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EFFECTIVE CLASSES AND LAGRANGIAN TORI IN
SYMPLECTIC FOUR-MANIFOLDS

JEAN-YVES WELSCHINGER

An effective class in a closed symplectic four-manifold is a two-
dimensional homology class which is realized by a J-holomorphic cycle
for every tamed almost complex structure J. We first prove that
effective classes are orthogonal to Lagrangian tori with respect to the
intersection form. We then deduce an invariant under birational trans-
formations of closed symplectic four-manifolds. We finally prove using
the same techniques of symplectic field theory that the unit cotangent
bundle of a compact orientable hyperbolic Lagrangian surface does not
embed as a hypersurface of contact type in a rational or ruled symplec-
tic four-manifold.

Dedicated to Dusa McDuff

1. Statement of the main results

Let (X,w) be a closed symplectic 4-manifold. A two-dimensional homology
class d € Hy(X;7Z) is called effective when it is realized by a J-holomorphic
two-cycle for every almost complex structure J tamed by the symplectic
form w. Denote by B, (X) the subgroup of Ha(X;Z) generated by effective
classes. Likewise, denote by AL (X) (resp. A2 (X)) the subgroup of Hs(X;Z)
generated by Lagrangian tori (resp. orientable hyperbolic Lagrangian sur-
faces).

Theorem 1.1. For every closed symplectic 4-manifold (X,w), the groups
AL(X) and B,(X) are orthogonal to each other with respect to the intersec-
tion form.

(see Remark 6 of Section 2.1 for a similar result with A2(X)). Recall that
a pseudo-holomorphic sphere in a closed symplectic 4-manifold is a sphere
which can be made J-holomorphic for some tamed almost complex structure
J. The Chern number of such a sphere is the evaluation of the first Chern
class of the manifold on its fundamental class.
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Corollary 1.2. Let L be a smooth Lagrangian torus and S be a pseudo-
holomorphic sphere of positive Chern number in a closed symplectic
4-manifold. Then, L and S have vanishing intersection indez.

Proof. Blowing up the symplectic manifold finitely many times outside L if
necessary, we may assume that S has Chern number 1. From Lemma 3.1
of [11], we know that Chern number 1 pseudo-holomorphic spheres define
effective classes. The result thus follows from Theorem 1.1. [

Note that from Theorem 1.4 of [13], pseudo-holomorphic spheres having
Chern number greater than one only exist in rational or ruled symplectic
4-manifolds, where Lagrangian tori actually vanish in homology, see Exam-
ple 1 below. Note also that embedded Chern number 1 pseudo-holomorphic
spheres correspond from adjunction formula to embedded symplectic (—1)-
spheres. Corollary 1.2 suggests that after some symplectic isotopy of S, the
possible intersections between S and L can be removed. This actually holds
true, as follows from Theorem 1.3.

Theorem 1.3. Let L be a smooth orientable Lagrangian surface of positive
genus and S be a pseudo-holomorphic sphere of positive Chern number in a
closed symplectic 4-manifold. Then, S is symplectically isotopic to a surface
disjoint from L.

Recall that two closed symplectic 4-manifolds are said to be birational to
each other if one can pass from one to another through a finite sequence of
blow-ups and down of symplectic balls, see [7, 12].

Corollary 1.4. The group Ho(X;Z)/B,(X) is invariant under birational
transformations of the closed symplectic 4-manifold (X,w). Let (X,®) be a

blow-up of (X,w); then the groups AL(X), A2(X) are subgroups of AL(X),
A2 (X)), respectively.

The groups AL(X), A%2(X) may actually be invariant under birational
transformations of (X, w) as well. This would follow from a positive solution
to the following problem.

Problem 1.5. Given a closed symplectic ball B and a smooth compact
orientable Lagrangian surface L of positive genus in a closed symplectic
4-manifold. Is this Lagrangian surface homologous to a smooth homeomor-
phic Lagrangian surface disjoint from B?

I initially believed a Hamiltonian isotopic surface would be disjoint from
B and am grateful to Paul Biran for pointing out to me it was already not
the case for the Clifford torus in the complex projective plane. Paul Biran
also proved in Theorem 1.B of [2] that any closed symplectic ball of radius A
in the complex projective plane, \? > %, should intersect the real projective
plane.
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Note that AL(X), A2(X) are not invariant under deformation of the
symplectic form w. The orthogonal of a class [w] of H*(X;R) indeed only
intersects Ho(X;Z) at the origin in general. Likewise, B, (X) is not a priori
designed to be invariant under deformation of w. Here there is a confusing
analogy with the Hodge decomposition of complex surfaces, see Theorem
(2.10) of [1]. Namely, the groups (H*%(X;C)® H*?(X;C))NH?*(X;Z) and
H?(X;7Z)/H"(X;Z) are invariant under birational transformations of the
complex structure of the surface, but not under deformation of it. Following
this analogy and given a closed symplectic 4-manifold (X, w), do there exist
natural subspaces of Ha(X;C) whose trace on Hy(X;Z) are A,(X) and
B, (X)?

