).
Hence β(q) = 0 and β(q) = xqΛ−

q, which is impossible. �
This corollary leads to the following properties of canonical classes.

Lemma 2.7. Let a torus T acts on a compact oriented manifold M with
isolated fixed points, and let Ψ : M → R be a formal moment map. For all
p ∈ MT, the canonical class αp is uniquely determined by the orientation
on ν−(p).

Proof. Fix an orientation on ν−(p) and let αp and α ′
p be canonical classes

for p ∈ MT. Consider the class β = αp−α ′
p ∈ H

2λ(p)

T (M; Q). Assume β �= 0.
Then, since the restriction map from H∗

T(M; Z) to H∗
T(MT ; Z) is injective,

there exists q ∈ MT such that β(q) �= 0 but β(r) = 0 for all r ∈ MT

satisfying Ψ(r) < Ψ(q). By the definition of canonical class, β(s) = 0 for all
s ∈ MT such that λ(s) ≤ λ(p); therefore λ(q) > λ(p). But this contradicts
Corollary 2.6. �
Lemma 2.8. Let a torus T act on a compact oriented manifold M with
isolated fixed points, and let Ψ : M → R be a formal moment map. If αp ∈
H

2λ(p)

T (M; Q) is a canonical class for a fixed point p, then αp also satisfies
the property:

(2′) αp(q) = 0 for all q ∈ MT
� {p} such that Ψ(q) ≤ Ψ(p).

Proof. There exists a point q ∈ MT so that αp(q) �= 0 but αp(r) = 0 for all
r ∈ MT so that Ψ(r) < Ψ(q). By the definition of canonical classes, the fact
that αp(q) �= 0 implies that either q = p or λ(q) > λ(p). In the latter case,
Corollary 2.6 implies that αp(q) = 0. Thus q = p. �

This has the following important consequence.

Corollary 2.9. Let a torus T act on a compact oriented manifold M with
isolated fixed points, and let Ψ : M → R be a formal moment map. Define
an oriented graph with vertex set V = MT and edge set

E =

{

(r, r ′) ∈ MT × MT
∣
∣
∣ λ(r ′) − λ(r) = 1 and αr(r

′) �= 0
}

.

If there exists a path in (V, E) from a point p to a different point q, then
Ψ(p) < Ψ(q).

Finally, canonical classes do exist in a number of important special cases.
For example, the following lemma is a special case of Lemma 1.13 in [MT].

Lemma 2.10 (McDuff–Tolman). Let the circle S1 act on a compact ori-
ented manifold M with isolated fixed points, and let Ψ : M → R be a formal
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moment map. Then there exists a canonical class αp ∈ H∗
S1 (M; Q) for all

p ∈ MT.

Note that if Ψ is a formal moment map then −Ψ is also a formal moment
map. If the index of Ψ at q ∈ MT is 2λ(q), the index of −Ψ at q is dim(M)−

2λ(q). Finally, the tangent bundle at q is an oriented real representation of
T ; let Λq denote the product of the weights of this representation. As one
might expect, canonical classes for Ψ exist for all points p ∈ MT exactly
when they exist for −Ψ for all points.

Lemma 2.11. Let a torus T act on a compact oriented manifold M with iso-
lated fixed points and let Ψ : M → R be a formal moment map. If there exists
a canonical class αp ∈ H

2λ(p)

T (M; Q) with respect to Ψ for each p ∈ MT, then
there exists a canonical class βq ∈ H

dim(M)−2λ(q)

T (M; Q) with respect to −Ψ

for each q ∈ MT. Moreover, βq is integral for all q ∈ MT if and only if αp

is integral for all p ∈ MT.

Proof. To begin, fix an orientation on ν+(r) for all r ∈ MT, and consider the
formal moment map −Ψ. We need to find a class βq ∈ H

dim(M)−2λ(q)

T (M; Z)

such that

(1) βq(q) = Λ+
q and

(2) βq(p) = 0 for all p ∈ MT
� {q} such that λ(p) ≥ λ(q).

By Lemma 2.5, for all r ∈ MT there exists a cohomology class γr ∈
H

dim(M)−2λ(r)

T (M; Z) such that

(1) γr(r) = Λ+
r and

(2
′
) γr(p) = 0 for all p ∈ MT

� {r} so that Ψ(p) ≥ Ψ(r).

Now let βq be any class which satisfies (1) and (2
′
) for q. Define

L := {p ∈ MT | λ(p) ≥ λ(q) but βq(p) �= 0}.

