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TRANSVERSE KNOTS, BRANCHED DOUBLE COVERS
AND HEEGAARD FLOER CONTACT INVARIANTS

Olga Plamenevskaya

Given a transverse link in (S3, ξstd), we study the contact manifold
that arises as a branched double cover of the sphere. We give a contact
surgery description of such manifolds, which allows to determine the
Heegaard Floer contact invariants for some of them. By example of
the knots of Birman–Menasco, we show that these contact manifolds
may fail to distinguish between non-isotopic transverse knots. We also
investigate the relation between the Heegaard Floer contact invariants
of the branched double covers and the Khovanov homology, in partic-
ular, the transverse link invariant we introduce in a related paper.

1. Introduction

Let (S3, ξstd) be the 3-sphere equipped with its standard contact structure
ξstd = ker(dz − x dy). A link L ⊂ S3 is called transverse if it is every-
where transverse to the contact planes. Let Σ(L) be the double cover of S3

branched over L. Then, Σ(L) carries a natural contact structure ξL lifted
from (S3, ξstd). The goal of this paper is to study the contact manifold
(Σ(L), ξL).

Our motivation is two-fold. First, one might wonder whether the double
branched covers can help us understand transverse knots and links. The
classification of transverse knots is a very difficult task. Indeed, while a
few simplest knots, such as the unknot, the figure eight knot, and torus
knots are completely classified by their topological knot type and the self-
linking number [1], in general this is not true. The first examples of smoothly
isotopic, but not transversely isotopic transverse knots K1, K2 with the same
self-linking number were given by Birman and Menasco [2]. The existence of
such pairs was also demonstrated by Etnyre and Honda [3] via some “non-
explicit” examples. Unfortunately, it seems that the branched double covers
do not capture the subtle difference between such knots. Indeed, we prove
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Theorem 1.1. Let K1, K2 be transversely non-isotopic knots of [2,
Theorem 1.6]. The branched double covers (Σ(K1), ξK1) and (Σ(K2), ξK2)
are contactomorphic.

(Theorem 1.6 in [2] provides a family of pairs of transversely non-isotopic
knots, not just a single pair. Our result is true for all pairs of [2]).

From another viewpoint, double covers of (S3, ξstd) branched over trans-
verse links give an interesting special case of contact 3-manifolds. Indeed, the
works of Giroux [4] and others imply that every three-dimensional contact
manifold can be represented as a triple branched cover of (S3, ξstd). It turns
out that branched double covers are quite simple. We give an algorithm for
finding a contact surgery diagram [5, 6] for (Σ(L), ξL); the diagrams we get
only involve surgeries on Legendrian unknots. We are also able to find the
homotopy invariants of the contact structure ξL (that is, the induced Spinc

structure and the three-dimensional invariant d3(ξ) of [7]).

Theorem 1.2. Let sL be the Spinc structure induced by ξL. Then c1(sL) = 0.
The invariant d3(ξ) is completely determined by the topological link type of
L and its self-linking number sl(L).

In certain cases, it is easy to tell whether the contact structure ξL is tight
or overtwisted.

Proposition 1.3. (Σ(L), ξL) is overtwisted if L is obtained as a transverse
stabilization of another transverse link.

Proposition 1.4. (Σ(L), ξL) is Stein fillable if the transverse link L is rep-
resented by a quasipositive braid.

(Here and later on, it will be convenient to represent transverse links
as closed transverse braids in (S3, ξstd). We give more details about this
representation in the next section.)

We now turn attention to the Heegaard Floer contact invariants. The
Heegaard Floer theory of Ozsváth and Szabó ([8] and sequels) associates a
homology group ̂HF(Y ) to a closed oriented 3-manifold Y and yields invari-
ants for many low-dimensional objects. In particular, given a contact struc-
ture ξ on Y , the contact invariant c(ξ) is a distinguished element of ̂HF(−Y ),
defined up to sign [9]. (We assume that the coefficients are taken in Z.)

Propositions 1.3 and 1.4 along with the surgery diagrams and properties
of c(ξ) enable us to determine the Ozsváth–Szabó contact invariant c(ξL)
for (Σ(L), ξL) in many cases. We observe that the contact invariant c(ξL)
behaves very similarly to the Khovanov-homological invariant of transverse
links that we introduce in [10]. This is not a mere coincidence. Indeed, as
proved by Ozsváth and Szabó [11], for a smooth link L ⊂ S3, there is a
spectral sequence converging to ̂HF(−Σ(L)) whose E2 term is given by the
reduced Khovanov homology of L (both theories are to be taken with Z/2Z
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coefficients). When the link L is alternating, the spectral sequence of [11]
collapses at the E2 stage, providing an isomorphism

(1.1) ˜Kh(L) ∼= ̂HF(−Σ(L)).