2. Proof of the main results

Let L be a torus equipped with a flat metric, S*L be its unit cotangent
bundle and 7 : S*L — L the canonical projection. The manifold S*L is
equipped with a canonical contact form A, namely the restriction of the
Liouville one-form of its cotangent bundle. We denote by R the subgroup
of H1(S*L;Z) generated by its closed Reeb orbits.

Lemma 2.1. The restriction of wy : H1(S*L;Z) — Hi(L;Z) to Ry is an
isomorphism.

Proof. The Reeb flow on S*L coincides with the geodesic flow. Closed
Reeb orbits are thus the lifts of closed geodesics on L. Now S*L is dif-
feomorphic to a product of L with the sphere S of directions in L, and =
is the projection onto the first factor. Since geodesics of L have a con-
stant direction, the projection onto the second factor maps every Reeb
orbit to a point of S. From the Kiinneth formula, we get the isomorphism
H(S*L;Z) =2 Hy(L;Z) x Hi(S;Z) and, from what we have just noticed,
that this isomorphism maps Ry into H;(L;Z) x {0}. Since generators of
Hy(L;Z) can be realized by closed geodesics, the latter map is onto. Since
7, is the projection onto the first factor, it is an isomorphism once restricted
to R). O

Proof of Theorem 1.1. Let L be a Lagrangian torus and d be an effective
class. Following the principle of symplectic field theory [6], we stretch the
neck of the symplectic manifold in the neighbourhood of L until the man-
ifold splits in two parts, one part being the cotangent bundle of the torus
and the other being X \ L. We produce this splitting in such a way that
both parts have the contact manifold (S*L, \) at infinity. Let J be a CR-
structure on this contact 3-manifold, which we extend to an almost complex
structure J with cylindrical end on both parts 7*L and X \ L. The latter
is the limit of a sequence J,, of almost complex structures of (X,w). Since
d is effective, we may associate a sequence C), of J,-holomorphic two-cycles
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homologous to d. From the compactness Theorem in SFT [4], we extract
a subsequence converging to a broken J-holomorphic curve C, which we
assume for convenience to have only two levels—the general case follows eas-
ily from this one. Denote by C'* the part of C'in T*L and by C¥ the part in
X\ L. Both curves C* and CX have cylindrical ends asymptotic to the same
set of closed Reeb orbits with same multiplicities. Let ClL e CkL denote
the irreducible components of C* and Ry, ..., Ry be the corresponding sets
of closed Reeb orbits. These sets Ry, ..., R; define integral one-cycles in
S*L and we denote by [Ri],...,[Ry] their homology classes. These one-
cycles are boundaries of the two-chains ClL e C,f in T*L , so that with
the notation of Lemma 2.1, 7, ([R;]) vanishes for every i € {1,...,k}. Since
[Ri1],. .., [Rxk] belong to the subgroup Ry, we deduce from Lemma 2.1 that
[R1],...,[Ryg] actually vanish. Let Si,..., Sk be integral two-chains of S*L
having Ry, ..., Ry as boundaries, and S be the sum of these k chains. Then,
Cl — 8 is an integral two-cycle contained in T*L, CX + S is an integral
two-cycle contained in X \ L and the sum of these cycles is homologous to
d. Now, L and C¥X + S are disjoint from each other and the second homol-
ogy group of T*L is generated by [L] itself. Since the latter has vanishing
self-intersection, we deduce that the intersection index of L and C* — 8
vanishes. As a consequence, the intersection index of d and [L] vanishes.
Since this holds for any Lagrangian torus or effective class, Theorem 1.1
is proved. O