If L = ∅, we are done. Otherwise, let p ∈ L be an element which maximizes
Ψ|L. Then

(αp ∪ βq)(p) = Λ−
pβq(p),

where Λ−
p is the product of the weights on ν−(p) with respect to the orienta-

tion compatible with αp. Now consider any fixed point r �= p. If λ(r) ≤ λ(q),
then λ(r) ≤ λ(p) and so αp(r) = 0. Similarly, if Ψ(r) ≤ Ψ(p) then αp(r) = 0

by Lemma 2.7. On the other hand, if λ(r) ≥ λ(q) and Ψ(r) > Ψ(p) then
βq(r) = 0 since p maximizes Ψ|L. Thus the product

(αp ∪ βq)(r) = 0 for all r ∈ MT
� {p}.
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We now integrate using the Atiyah–Bott–Berline–Vergne localization for-
mula to obtain

∫

M

αp ∪ βq =
Λ−

pβq(p)

Λp

= ±βq(p)

Λ+
p

∈ H∗(BT ; Q).

This expression is integral if αp and βq are both integral. Hence, the class

β ′
q = βq −

(
βq(p)

Λ+
p

)

βp satisfies

• β ′
q(p) = 0,

• β ′
q(r) = 0 for all r ∈ MT

� {p} such that Ψ(r) ≥ Ψ(p), and
• in particular, β ′

q also satisfies (1) and (2
′
) for q.

The result now follows by induction. �

Remark 2.12. Assume that for each p ∈ MT, there exists a canonical
class αp ∈ H

2λ(p)

T (M) with respect to Ψ which is compatible with a chosen
orientation on ν−(p). Let βq ∈ H

dim(M)−2λ(q)

T (M) be a canonical class with
respect to −Ψ for each q ∈ MT described in Lemma 2.11. Clearly, βq can
be chosen to be compatible with the orientation of ν+(q) induced by the
orientations on M and on ν−(q). Then, since Λp = Λ+

pΛ−
p , the sets {αp} and

{βq} are dual basis for H∗
T(M) as an H∗

T(M)-module under the intersection
pairing. To see this, note that if λ(q) > λ(p), then

∫

M
αpβq = 0 by degree

considerations. If λ(q) ≤ λ(p) and p �= q, then (αp ∪ βq)(r) = 0 for all r ∈
MT by the definition of canonical class, and so

∫

M
αpβq = 0 by the Atiyah–

Bott–Berline–Vergne localization formula. Finally, by a similar argument,
∫

M
αp ∪ βp = 1.

3. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. Let a torus T acts on a compact
symplectic manifold (M, ω) with isolated fixed points and moment map
Φ : M → t∗. Let Ψ = Φξ be a generic component of the moment map.
Assume that there exists a canonical class αp ∈ H

2λ(p)

T (M; Q) for all p ∈ MT.
Define an oriented graph with vertex set V = MT and edge set

(3.1) E =

{

(r, r ′) ∈ MT × MT
∣
∣
∣ λ(r ′) − λ(r) = 1 and αr(r

′) �= 0
}

.

We need to show that for all p and q in MT,

(3.2) αp(q) = Λ−
q

∑

r∈Σ
q
p

|r|
∏

i=1

Φ(ri) − Φ(ri−1)

Φ(q) − Φ(ri−1)

αri−1
(ri)

Λ−
ri

,

where Σ
q
p denotes the set of paths from p to q in (V, E). By Lemma 2.11, for

all q ∈ MT, there exists a class βq ∈ H
dim(M)−2λ(q)

T (M; Q) satisfying
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(1) βq(q) = Λ+
q and

(2) βq(p) = 0 for all p ∈ MT
� {q} such that λ(p) ≥ λ(q).

In our proof of (3.2), we will also show that

(3.3) βq(p) = Λ+
p

∑

r∈Σ
q
p

|r|
∏

i=1

Φ(ri) − Φ(ri−1)

Φ(p) − Φ(ri)

αri−1
(ri)

Λ−
ri

for all fixed points p and q.
Consider first the case that λ(q) − λ(p) ≤ 0. If p �= q, then αp(q) = 0

by definition. Moreover, there are no paths from p to q in (V, E), and so
the right-hand side of (3.2) vanishes, as required. If p = q, then αp(q) =

αp(p) = Λ−
p . In this case, the right-hand side of (3.2) is a sum over one

degenerate path r = (p), and the product is the empty product, so the total
contribution is Λ−

p . Thus (3.2) also holds in this case. A nearly identical
argument proves that (3.3) is satisfied.

Next, suppose that λ(q) − λ(p) = 1. If αp(q) �= 0, then there is one path
(p, q) from p to q, and the right-hand side of (3.2) is αp(q). On the other
hand, if αp(q) = 0, then (p, q) �∈ E, and so the right-hand side of (3.2)
vanishes. To prove (3.3), note that by the definition of canonical class,

(αp ∪ βq)(p) = Λ−
pβq(p) and (αp ∪ βq)(q) = Λ+

qαp(q).

Now consider any fixed point r which is not p or q. If λ(r) ≤ λ(p) then
αp(r) = 0, while if λ(r) ≥ λ(q), then βq(r) = 0. Therefore,

(αp ∪ βq)(r) = 0 for all r ∈ MT
� {p, q}.