Now, suppose the link L is transverse, and ξL is the induced contact structure
on the branched double cover. Let ψ(L) ∈ ˜Kh(L) be the invariant of [10].
We would like to suggest that the elements ψ(L) and c(ξL) correspond to
one another under the isomorphism (1.1). However, we must be careful,
because this isomorphism is not canonical: while the spectral sequence of
[11] is believed to be an invariant of the link, this invariance has not been
proved. To deal with this issue, we fix a link diagram before studying such
an isomorphism. (The choice of the diagram will be clear from the context;
besides, we prove that both ψ(L) and c(ξL) are independent of the diagram.)

We also need to be more precise about the spectral sequence and iso-
morphism (1.1). For a fixed link diagram, the construction of [11] gives
a filtered chain complex C(L), whose homology is ̂HF(−Σ(L)), and the
associated graded complex is the chain complex C̃Kh(L) for reduced Kho-
vanov homology (with its homological grading). When L is alternating,
the spectral sequence collapses, yielding a canonical isomorphism between
˜Kh(L) and the associated graded group of ̂HF(−Σ(L)). For coefficients in
a field, the associated graded group of ̂HF(−Σ(L)) is of course isomorphic
to ̂HF(−Σ(L)), but the latter isomorphism is not canonical. Therefore, we
will always think of (1.1) as the isomorphism between ˜Kh(L) and the asso-
ciated graded group of ̂HF(−Σ(L)). The relation between ψ(L) and c(ξL)
must involve gradings, as follows. Recall from [10] that ψ(L) is a homoge-
neous element of ˜Kh(L) of homological degree 0. Let c0(ξL) be the image
of c(ξL) in the corresponding subquotient of the associated graded group
of ̂HF(−Σ(L)), that is, c0(ξL) ∈ ̂HF0(−Σ(L))/ ̂HF1(−Σ(L)), where the sub-
scripts on ̂HF indicate the filtration level.

We suggest

Conjecture 1.5. If L is a transverse representative of an alternating
smooth link, then the homological grading of ψ(L) ∈ ˜Kh(L) is the same
as the filtration level of c(ξL) ∈ ̂HF(−Σ(L)) (and this filtration level is 0).
Moreover, ψ(L) = c0(ξL) under the isomorphism (1.1) between ˜Kh(L) and
the associated graded group of ̂HF(−Σ(L)).

In the general case, it is plausible that c(ξL) somehow “corresponds” to
ψ(L) under the spectral sequence.

In the special case when the transverse link L is represented by a trans-
verse closed braid whose braid diagram is alternating, Conjecture 1.5 is not
hard to prove.
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Theorem 1.6. Let L be a transverse link represented by a closed braid with
an alternating braid diagram. Then, the filtration level of c(ξ) is as stated,
and ψ(L) = c0(ξL).

It should be noted that alternating braids represent a very narrow class
of links. We show that ψ(L) = c(ξL) = 0 for all such links except the
(2, n)-torus link.

Conjecture 1.5 implies that c(ξL) �= 0 whenever ψ(L) �= 0. We are able to
check this directly for many cases not covered by Theorem 1.6 (see Section 6).
If proved in general, Conjecture 1.5, together with the fact that c(ξ) vanishes
when ξ is overtwisted [9], would give a powerful sufficient condition for
the contact structure ξL to be tight. Indeed, for an arbitrary transverse
link L, we can often show that ψ(L) �= 0 by using arguments from [10]
or software [12, 13]; when K is an alternating knot, it can be shown that
ψ(K) �= 0 if and only if sl(K) = −σ(K) − 1, where σ(K) is the signature
of the knot (with the sign convention such that the right-handed trefoil has
signature −2.) Note that the contact structures that we would thus obtain
from Theorem 1.6 are all (trivially) Stein fillable.

2. Transverse links and braids

In what follows, we will be working with the induced contact structure ξL

on the branched double cover Σ(L) for a transverse link L in the standard
contact 3-sphere. We now describe in some detail how ξL is constructed.