Proof of Theorem 1.3. Let us denote the manifold by (X,w) and equip it
with a tamed almost complex structure Jy making S holomorphic. Blowing
up (X, w) finitely many times if necessary, or rather requiring that S pass
through finitely many points, we may assume that S has Chern number 1.
We then equip L with a metric of constant curvature and stretch the neck
of Jy in a neighbourhood of L. This stretching produces a family (J;)ier,
of tamed almost complex structures together with an isotopy (S¢)cr, of
Ji-holomorphic spheres, where Sy = S, see Lemma 3.1 of [11]. We claim
that as soon as the neck is sufficiently long, these Ji-holomorphic curves
Sy are disjoint from L. From the compactness Theorem in SFT [4], we
would indeed otherwise be able to extract a subsequence converging to a
two-levels rational curve having a non-empty level C% in T*L and a non-
empty level C* in X \ L. Since L does not have any contractible closed
geodesic, no component of C* can be planar. We deduce that CX contains
at least two J-holomorphic planes, every tree containing at least two leaves.
Let us equip the tangent bundle of T*L with its canonical trivialization
along closed Reeb orbits, namely the one tangent to the Lagrangian fibers
of T*L. The obstruction to extend this trivialization over the whole C'*
then vanishes since the tangent bundle of T L is the complexification of an
orientable Lagrangian bundle.
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Let us assume first that L is hyperbolic. The Conley—Zehnder index
of every closed Reeb orbit then vanishes in the chosen trivialization, see
Proposition 1.7.3 of [6]. Denote by pu; twice the obstruction to extend this
trivialization over the component C’JX of CX. From Theorem 2.8 of [8],

we deduce that the virtual dimension of the space of deformations of CJX

is given as p; — x;, where x; denotes the Euler characteristic of C’JX . In
particular, this dimension can only increase under branched coverings. The
genericity of J then guaranties the inequality p; —x; > 0. If C’]X is a plane,
this virtual dimension is odd so that actually u; —x; > 1. Since CX contains
at least two planes and since the Euler characteristic of C'* is not positive,
we finally deduce after summation that the tangent Maslov index of S is
bounded from below by its Euler characteristic plus two, a contradiction.
The proof goes along the same lines when L is a torus. The Reeb flow
is then degenerated and closed Reeb orbits come in one-parameter fami-
lies. The Fredholm theory in this framework has been studied by Frédéric
Bourgeois in his thesis. The upshot in our case is that, once more, the
virtual dimensions of the spaces of deformations of the curves C’JX write
pj —x;- This means that these dimensions behave as if the Reeb flow would
be non-degenerated with vanishing Conley—Zehnder indices. The reason
for this is that these Reeb orbits rather have—after small perturbation—
Conley—Zehnder index 1 contributing as —1 to the virtual dimension, but
this contribution gets compensated by the freedom these orbits have to move
in their one-parameter families, see Sections 5.1, 5.2 and 9.4 of [3]. Hence
the result. O

Proof of Corollary 1.4. It suffices to prove the invariance under one blow-up,
say the blow-up ()~( ,@) of a closed symplectic ball B of (X,w). The group
Hy(X;Z) is canonically isomorphic to the orthogonal of the exceptional
sphere S in Ho ()N( ; Z). We claim that this isomorphism sends effective classes
to effective classes and classes realized by orientable surfaces of positive
genus in X to classes realized by orientable surfaces of positive genus in
X. Indeed, let L be an orientable surface of positive genus of X. Theorem
1.3 provides an isotopy S; of embedded symplectic (—1)-spheres such that
So = S and 57 is disjoint from L. Moser stability for pairs implies that this
isotopy S; is actually induced by an isotopy of symplectic diffeomorphisms of
the ambient manifold (X, @), see Corollary 4.1.B of [14]. The corresponding
family of inverse diffeomorphisms makes it possible to isotop L to a surface
disjoint from S. Blowing down the ball B does not affect the latter. The
second part of Corollary 1.4 is thus proved.