Since deg(αp ∪ βq) = dim(M) − 2 < dim(M), the integral of αp ∪ βq over
M is zero. Thus, by the Atiyah–Bott–Berline–Vergne localization theorem,

∫

M

αp ∪ βq =
βq(p)Λ−

p

Λp

+
αp(q)Λ+

q

Λq

= 0.

Therefore,

βq(p) = −Λ+
p

αp(q)

Λ−
q

.

Fix k > 1, and assume that (3.2) and (3.3) hold for all fixed points p

and q so that λ(q) − λ(p) < k. Consider fixed points p and q so that
λ(q) − λ(p) = k. We will prove that (3.2) and (3.3) follow for this p and q.

Suppose first that Φ(p) = Φ(q); a fortiori Ψ(p) = Ψ(q). Then the left-
hand sides of (3.2) and (3.3) vanish by Lemma 2.8. Since there is no path
from p to q by Lemma 2.9, the right-hand sides also vanish.

So assume instead that Φ(p) �= Φ(q). Let ω̃ = ω + Φ − Φ(p) be an
equivariant extension of ω. Since ω̃(r) = Φ(r) − Φ(p) for all r ∈ MT,

(αp ∪ βq ∪ ω̃)(q) = Λ+
qαp(q)(Φ(q) − Φ(p)) and (αp ∪ βq ∪ ω̃)(p) = 0.
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Since k > 1, deg(αp ∪ βq ∪ ω̃) = dim(M) − 2k + 2 < dim(M), and so the
integral of αp ∪ βq ∪ ω̃ over M is zero. Therefore, by the Atiyah–Bott–
Berline–Vergne localization formula,

∫

M

αp ∪ βq ∪ ω̃ =
Φ(q) − Φ(p)

Λ−
q

αp(q) +
∑

r�=p,q

(αp ∪ βq ∪ ω̃)(r)

Λr

= 0.

Since Φ(p) �= Φ(q), we can solve the above equation for αp(q);

(3.4) αp(q) =
−Λ−

q

Φ(q) − Φ(p)

∑

r�=p,q

(αp ∪ βq ∪ ω̃)(r)

Λr

.

Consider any fixed point r �= p or q. Assume first that λ(p) < λ(r) < λ(q),
and let l = λ(r) − λ(p). By the inductive assumption

αp(r) = Λ−
r

∑

(s0,...,sl)∈Σr
p

l
∏

i=1

Φ(si) − Φ(si−1)

Φ(r) − Φ(si−1)

αsi−1
(si)

Λ−
si

,

and

βq(r) = Λ+
r

∑

(sl,...,sk)∈Σ
q
r

k
∏

i=l+1

Φ(si) − Φ(si−1)

Φ(r) − Φ(si)

αsi−1
(si)

Λ−
si

.

Therefore, if Σ
q
p(r) denotes the set of paths in E from p to q that pass

through r, then

(αp ∪ βq ∪ ω̃)(r) = Λ+
r Λ−

r (Φ(r) − Φ(p))

×
∑

s∈Σ
q
p(r)

∏k
i=1[Φ(si) − Φ(si−1)]

αsi−1
(si)

Λ−
si

∏

i∈{0,...,k}�{l} Φ(r) − Φ(si)

= Λr

∑

s∈Σ
q
p(r)

k
∏

i=1

[Φ(si) − Φ(si−1)]
αsi−1

(si)

Λ−
si

×
∏

i�=l

1

Φ(r) − Φ(si)
,(3.5)

where we use the expression
∏

i�=l as shorthand for
∏

i∈{1,...,k}�{l}. On the
other hand, if λ(r) ≤ λ(p) or λ(q) ≤ λ(p), then (αp ∪ βq ∪ ω̃)(r) = 0. By
Lemma 2.9, the right-hand side of (3.5) also vanishes. Therefore, (3.5) holds
for all r ∈ MT

� {p, q}.
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Substituting (3.5) into (3.4), we see that

αp(q) =
−Λ−

q

Φ(q) − Φ(p)

∑

r∈MT
�{p,q}

×

⎛

⎝
∑

s∈Σ
q
p(r)

k
∏

i=1

[Φ(si) − Φ(si−1)]
αsi−1

(si)

Λ−
si

∏

i�=l

1

Φ(r) − Φ(si)

⎞

⎠

=
−Λ−

q

Φ(q) − Φ(p)

∑

s∈Σ
q
p

k
∏

i=1

[Φ(si) − Φ(si−1)]
αsi−1

(si)

Λ−
si

×

⎛

⎝

k−1
∑

l=1

∏

i�=l

1

Φ(sl) − Φ(si)

⎞

⎠

=
−Λ−

q

Φ(q) − Φ(p)

∑

s∈Σ
q
p

k
∏

i=1

[Φ(si) − Φ(si−1)]
αsi−1

(si)

Λ−
si

×
(

−

k−1
∏

i=1

1

Φ(sk) − Φ(si)

)

= Λ−
q

∑

s∈Σ
q
p

k
∏

i=1

[Φ(si) − Φ(si−1)]
αsi−1

(si)

Λ−
si

k
∏

i=1

1

Φ(q) − Φ(si−1)
,

where the third equality is by Lemma 3.3. The proof of (3.3) is nearly
identical.