Let L be a transverse knot in S3 (if L is a link, we can deal with every
component separately). Then some neighborhood of L embeds into R

2 ×S1

via coordinates (r, θ, z) (with (r, θ) the polar coordinates on R
2, z ∈ S1,

and L = {r = 0}), and the contact structure ξ in this neighborhood can be
given as the kernel of the 1-form dz + r2 dθ. (This is the Darboux theorem
for contact structures.) In this neighborhood, the standard local model for
the projection p : Σ(L) → S3 is given by the map (w, z) → (w2, z), where
w = x + iy.

Fix n large enough, so that the set {r = r0} with r4
0 = 1

4πn is contained in
the chosen neighborhood. Choose η, ε > 0 such that η < r0, and ε2 < 2η4.
Define ξL on Σ(L) − {r < η} to be the kernel of the pull-back contact form
(i.e., ξL = ker(dz + 2r4 dθ) where our coordinates are defined, and r ≥ η).
For r < ε, let ξL be the kernel of the contact form dz+r2 dθ, and interpolate
between the two pieces by setting ξL = ker(dz + f(r)dθ), where the smooth
function f is chosen so that f(r) = r2 for r < ε, f(r) = 2r4 for r > η, and
f ′(r) > 0 for r > 0. It is clear that dz + f(r)dθ is a contact form; moreover,
the contact structure it defines inside the coordinate neighborhood of L in
Σ(L) is isotopic to ker(dz + r2 dθ) and therefore tight. (Note that the pull-
back form dz + 2r4 dθ would not work for the entire Σ(L): this form is not
contact along the z-axis.)



HEEGAARD FLOER CONTACT INVARIANTS 153

We have to check that the contact structure ξL we obtain is independent
of choices. To this end, observe that the characteristic foliation that ξL

induces on the torus {r = r0} is given by parallel longitudes of framing
−n (calculated with respect to the framing defined by θ). Fix two of these
parallel longitudes. They divide the torus {r = r0} into two annular regions;
by pushing one of these regions in and another one out, we can perturb this
torus by an isotopy into a convex surface whose characteristic foliation is
Morse–Smale, and the dividing set is given by the two parallel longitudes
of framing −n. In addition, we can assume that the support of this isotopy
lies outside the set {r ≤ η}. We denote the new convex torus by Tn and the
tubular neighborhood of L in Σ(L) that Tn bounds by Vn.

With given boundary conditions, the tight contact structure in the solid
torus bounded by Tn is unique up to an isotopy (see, e.g., [14]). This
means that the tight contact structure on Vn is uniquely determined by
the boundary conditions, and, since our construction of ξL outside of Tn is
canonical, the contact structure ξL on Σ(L) is independent of all choices
(including the choice of n).

We will need a few more facts about transverse knots. (See [15] for a
detailed survey.)

It will be helpful to think about transverse links by representing them by
closed braids. For this, consider the symmetric version of (S3, ξsym) with
ξsym = ker(dz + x dy − y dx). Then, any closed braid around z-axis can
be made transverse to the contact planes; moreover, any transverse link in
(S3, ξstd) is transversely isotopic to a closed braid [16].

To define the self-linking number sl(L), trivialize the plane field ξ, and
let the link L′ be the push-off of L in the direction of the first coordinate
vector for ξ. Then, sl(L) is the linking number between L and L′. Given a
closed braid representation of L, we have

(2.1) sl(L) = n+ − n− − b,

where n+ (n−) is the number of positive (negative) crossings, and b is the
number of strings in the braid.

The stabilization of a transverse link represented as a braid is equivalent
to the negative braid stabilization, i.e., adding an extra string and a negative
kink to the braid. If Lstab be the result of stabilization of L, then

(2.2) sl(Lstab) = sl(L) − 2.

Note that the positive braid stabilization does not change the transverse
type of the link.

We will often describe a braid by its braid word on the standard generators
σ1, σ2, . . . and their inverses and draw associated braid diagrams.
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3. Crossing resolution and contact surgery

In this section, we establish the correspondence between the crossings of
the braid diagram representing the transverse link L and the surgeries
required to obtain the contact manifold (Σ(L), ξL) from (S3, ξstd). This
correspondence is our main tool: it allows to build contact surgery diagrams
and plays the key role in other results of this paper.