Now, let d be an effective class of (X,®). Since [S] is itself effective, we
can assume d to be orthogonal to [S] and denote by d the corresponding class
of Hy(X;7Z). Let J be an almost complex structure of X tamed by w and
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x € B. There exists a sequence (J, )pen of tamed almost complex structures
integrable in a neighborhood of x which converge uniformly to J. This
sequence can actually be constructed for n large enough by interpolation of
the constant almost complex structure J|, in a Darboux ball of radius %
around x and the structure J outside a Darboux ball of radius % around
x. For every n, the complex blow-up jn of J, at x is tamed by @. Indeed,
we know from [7, 12] that B is contained in a larger open ball B.. The
symplectic form w on B\ {0} reads d(e'\), where t < p. and ) is the standard
contact form of the unit sphere, whereas the symplectic form @ is rather the
symplectic form w of B.\ B which reads d(e") \), where h :|—o0, pc[—]p5, pe|
and h/(t) > 0. The spaces of almost complex structures tamed by these two
forms are exactly the same, since they coincide up to a positive factor on
every sphere and on every kernel of d\. This complex blow-up Jp of Jy
comes with a J,,-holomorphic map 7, onto (X, J,). By assumption, there
exists a J,, -holomorphic curve C, homologous to d. The image C,, = Wn(Cn)
is a Jp,-holomorphic curve homologous to d. Now from Gromov compactness
Theorem, there exists a subsequence of (), converging to a .JJ-holomorphic
curve C' homologous to d (see Theorem 1 of [9] for the C version of Gromov
compactness theorem we are using here). As a consequence, d is effective.
Conversely, assume that d is an effective class of (X, w), we have to prove
that the corresponding class d orthogonal to [S] in HQ(X Z) is effective
as well. Let J be an almost complex structure of X tamed by w. We
can assume from Gromov compactness theorem that X contains no J-
holomorphic sphere of non-positive Chern number, since this is a generic
condition. The manifold X contains then a unique embedded J- holomorphic
sphere S homologous to S. The normal bundle of S has the structure of
a complex line bundle and a neighbourhood of its zero section is identi-
fied with a neighbourhood of S in X. Equip this normal bundle with the
structure of a holomorphic line bundle N. There exists a sequence (.J, )neN
of tamed almost complex structures integrable in a neighbourhood of S in
X which convege uniformly to J. The latter can actually be constructed
for n large enough by interpolation of the holomorphic structure of N in a
neighbourhood of size % of the zero section and the structure J outside a
neighbourhood of size % of the zero section. For every n € N, the complex

blow down of S to a point z € X, possible thanks to Grauert’s contractibil-
ity criterion (see Theorem 2.1 of [1]), produces an almost complex structure
Jn of X together with a jn—holomorphic map m, onto (X, J,). The struc-
ture J, is tamed by w since as before the symplectic forms on the annulus
d(et)), t < pe and d(e"®)), h 3] — 00, pc[=]pB, pe| and K (t) > 0 tame the
same almost complex structures. Now since d is effective, there exists a
Jr-holomorphic curve C, homologous to d. Perturbing J,, away from z if
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necessary, we may assume that C, does not contain x. The strict transform
of C}, then produces a jn—holomorphic curve 6n homologous to d. Again,
from Gromov compactness theorem, there exists a subsequence of C,, con-
verging to a j—holomorphic curve C homologous to d (see Theorem 1 of
[9] for the C” version of Gromov compactness theorem we are using here).
As a consequence, d is effective. Il

2.1. Remarks. 1) We have actually proved more than claimed in Theo-
rem 1.1, namely for a class d € Ha(X;Z) to be orthogonal to a Lagrangian
torus [L], it suffices that d be realized by a sequence of J,-holomorphic
two-cycles, for a sequence J, having a flat neck stretching to infinity.

2) From the results of Taubes [16], any Seiberg—Witten basic class is
effective and thus, from Theorem 1.1, we deduce that SW-basic classes are
orthogonal to Lagrangian tori. This fact was already known, it indeed fol-
lows from the adjunction inequality [10, 15]. Our space B, (X) might how-
ever be bigger than the one generated by SW-basic classes? Also, our proof
remains in the symplectic category and offers possibilities to have counter-
parts in higher dimensions.

3) If (X,w) is Kéahler, then the Poincaré dual of B, (X) is contained in
the intersection of H'!(X;Z) on every complex structure of X tamed by w.
How smaller can it be?

4) From the Hodge Index Theorem, it follows that the intersection
AL(X)N B, (X) is torsion for every Kihler surface. This intersection indeed
lies in the isotropic cone of the Lorentzian H'!(X;R) and is orthogonal
to the symplectic form which lies in the positive cone (compare Example 1
of Section 2.2). I do not see at the moment whether or not this holds for
every closed symplectic 4-manifold (and am grateful to Stéphane Lamy for
raising the question to me). More generally, one may wonder whether the
intersection form restricted to B,(X) has to be non-degenerated (e.g., of
signature (1,n) when non-vanishing). This is the case at least for rational
surfaces from Example 2 of Section 2.2 and for Kéhler surfaces with b; > 2
and K% > 0 since from Taubes’ results [16], B, (X) contains the canonical
class Kx.

5) We made a crucial use of a property of the contact manifold (S*L, \),
namely that the subgroup R, generated by its closed Reeb orbits has a
rather big index in H;(S*L;Z). We may then more generally wonder, given
a contact manifold, how small can this subgroup Ry of “effective” homology
classes be?