Remark 3.1. In fact, the same proof works if a torus T acts on a manifold
M with isolated fixed points, Ψ : M → R is a formal moment map, and
η̃ = η + Φ is any closed equivariant 2-form (not necessarily symplectic) so
that Φ(p) �= Φ(q) for every pair of fixed points p and q so that there is a
path (of length two of more) in (V, E) from p to q.

The following corollary is immediate.

Corollary 3.2. Consider the situation described in Theorem 1.2. If Ψ = Φξ

achieves its minimum value at p, then for any fixed point q,

1 = Λ−
q

∑

r∈Σ
q
p

|r|
∏

i=1

Φ(ri) − Φ(ri−1)

Φ(q) − Φ(ri−1)

αri−1
(ri)

Λ−
ri

,

where Σ
q
p denotes the paths in (V, E) from p to q. In particular, every fixed

point is connected by a path in (V, E) to the minimum (and to the maximum).
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Proof. Since λ(p) = 0, αp = 1; hence, αp(q) = 1 for all fixed points q. �

Our proof of Theorem 1.2 relies on the following fact, which was also
proved in [GZ] using different techniques.

Lemma 3.3. Given k > 1 distinct vectors v1, . . . , vk in a vector space V,
k

∑

l=1

∏

i�=l

1

vi − vl

= 0.

Proof. The (S1)k action on C
k induces a symplectic action of on CP

k−1

with fixed points p1, . . . , pk. so that the weights at pl are {xi − xl}i�=l ∈
H∗((B(S1)k; Z) = Z[x1, . . . , xk]. Since deg(1) = 0 < 2k − 2, the integral of
1 over CP

k−1 is 0. Therefore, by the Atiyah–Bott–Berline–Vergne localiza-
tion theorem, the following equation holds in the field of rational functions
Q(x1, . . . , xk):

∫

CP
k−1

1 =

k
∑

l=1

∏

i�=l

1

xi − xl

= 0.

Since the vi’s are distinct, the claim follows easily. �

4. The GKM case

The main goal of this section is to prove Theorem 1.6. In fact, this theorem
is an immediate consequence of Theorem 1.2 and the theorem below.

Theorem 4.1. Let (M, ω, Φ) be GKM space, and let (V, EGKM) be the asso-
ciated GKM graph. Let Ψ = Φξ be a generic component of the moment map;
assume that Ψ is index increasing. Then

• There exists a canonical class αp ∈ H
2λ(p)

T (M; Z) for all p ∈ MT.
• Given p and q in MT such that λ(q) − λ(p) = 1,

(4.1) αp(q) =

{

Λ−
q

Θ(p,q)

η(p,q)
if (p, q) ∈ EGKM,

0 if (p, q) �∈ EGKM.

• Θ(r, r ′) ∈ Z � {0} for all (r, r ′) ∈ EGKM.

Remark 4.2. Conversely, if there exists a canonical class αp ∈ H∗
T(M; Q)

for all p ∈ MT, then Ψ is index increasing. To see this, suppose that there
exists an edge (p, q) ∈ EGKM so that Ψ(p) < Ψ(q) and λ(p) ≥ λ(q). On
the one hand, since αp is a canonical class this implies that αp(q) = 0. On
the other hand, compatibility along (p, q) guarantees that αp(q) − αp(p)

is a multiple of η(p, q). Sine αp(p) = Λ−
p is not a multiple of η(p, q), this

implies that αp(q) �= 0.
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Remark 4.3. There are several situations where we can immediately con-
clude that Ψ is index increasing.

For example, if there is an T -invariant Palais–Smale metric g on M, then
Ψ is index increasing. To see this, consider an edge (p, q) ∈ EGKM such that
Ψ(p) < Ψ(q). There exists a codimension one subgroup K ⊂ T so that p

and q are contained in the same component N of MK. Since the metric is
T -invariant, N� {p, q} must be contained in both the flow up from p and the
flow down from q. Since these flows intersect transversally, this implies that
the intersection has dimension 2λ(q)−2λ(p) ≥ 2, which proves λ(p) < λ(q).

Similarly, if H2i(M; Q) = Q for all i such that 0 ≤ 2i ≤ dim(M), then
Proposition 3.4 in [To2] implies that every generic component of the moment
map is index increasing.