3.1. Contact surgery. Let K be a null-homologous Legendrian knot in
a contact manifold (Y, ξ). Legendrian surgery on K is the surgery with
coefficient tb(K) − 1; it is well known that a Legendrian surgery on (Y, ξ)
produces a new contact manifold (Y ′, ξ′), which is Stein fillable if (Y, ξ) is.
We often refer to Legendrian surgery as (−1) contact surgery (comparing
the surgery framing to the framing given by contact planes). It is also
possible to make sense of (+1) contact surgery (in fact, any rational p/q
surgery) [5]. The new contact manifold is obtained by cutting out a tubular
neighborhood of the knot K (i.e., a solid torus) and gluing it back in so that
the contact structure on the solid torus matches the contact structure on
its complement; when the surgery coefficient is 1/q with q ∈ Z, the result
of this procedure is independent of choices. We refer the reader to [5, 6]
for the details of this construction. We recall that (+1) contact surgery
is the operation inverse to the (−1) contact (i.e., Legendrian) surgery, and
note that the (+1) surgery does not preserve Stein fillability or other similar
properties of contact structures.

3.2. Surgery diagrams for double covers. We are now ready to relate
the crossings of the braid diagram to contact surgeries. Roughly, a positive
crossing gives a (−1)-surgery and a negative crossing a (+1)-surgery.

Theorem 3.1.
(1) If the transverse braid L is obtained from the transverse braid L+

by resolving a positive crossing, then (Σ(L+), ξL+) is obtained from
(Σ(L), ξL) by Legendrian surgery.

(2) If L is obtained from L− by resolving a negative crossing, then the con-
tact manifold (Σ(L−), ξL−) is obtained from (Σ(L), ξL) by (+1) contact
surgery.

Proof. We first consider a model example of two simple braids in (S3, ξstd).
Let K ⊂ S3 be the transverse unknot given by the braid σ1, and K+ be the
transverse Hopf link given by σ2

1. We claim that Σ(K) = S3 and Σ(K+) =
L(2, 1) = RP 2 with their (unique) tight contact structures. Indeed, since
K is the transverse unknot with sl(K) = −1, it can be thought of as the
binding of an open book decomposition of S3 whose page is a disk. The
branched double cover, then, is the same open book, giving the standard
contact structure on S3. The positive Hopf link K+ with sl(K+) = 0 is the
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K

B

a

K+

B

Figure 1. The branched double covers for the unknot and
the Hopf link differ by regluing a solid torus which is a double
cover of the ball B. This amounts to a surgery on the knot
obtained as the branched double cover of the arc a.

binding of an open book whose page is an annulus, and the monodromy is the
positive Dehn twist. Doubling the monodromy, we see that Σ(K+) = L(2, 1)
and that the contact structure ξ+ is Stein fillable. (See [4] for the relation
between open book decompositions and fillability.)

Now, K and K+ agree in the complement of a ball B containing one of
the crossings of K+ (the boundary of this ball is shown in Figure 1 as a
dotted circle). The double cover of this complement S3 \ B branched along
the two arcs of K is a solid torus M . The ball B contains two arcs of K and
two arcs of K ′, and the branched double covers Σ(K) and Σ(K+) are both
obtained from M by attaching another solid torus N , a double cover of B
branched along two arcs. This means that Σ(K+) is obtained as a surgery
on a knot in Σ(K). This knot is the branched double cover ã of the arc a
connecting the two strands of K inside B; it represents the longitude of the
solid torus N . Therefore, we are doing surgery on an unknot in S3; since the
result of this surgery is L(2, 1), the surgery coefficient is −2. (For surgeries
relating branched double covers, the surgery coefficient is always integral.)

Our goal is to put this surgery into a contact context. First, we can assume
that the arc a is Legendrian (and so is ã). The surgery on the contact S3

then becomes contact surgery on a Legendrian unknot; if tb(ã) = −n for
some n ≥ 1, then we must be doing (n − 2)-contact surgery (the result of
this surgery is not unique unless n − 2 = ±1). Our goal is to show that
n = 1, so that we have the Legendrian surgery on the standard Legendrian
unknot in S3. To this end, we will show that the resulting contact structure
is overtwisted whenever n > 1. Indeed, consider (+1)-contact surgery on

a~

S
N

a~
N

Figure 2. The unknot N bounds an overtwisted disk in the
surgered manifold; part of the disk is formed by the surface S.
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an unknot with tb = −3 (Figure 2). The surface framing of the unknot ã
given by the Seifert surface S of the link N ∪ ã in this figure equals −2,
which is the Dehn surgery coefficient. Then, the new meridional disk glued
together with S gives an embedded disk D0 bounded by N in the surgered
manifold. The Thurston–Bennequin number of N is −2, which is the same
as the surface framing of N determined by the disk D0. It follows that D0 is
an overtwisted disk. (A similar argument for an overtwisted sphere is given
in [6]). There are two more unknots with tb = −3, one with three kinks
on the right and one on the left, and the other with two kinks on each side;
they can be treated in the same way (putting N on the left or on the right
and orienting the link as needed).