6) Using the same methods, one can prove an analog of Theorem 1.1 for
orientable hyperbolic Lagrangian surfaces. Namely, if L is such a surface
and d is a class having a non-trivial Gromov—Witten invariant computed
with differential forms vanishing along L, then d and L are orthogonal to
each other in Ho(X;7Z/27).
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2.2. Examples. 1) If (X,w) has a Lorentzian intersection form of signature
(1,n), then AL (X) is torsion and A2 (X) vanishes. Indeed, every Lagrangian
torus should be in the isotropic cone of the intersection form and should be
orthogonal to the class of the symplectic form which lies in the positive cone.
Likewise, every orientable hyperbolic surface has positive self-intersection
and is orthogonal to w in Ho(X;R). This last observation actually goes
back to Comessatti, who made it in the framework of real algebraic geometry,
namely for real components of a smooth real rational surface, see [5]. We
can prove the following stronger statement.

Theorem 2.2. The unit cotangent bundle of an orientable hyperbolic
Lagrangian surface does mot embed as a hypersurface of contact type in a
rational or ruled symplectic 4-manifold.

One may wonder whether such a unit cotangent bundle embeds at all
in a rational or ruled 4-manifold. Note that we will actually prove that
such a unit cotangent bundle and a pseudo-holomorphic sphere S of Chern
number ¢; (X)[S] greater than one cannot both exist in the same symplectic
4-manifold. However, Dusa McDuff already proved in Theorem 1.4 of [13]
that the latter only exists in rational or ruled symplectic 4-manifold.

Proof. Assume that the rational or ruled symplectic 4-manifold (X,w) con-
tains a hypersurface of contact type contactomorphic to the unit cotangent
bundle (S*L, \) of an orientable hyperbolic Lagrangian surface L. Let us fix
a neighbourhood of (S*L,\) in (X,w) symplectomorphic to a piece of the
symplectization (R x S*L,d(e*\)) and choose a point  in the negative part
of this Liouville neighbourhood, that is, in the past of (S*L, \) with respect
to the Liouville flow. Since (X, w) is rational or ruled, it contains a pseudo-
holomorphic sphere S passing through x of Chern number ¢;(S) greater
than one. We can now repeat the proof of Theorem 1.3. We choose a tamed
almost complex structure Jy on X which is cylindrical over a C R-structure
on (S*L,\) in its chosen Liouville neighbourhood. We may assume that S
is Jp-holomorphic and fix ¢1(S) — 2 extra points y on S. We then stretch
the neck of Jy in the chosen Liouville neighbourhood until the splitting in
two parts (X \ S*L,J*) and (X~ \ S*L,J~) or one part (X \ S*L,J)
depending on whether X \ S*L is connected or not. The Jy-holomorphic
sphere deforms along the stretching until it splits into a several-level curve
passing through x and y. This curve in the limit cannot indeed be compact
in (X'\S*L,w) since it passes through z and in the Liouville neighbourhood,
the map (t,x) € R x S*L ~ e’ induces a sub-harmonic function which thus
cannot reach a maximum. Indeed, dd®e’ = d(e'dt o J) = —d(e')). For
this reason, every curve passing through x € X has to cross (S*L,\). Now
again as in the proof of Theorem 1.3, when Jy is generic enough, every con-
nected component of this several-levels J*-holomorphic curve has to be rigid
together with its incidence conditions since its degree of freedom has to be
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non-negative and the sum of these degrees over all components vanishes.
However, two of these components have to be planar and the virtual dimen-
sion given by Theorem 2.8 of [8] for such planar components is odd, a con-
tradiction. O

2) If (X, w) is a blow-up of the projective plane, then B, (X) = Ha(X;Z).
Indeed, exceptional divisors are effective classes, and the strict transform of
a line has non-trivial GW-invariants.

3) If X is a product of two curves (C1,w1) and (Co,ws) with symplectic
form w; © wo, then AL(X) contains the index two subgroup H;(C1;Z) ®
Hy(Cy;7Z) given by the Kiinneth formula. When, in addition, (C,w;) and
(Co,ws) are symplectomorphic tori, AL(X) contains the graph of the sym-
plectomorphism. Note that AL(X) cannot have codimension less than one,
since it lies in the orthogonal of the symplectic form.

4) If X is a product of two genus 1 curves, then B, (X) vanishes, since
for a generic complex structure, H%!(X;Z) vanishes. If instead one of the
curve is not elliptic, then we know from Taubes’ results [16] that B, (X)
contains the canonical class of X.
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