Our proof of the theorem above relies heavily on a technical proposition,
Proposition 4.4, for which we need a few definitions. Let (M, ω, Φ) be a
GKM space, and let (V, EGKM) be the associated GKM graph. Fix a generic
ξ ∈ t and consider the Morse function Ψ = Φξ.

A path r in (V, EGKM) is ascending if Ψ(ri) ≤ Ψ(ri+1) for all i such that
0 ≤ i ≤ |r|; it is descending if Ψ(ri) ≥ Ψ(ri+1) for all such i. Given p ∈ MT,
the stable set of p, denoted Vp, is the set of q ∈ V such that there exists an
ascending path from p to q in (V, EGKM); the unstable set of p, denoted
Vp, is the set of q ∈ V such that there exists an descending path from p to
q. Note that p itself lies in both Vp and Vp. Moreover, since (r, r ′) ∈ EGKM

exactly if (r ′, r) ∈ EGKM, p ∈ Vq exactly if q ∈ Vp.

Proposition 4.4. Let (M, ω, Φ) be a GKM space, and let Ψ = Φξ be a
generic component of the moment map.

(a) For every fixed point p, there exists a class αp ∈ H
2λ(p)

T (M; Z) such
that

(1) αp(p) = Λ−
p and

(2′′) αp(q) = 0 for all q ∈ MT
� Vp.

(b) Given a class β ∈ H∗
T(M; Z) and point q ∈ MT,

(4.2) β(q) = x
∏

(r,q)∈EGKM

β|Vr =0

η(r, q), where x ∈ H∗(BT ; Z).

Proposition 4.4(a) is proved for rational classes in the more general setting
of GKM graphs in [GZ].

Remark 4.5. Part (a) of this proposition is exactly what geometric intu-
ition leads you to expect. To see this, fix a generic T -invariant metric on
M. As the name suggests, the stable set Vp should be the set of vertices
which are in the closure of the stable manifold of p. Moreover, one should
be able to adapt the Morse theoretic proof of Lemma 2.5 to directly prove
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that the class αp which you construct is supported on the set of vertices in
the closure of the stable manifold of p.

Remark 4.6. Part (b) is slightly more subtle. Given a class β ∈ H∗
T(M; Q)

and an edge (r, r ′) ∈ EGKM, β(r) − β(r ′) is a rational multiple5 of η(r, r ′).
Since the weights at each fixed point are pairwise linearly independent, this
immediately implies that for any fixed point q,

β(q) = x
∏

(r,q)∈EGKM

β(r)=0

η(r, q), where x ∈ H∗(BT ; Q).

However, the same statement is not true integrally. Although β(q) must be
an integral multiple of η(r, q) for each (r.q) ∈ EGKM such that η(r) = 0, it
might not be an integral multiple of the product of these weights because
the weights might not be pairwise relatively prime; see Example 4.7. Notice
that expression (4.2) has fewer terms in the product.

Example 4.7. Let S1 × S1 act on CP
1 × CP

1 by

(t1, t2) · ([z0 : z1], [w0 : w1]) =

(

[t2
1 z0 : z1], [t

2
2 w0 : w1]

)

;

let Φ : M → t∗ be the moment map. Let ξ = (1, 1) ∈ R
2 and let Ψ = Φξ.

The associated GKM graph has four vertices,

SS = ([1 : 0], [1 : 0]), SN = ([1 : 0], [0 : 1]), NS = ([0 : 1], [1 : 0]),

and NN = ([0 : 1], [0 : 1]).

There are four ascending edges, (SS, NS), (SN, NN), (SS, SN), and (NS, NN)

(and hence also four descending edges). The first two have weight 2x1, the
latter two have weight 2x2. There exists a class β ∈ H4

T(M; Z) so that

β(SN) = β(NS) = 0 and β(SS) = β(NN) = 2x1x2.

Although β(SN) = 0, β|VSN �= 0 because VSN = {SN, SS}. Similarly,
β|VSN �= 0. Therefore, even though βNN = 2x1x2 is not a multiple of
Λ−

NN = η(SN, NN)η(NS, NN) = 4x1x2, this example does satisfy (4.2) in
Proposition 4.4.

We begin by showing that Theorem 4.1 follows from Proposition 4.4.

Proof of Theorem 4.1. Fix p ∈ MT. By Proposition 4.4, there exists a class
αp ∈ H

2λ(p)

T (M; Z) which satisfies properties (1) and (2′′). Since Ψ is index
increasing, λ(q) > λ(p) for all q ∈ Vp � {p}. Hence, αp is a canonical class.