If tb(ã) = −n < −3, the (n − 2)-contact surgery is no longer uniquely
defined, but the same argument applies, and we can always find an unknot
N that bounds an overtwisted disk in the surgered manifold. One possible
picture for ã and N is shown in Figure 3 (note that there are a few choices
for the contact surgery even when ã is fixed, see [6]). The remaining case is
tb(ã) = −2. Then, the surgery coefficient matches the Thurston–Bennequin
number (i.e., we are attempting to do 0-contact surgery); in this case, our
Legendrian unknot bounds an overtwisted disk in the surgered manifold.

Therefore, we see that the contact manifold (Σ(K+), ξ+) is the result of
the Legendrian surgery on the unknot in (Σ(K), ξ) with tb = −1. This
unknot is a Legendrian representative of the lifting of a chord a of K,
shown in Figure 1. Because (+1)-contact surgery and Legendrian surgery
are inverse to one another, we can also say that (Σ(K), ξ) is obtained from
(Σ(K+), ξ+) by the contact (+1)-surgery on ã.

We are now ready to prove part (1) of the theorem. We know that the
contact manifold (Σ(L+), ξL+) is obtained by some contact surgery on the
Legendrian knot ã obtained as the branched double cover of an arc connect-
ing two strings of the braid L. The framing of this surgery is a purely local
question, so from our model example, we see that it must be the Legendrian
framing.

~a

N

Figure 3. As in the previous picture, the unknot N bounds
an overtwisted disk in the surgered manifold.
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Part (2) also follows from the local model: indeed, the link K+ can be
obtained from K by resolving a negative crossing (we first change the dia-
gram by a Reidemeister move to introduce two new crossings, a positive and
a negative one, that cancel each other). �

We can now give a contact surgery diagram for a double cover branched
over an arbitrary transverse braid L on n strings. Inserting the factors
σiσ

−1
i if necessary, we may assume that the braid word contains each σi

with i = 1, . . . , n. Therefore, the braid L can be obtained from the braid
U = σ1σ2 · · ·σn by introducing some extra (positive and negative) crossings.
Obviously, the transverse link U is the unknot with sl(U) = −1, and so the
double cover of S3 branched over U is (S3, ξstd). Now, (Σ(L), ξL) is the
result of a contact surgery on a link in the standard sphere: each “extra”
crossing of L gives a (−1) or a (+1) contact surgery on a Legendrian unknot
(depending on the sign of the crossing). These Legendrian unknots are the
components for the surgery link for (Σ(L), ξL); it remains to understand
how they are linked. As explained in [11, Lemma 3.6], the linking number
between two components is given by the number of twists in the unknot
between the attaching points of the two chords. In our case, because of
the special position of the unknot U and the chords, this linking number is
always zero or ±1 and can be easily determined by untwisting the unknot (we
can also pinpoint the sign of the linking number if we orient the surgery link
by using the blackboard framing of U , as described in [11]). It is convenient
to picture U as a round circle and to mark on it the attaching points for the
chords given by the crossings.

Example 3.2. Two examples are shown in Figure 4: the double branched
cover for the right-handed trefoil (the braid σ3

1) gives the (unique) Stein
fillable structure on −L(3, 1), and the double cover branched over the trans-
verse unknot with sl = −3 is an overtwisted sphere. For the surgery
diagrams here and later on, we choose the more familiar contact form
ξstd = ker(dz − x dy), which is isotopic, but not identical to the rotationally

−1

−1

+1

+1

Figure 4. Constructing surgery diagrams: the trefoil and
the unknot.
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symmetric contact form used for the braid representation of the transverse
links. We hope that this will lead to no confusion.

Remark 3.3. It is not necessary to single out the braid word that gives the
unknot: we can as well start from the trivial braid and obtain (Σ(L), ξL) as
a result of surgery on (#S1 × S2, ξ0) (where ξ0 is the unique Stein fillable
contact structure). However, we find surgeries on the sphere more practical,
especially for the next subsection.