Consider q ∈ MT such that λ(q) = λ(p) + 1. If (p, q) �∈ EGKM, then
q �∈ Vp, and so αp(q) = 0. Now assume that (p, q) ∈ EGKM. There are

5In fact, a rational class β ∈ H∗
T (MT

; Q) is in the image of the restriction map ι∗ :

H∗
T (M; Q) → H∗

T (MT
; Q) exactly if β(q) − β(p) is a multiple of η(p, q) for every edge

(p, q) ∈ EGKM (see [GKM]).
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λ(p) = λ(q)−1 other edges e1, . . . , eλ(p) ∈ EGKM of the form ei = (pi, q) with
Ψ(pi) < Ψ(q). Since Ψ is index increasing, λ(pi) ≤ λ(p) and so Vp∩Vpi = ∅
for all i. Thus αp|Vpi = 0 for all i. By Proposition 4.4, αp(q) is an integral

multiple of
∏

i η(pi, q) =
Λ−

q

η(p,q)
; by degree considerations this implies that

αp(q) = θ
Λ−

q

η(p, q)
, where θ ∈ Z.

On the other hand, compatibility along (p, q) guarantees that αp(q) −

αp(p) = θΛ−
q/η(p, q) − Λ−

p is a multiple of η(p, q), and hence θ satisfies

(4.3)
Λ−

q

η(p, q)
θ = Λ−

p mod η(p, q).

Since Λ−
p is not a multiple of η(p, q), the integer θ is non-zero. Finally, a

straightforward calculation shows that

(4.4) θ =
ρη(r,r′) (Λ−

r )

ρη(r,r′)

(
Λ−

r ′
η(r,r′)

) .

Hence, θ = Θ(r, r ′). �

We now turn to the proof of Proposition 4.4. We begin by establishing
some terminology, after which we prove two key lemmas. Finally, we use
these lemmas and an inductive argument on the dimension of M to complete
the proof.

Definition 4.8. Let (M, ω, Φ) be a GKM space, and let Ψ = Φξ be a
generic component of the moment map. We say that β ∈ H∗

T(M; Z) is
robustly zero at r ∈ MT if β|Vr = 0. We say that β is robustly integral
at q ∈ MT if

β(q) = x
∏

(r,q)∈EGKM

β|Vr =0

η(r, q), where x ∈ H∗(BT ; Z).

Thus Proposition 4.4(b) is the statement that every class β ∈ H∗
T(M; Z)

is robustly integral at every point q ∈ MT. We first show that Proposi-
tion 4.4(b) implies 4.4(a).

Lemma 4.9. Let (M, ω, Φ) be a GKM space, and let Ψ = Φξ be a generic
component of the moment map. Assume that every class β ∈ H∗

T(M; Z) is
robustly integral at every q ∈ MT. Then, for every fixed point p, there exists
a class αp ∈ H

2λ(p)

T (M; Z) such that
(1) αp(p) = Λ−

p and
(2′′) αp(q) = 0 for all q ∈ MT

� Vp.
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Proof. By Lemma 2.5, for all q ∈ MT there exists a class γq ∈ H
2λ(q)

T (M; Z)

(1) γq(q) = Λ−
q.

(2′) γq(r) = 0 for all r ∈ MT
� {q} such that Ψ(r) ≤ Ψ(q).

Let αp ∈ H
2λ(p)

T (M; Z) be any class which satisfies (1) and (2′) for p. Define

L = {q ∈ MT
� Vp | αp(q) �= 0}.

If L = ∅, we are done. Otherwise, let q ∈ L be an element which minimizes
Ψ|L. Consider any r ∈ Vq

� {q}. Since Ψ(r) < Ψ(q) and q is minimal, r �∈ L.
Moreover, since q ∈ Vr but q �∈ Vp, we conclude that r ∈ MT

� Vp; hence
αp(r) = 0. Therefore, αp|Vr = 0 for each edge (r, q) ∈ EGKM such that
Ψ(r) < Ψ(q). Since αp is robustly integral at q this implies that there exists
x ∈ H∗(BT ; Z) so that αp(q) = xΛ−

q = xγq(q). The difference α ′
p = αp−xγq

satisfies
• α ′

p(q) = 0,
• α ′

p(r) = αp(r) for all r ∈ MT
� {q} such that Ψ(r) ≤ Ψ(q), and

• in particular, α ′
p also satisfies (1) and (2′) for p.

The result now follows by induction. �
Now we show that Proposition 4.4(a) plus the assumption that all the αp

are robustly integral at all fixed points implies Proposition 4.4(b).

Lemma 4.10. Let (M, ω, Φ) be a GKM space, and let Ψ = Φξ be a generic
component of the moment map. Assume that, for every fixed point p, there
exists a class αp ∈ H

2λ(p)

T (M; Z) such that
(1) αp(p) = Λ−

p,
(2′′) αp(q) = 0 for all q ∈ MT

� Vp, and
(3) αp is robustly integral at every point q ∈ MT.

Then every class β ∈ H∗
T(M; Z) is robustly integral at every point q ∈ MT.

Proof. Fix a class β ∈ H∗
T(M; Z). By Lemma 2.5, we can write

β =
∑

p∈MT

xpαp, where xp ∈ H∗(BT ; Z) ∀ p ∈ MT.

Fix r ∈ MT such that β|Vr = 0. We claim that xp = 0 for all p ∈ Vr.
If not, then there exists p ∈ Vr so that xp �= 0 but xq = 0 for all q ∈ Vr

such that Ψ(q) < Ψ(p). But then β(q) = xqΛ−
q �= 0, which contradicts

the assumption that β|Vr = 0. Therefore, if xp �= 0, then p �∈ Vr, and so
Vp ∩ Vr = ∅; hence αp|Vr = 0. Since each αp is robustly integral at every
point q ∈ MT, this completes the proof. �
Proof of Proposition 4.4. Assume that Proposition 4.4 is true for all mani-
folds of dimension less than dimM; we will prove that it is true for M. The
result will then follow by induction.
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We first consider the case when T acts on M effectively. Choose any
β ∈ H∗

T(M; Z) and fixed point q ∈ MT. By Lemma 4.9, it is enough to prove
that β is robustly integral at q.

The proposition is obvious when dimM = 2. Hence, β(q) is an inte-
ger multiple of η(r, q) for every (r, q) ∈ EGKM with β|Vr = 0. Since these
weights are pairwise linearly independent, this implies that β(q) is a rational
multiple of

(4.5)
∏

(r,q)∈EGKM

β|Vr =0

η(r, q).

Now consider any prime k and natural number l such that kl divides
product (4.5). Let Γ = {t ∈ T | tk = 1}, and let N ⊂ M be the component of
MΓ containing q. Then (N, ω|N, Φ|N) is also a GKM space, and Ψ|N = Φξ|N
is a generic component of the moment map. Let (VN, (EGKM)N) be the
associated GKM graph. Given any edge (r, q) ∈ EGKM, the weight η(r, q)

is a multiple of k exactly if (r, q) ∈ (EGKM)N. Therefore, since kl divides
product (4.5), it divides the (smaller) product

(4.6)
∏

(r,q)∈(EGKM)N

β|Vr =0

η(r, q).

Since (EGKM)N ⊂ EGKM, if β ∈ H∗
T(M; Z) is robustly zero at r ∈ VN,

then ι∗Nβ ∈ H∗
T(N; Z) is robustly zero at r, where ι∗N : H∗

T(M) → H∗
T(N)

is the restriction map. Moreover, since the T action on M is effective,
dimN < dimM. By the inductive hypothesis, this implies that ι∗Nβ(q) =

β(q) is an integral multiple of product (4.6). Therefore, since kl divides
this product, kl also divides β(q). This proves the proposition when T acts
effectively.

We now consider the general case. By Lemma 4.10, it is enough to show
that for each p there exists a class αp which satisfies (1) and (2′′) and is
robustly integral at every point q ∈ MT.

Let

Stab(M) = {t ∈ T | t m = m for all m ∈ M},

and T ′ = T/Stab(M). Let Π : T → T ′ be the natural projection, and let
π : t → t ′ be the induced map on the lie algebras. Notice that π takes the
lattice � ⊂ t to a sublattice of � ′ ⊂ t ′.
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Since T ′ acts naturally on M, the map Π : T → T ′ induces maps in
equivariant cohomology6

Π∗
M : H∗

T ′(M; Z) −→ H∗
T(M; Z)

and
Π∗

p : H∗
T ′({p}; Z) −→ H∗

T({p}; Z) ∀ p ∈ MT.

Since MT = MT ′
, these fit together into the following commutative diagram.

H∗
T ′(M; Z) −−−−→

⊕

p H∗
T ′({p}; Z)

⏐
⏐
�Π∗

M

⏐
⏐
�

⊕

p Π∗
p

H∗
T(M; Z) −−−−→

⊕

p H∗
T({p}; Z).

Moreover, for each p ∈ MT, in degree two the map Π∗
p is identified with the

dual map π∗ : (t ′)∗ → t∗ under the natural identification of H2
T({p}; Z) and

H2
T ′({p}; Z) with the lattices �∗ and (� ′)∗, respectively.
Clearly, there exists a moment map Φ ′ : M → (t ′)∗ so that (M, ω, Φ ′) is a

GKM space. Since Φ ′ ◦ π∗ = Φ, Ψ = Φξ = (Φ ′)π(ξ) is a generic component
of the moment map. Note that the vertices and edges of the graphs for
the T action and the T ′ action are naturally identical, and that π∗ takes
the T ′-weight of each edge to the T -weight of the same edge. In particular,
π∗ (

(Λ ′)−
p

)

= Λ−
p , where (Λ ′)−

p denotes the T ′-equivariant Euler class of the
negative normal bundle of Ψ at p.