3.3. Birman–Menasco braids. We can now use the strategy from the
previous subsection to construct surgery diagrams for the Birman–Menasco
braids. We make Theorem 1.1 more precise:

Theorem 3.4. Let p, q, r > 1 be integers with p + 1 �= q �= r and consider
the transverse braids

K1 = σ2p+1
1 σ2q

2 σ2r
1 σ−1

2 and K2 = σ2p+1
1 σ−1

2 σ2r
1 σ2q

2 .

The branched double covers (Σ(K1), ξK1) and (Σ(K2), ξK2) are contacto-
morphic: indeed, they can be described by the same contact surgery diagram.

Remark 3.5. As mentioned in the introduction, K1 and K2 have the same
self-linking number and are isotopic as smooth knots, but not as transverse
knots.

Proof. The two braids together with the surgery diagram for both double
covers are shown in Figure 5. (The circles with the attaching chords help
understand where the diagram comes from.) �

Remark 3.6. We can also study the manifold (Σ(L), ξL) in terms of its
open book decomposition. Indeed, the page of such open book is given by
a branched double cover of a disk which is transverse to all strings of the
braid. The monodromy comes from the braid monodromy: each generator σi

corresponds to a Dehn twist. The manifold (Σ(L), ξL) can then be exhibited
as the boundary of an achiral Lefschetz fibration. The open book descrip-
tion, together with the results of [4], would lead to an alternative quick
proofs for the next section. The surgery diagrams are more convenient for
our purposes because they fit nicely with the arguments of [11].

4. Quasipositive braids and stabilizations

To prove Propositions 1.3 and 1.4, we turn our attention to transverse links
represented as quasipositive braids, as well as to those which can be obtained
as transverse stabilizations.

Recall [17] that a braid is called quasipositive if its braid word is a product
of conjugates of the form wσiw

−1, where w is an arbitrary element of the
braid group.
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2p+1
2r

2q
−1

2p+1 2q
2r−1

2p}

}

}

−1

+1

−1

−1

2q

2r−1

2p

2p

2q

2q−1

−1

2r−1

2r−1

2p

2p

2r−1

2r−1

−1

−1

2q

2q

Figure 5. Double covers are contactomorphic.

Proof of Proposition 1.3. Resolving a few positive crossings, we convert the
braid representing L into a braid equivalent to a trivial one (of the same
braid index). For the trivial braid O, the contact manifold (Σ(O), ξO) is
a connected sum of several copies of (S1 × S2, ξ0), which is Stein fillable.
By Theorem 3.1, (Σ(L), ξL) is obtained from (Σ(O), ξO) by a sequence of
Legendrian surgeries, so it will be Stein fillable, too. �

Conversely, a stabilized transverse link gives some (+1) surgeries in the
contact surgery diagram for the double branched cover.

Proof of Proposition 1.4. Suppose that a transverse link Lstab is obtained
as a transverse stabilization of a link L. Then Lstab can be represented as
a braid with a negative kink. Now use the algorithm from Section 3 to
translate the braid representation into a contact surgery diagram. We see
that the diagram breaks into two pieces: two (+1) surgeries on two linked
Legendrian unknots (cf. Example 3.2, Figure 4), isolated from everything
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else, and the surgery diagram for (Σ(L), ξL). It follows that (Σ(Lstab), ξstab)
is the connected sum of (Σ(L), ξL) and an overtwisted S3, so it is overtwisted.

�
Corollary 4.1. Let T be a transverse link smoothly isotopic to a (p, q) torus
link, p, q > 0. If sl(T ) = slmax = pq − p − q, then (Σ(T ), ξT ) is Stein fillable.
Otherwise (Σ(T ), ξT ) is overtwisted.

Proof. We make use of the transverse simplicity of torus links [18], that is,
the fact that the transverse (p, q) torus link is uniquely determined by its
self-linking number. When sl(T ) = pq −p− q, the link T can be represented
as the obvious positive braid, so the branched double cover is Stein fillable.
For smaller values of sl, the transverse link T is obtained as a result of a few
stabilizations of that braid, which proves overtwistedness. �

5. Spinc structures and the three-dimensional invariant

A contact structure ξ on a contact manifold Y induces a Spinc structure s

on Y . When c1(s) is torsion, there is also the three-dimensional invariant
d3(ξ) [7]. If (Y, ξ) is the boundary of an almost-complex 4-manifold (X, J),
this invariant is given by

d3(ξ) =
1
4
(c2

1(J) − 2χ(X) − 3 sign(X)).