Since T ′ acts effectively on M, the first part of this proof implies there
exists a class α ′

p ∈ H
2λ(p)

T ′ (M; Z) satisfying
(1) α ′

p(p) = (Λ ′)−
p ,

(2′′) α ′
p(q) = 0 for all q ∈ MT

� Vp, and
(3) α ′

p is robustly integral at every point q ∈ MT.
Let αp := Π∗

M(α ′
p) ∈ H∗

T(M; Z). Then αp has the desired properties. �

5. Examples

We conclude our paper with two explicit examples.

Example 5.1. Fl(Cn). The standard action of T = (S1)n induces an action
on the complete flag manifold Fl(Cn) whose fixed points are given by flags
in the coordinate lines C

n. These are indexed by permutations σ ∈ Sn on n

letters; the fixed point corresponding to σ is given by

〈0〉 ⊂ 〈fσ(1)〉 ⊂ 〈fσ(1), fσ(2)〉 ⊂ · · · ⊂ 〈fσ(1), fσ(2), · · · fσ(n)〉 = C
n,

6To see this, let ET and ET ′ be contractible spaces on which T and T ′, respectively,
act freely. Then T acts on ET × ET ′ by t · (e, e ′

) = (t · e, π(t) · e ′
). The projection from

M× (ET ×ET ′
) to M×ET ′ descends to a map from M×T (ET ×ET ′

) to M×T ′ ET ′. This
induces a map from H∗

(M ×T ′ ET ′
) = H∗

T ′(M) to H∗
(M ×T (ET × ET ′

)) = H∗
T (M).
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where the brackets indicate the span of the vectors and f1, . . . , fn is the
standard basis of C

n. By abuse of notation, we will denote both the permu-
tation and the corresponding fixed point by σ. Let �(σ) denote the length of
σ, and choose a generic ξ such that �(σ) < �(σ ′) implies Ψ(σ) < Ψ(σ ′) for all
σ, σ ′ ∈ Sn. Note that (σ, σ ′) ∈ E if there exists a transposition t such that
tσ = σ ′ and �(σ) = �(σ ′) − 1 (in contrast, EGKM consists of all (σ, σ ′) such
that tσ = σ ′) for some t). If t = tij is the transposition switching i and j

with i < j, then η(σ, σ ′) = xi − xj and by our convention, this is considered
a positive weight.

We begin by showing that for all edges (σ, σ ′) ∈ E, Θ(σ, σ ′) = 1. Recall
that the weights that occur in the representation of T on the negative normal
bundle at a point σ are positive weights. The length �(σ) is also the number
of positive weights at σ. The weight η �= η(σ, σ ′) is a positive weight at σ ′

if and only if tijη is a positive weight σ. Thus there is a bijection of positive
weights at σ and positive weights at σ ′ excepting η(σ ′, σ). Moreover, for
each weight η at σ, the weight tijη at σ ′ has the property that η = tijη

mod η(σ, σ ′). It follows that Θη(σ,σ′) = 1.
Now consider any fixed point σ, and let ασ be the associated canonical

class. Theorem 1.6 says for any μ ∈ MT,

(5.1) ασ(μ) = Λ−
μ

∑

r∈Σ
μ
σ

|r|
∏

i=1

Φ(ri) − Φ(ri−1)

Φ(μ) − Φ(ri−1)

1

η(ri−1, ri)
.

Note that η(ri−1, ri) is positive. Similarly, Λ−
μ is a product of positive

weights. Finally, Φ(ri) − Φ(ri−1) and Φ(μ) − Φ(ri−1) are positive for each
i. More precisely, Φ(ri) − Φ(ri−1) = kiη(ri−1, ri) where ki ∈ Q

+ and
Φ(μ) − Φ(ri−1) =

∑m
j=1 kjη(sj−1, sj), where j indexes the vertices in a path

(s0, . . . , sm) from s0 = ri−1 to sm = μ. Thus every term in expression (5.1)
is positive.

Example 5.2. The integer Θ(p, q) is not always positive; when it is neg-
ative, the canonical class αp restricts to a negative value at q. In [To1],
the second author demonstrated the existence of a GKM space that does
not have a T -invariant Kähler metric. The corresponding GKM graph EGKM

can be expressed as the image of the singular set under the moment map
Φ, pictured in Figure 1, where we have represented each pair of edges (p, q)

and (q, p) by one drawn edge. Let ξ ∈ t be as indicated, and note that
Ψ = Φξ is an index increasing component of the moment map. Consider
the edge corresponding to (p, q). Indicated on the figure are the positive
weights (excluding η(p, q)) of the T action on the negative normal bundles
at p and q, according to the choice of ξ indicated. Under the map ρη(p,q),
these vectors project to vectors opposite in sign (and of equal magnitude).
Thus Θ(p, q) < 0. It immediately follows from Theorem 1.6 that αp(q) < 0.
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Figure 1. A non-Kähler GKM space. The restriction of the
canonical class αp to q is negative.
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