As described in Section 3, given a braid presentation for a transverse knot
K, we can find a contact surgery description of (Σ(K), ξK). More precisely,
assuming that the braid has b strings, and the braid word contains each σi for
i = 1, . . . , b and has l+ b positive entries and m negative entries, we see that
(Σ(K), ξK) is obtained from (S3, ξstd) by a sequence of l Legendrian surgeries
and m (+1) contact surgeries, so that all the surgeries are performed on the
standard Legendrian unknot.

The results of [6] can be used to understand the Spinc structure and the
d3 invariant for the contact manifold (Σ(L), ξL) for a transverse link L.

Let X be the 4-manifold obtained from D4 by attaching the 2-handles
as dictated by the (±1)-surgery diagram. (If the link L has no negative
crossings, X is Stein.) Following [6], consider an almost-complex structure
J defined on X in the complement of m balls lying in the interior of the
(+1)-handles of X. As shown in [6], J induces a Spinc structure sJ which
extends to all of X. The d3 invariant of ξL can be computed as

(5.1) d3(ξK) =
1
4
(c2

1(sJ) − 2χ(X) − 3 sign(X)) + m.

This formula is very similar to the case where (X, J) is almost-complex,
except that there is a correction term of +1 for each (+1)-surgery.

Now, suppose that a 2-handle is attached to the 4-manifold X in the
process of Legendrian surgery on a knot K, and denote by [S] the homology
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class that arises from the Seifert surface of K capped off inside the handle.
It is well known [7] that c1(sJ) evaluates on [S] as the rotation number
of the Legendrian knot K. Furthermore, it is shown in [6] that the same
result is true for (+1)-contact surgeries (for the Spinc structure sJ on X
described above). Thus, we see that in our case c1(sJ) evaluates as 0 on
each homology generator corresponding to either a (−1) or a (+1) surgery,
because the rotation number of the standard Legendrian unknot is 0. We
conclude that c1(sJ) = 0. Since sξ is the restriction of sJ , we have

Lemma 5.1. For any transverse link L, c1(sξL
) = 0.

The Euler characteristic of the manifold X is 1 + #(2-handles), which is
1 + l + m; formula (5.1) simplifies as d3(ξL) = −3

4σ(X) − 1
2(l − m) − 1

2 =
−3

4σ(X) − 1
2sl(L) − 1

2 .
Our next task is show that this expression depends on the topological

type of L and sl(L) only.

Lemma 5.2. Suppose that two closed braids L and L′ are isotopic as smooth
knots and that sl(L) = sl(L′). Then d3(ξL) = d3(ξL′).

Proof. Since the braids L and L′ give rise to isotopic knots, by the classical
Markov theorem [19] L′ can be obtained from L by a sequence of braid iso-
topies and (positive and negative) braid stabilizations and destabilizations.
Braid isotopies do not change the transverse link type, and neither do pos-
itive stabilizations; this means that both the self-linking number and the
d3 invariant remain unchanged. A negative stabilization changes both sl(L)
and d3(ξL), but it is easy to keep track of the changes. Indeed, the self-
linking number decreases by 2. The branched double cover (Σ(Lstab), ξLstab)
is obtained from (Σ(L), ξL) by the connected sum with an overtwisted sphere
which is a (+1) contact surgery on two linked Legendrian unknots (cf.
Proposition 1.4). It follows from (5.1) that the d3 invariant increases by
1. Since sl(L) = sl(L′), every negative stabilization must be compensated
by a destabilization, so that we have the same number of stabilizations and
destabilizations. Then, we must have d3(ξL) = d3(ξL′). �

6. Ozsváth–Szabó invariants

In this section, we study the Ozsváth–Szabó invariants of the contact struc-
tures on the branched double covers. As the author learned upon completion
of this paper, the same question was independently studied by John Etnyre,
who obtained similar results.

6.1. A brief review. We quickly recall a few facts about the Heegaard
Floer homology groups here, referring the reader to the papers of Ozsváth
and Szabó for details. We use coefficients in Z. Given a 3-manifold Y
equipped with a Spinc structure s, Ozsváth and Szabó use a Floer-theoretic
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construction to define a homology group ̂HF(Y, s). Together, these groups
form ̂HF(Y ) =

⊕

s∈Spinc(Y )
̂HF(Y, s). Cobordisms induce a map on Floer

homology. More precisely, a Spinc cobordism (W, s) gives a map

FW,s : ̂HF(Y1, s|Y1) −→ ̂HF(Y2, s|Y2).

The map FW : ̂HF(Y1) → ̂HF(Y2) is defined by summing over all Spinc

structures.
For a manifold Y equipped with a contact structure ξ, Ozsváth and Szabó

[9] define a contact invariant c(ξ) ∈ ̂HF(−Y ). The element c(ξ) is well-
defined up to a sign and lives in the Spinc component ̂HF(−Y, sξ) associ-
ated to the contact structure. Cobordisms given by Legendrian surgeries
respect c(ξ).

Proposition 6.1 [20]. Let (Y ′, ξ′) be obtained from (Y, ξ) by a Legendrian
surgery. Denote by W the surgery cobordism, and let FW : ̂HF(−Y ′) →
̂HF(−Y ) be the associated map. Then FW (c(ξ′)) = c(ξ).

When s is a torsion Spinc structure, ̂HF(Y ) is a Z-graded group. (Strictly
speaking, this grading gr takes values in Q; it is a Z-grading shifted by
a rational constant.) The degree of c(ξ) is closely related to the three-
dimensional invariant of ξ.

Proposition 6.2 [9]. Suppose sξ is torsion. Then c(ξ) is a homogeneous
element of degree gr(c(ξ)) = d3(ξ) + 1

2 .

Finally, we have the following important fact.

Theorem 6.3 [9].
(1) If the contact structure ξ is overtwisted, then c(ξ) = 0.
(2) If ξ is Stein fillable, then c(ξ) �= 0. Indeed, c(ξ) ∈ ̂HF(−Y ) is a

primitive element.

6.2. Contact invariants of double covers. Combining the results of the
previous sections with the properties of the Heegaard Floer contact invari-
ant, we immediately get the following propositions.

Proposition 6.4. Suppose that the transverse link L is the result of trans-
verse stabilization of another link. Then c(ξL) = 0.

Proposition 6.5. Let the transverse link L be represented as a quasipositive
braid. Then c(ξL) �= 0. Indeed, it is a homogeneous primitive element in
̂HF(−Σ(L)), whose grading is given by

gr(ξL) = −3
4
σ(X) − 1

2
sl(L),

where X is the 4-manifold described in Section 5. The latter expression
depends on the topological type of L and its self-linking number only.
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Proposition 6.6. Let the link L be obtained from the link L+ by resolving a
positive crossing. Let W be the associated surgery cobordism between the two
branched double covers, and FW : ̂HF(−Σ(L+)) → ̂HF(−Σ(L)) the induced
map on homology. Then FW (c(ξL+)) = c(ξL).

We also have

Proposition 6.7. For the connected sum L1#L2 of transverse links L1 and
L2, c(ξL1#L2) = c(ξL1) ⊗ c(ξL2).

Proof. The contact manifold (Σ(L1#L2), ξL1#L2) is the connected sum of
(Σ(L1), ξL1) and (Σ(L2), ξL2), so the proposition follows from the connected
sum statement in [9]. �

The following proposition is useful in calculations and shows that c(ξL) =
0 in many cases.

Proposition 6.8. Suppose that the transverse link L is represented by a
closed braid such that its braid word contains a factor of σ−1

i but no σi’s for
some i > 0. (This means that all the crossings in the braid diagram on the
level between (i − 1)-th and i-th string are negative.) Then c(ξL) = 0.

Proof. First of all, we delete all σ−1
i but one from the braid word, obtaining

a link that decomposes as a connected sum of two links (connected by a
negative crossing, the σ−1

i that remains). Deleting further negative crossings
and inserting new positive crossings into both components of the connected
sum, we obtain a link L′ given by two positive torus knots connected by a
negative crossing. Topologically, the link L′ is just the connected sum of
two torus knots; as a transverse link, it does not have maximal self-linking
number (because we can connect the two components by a positive crossing
instead of a negative one to increase sl). Connected sums of torus knots are
transversely simple [21], so L′ is the transverse stabilization of another link.
By Proposition 1.4, c(ξL′) = 0. Repeated use of Proposition 6.6 now implies
that c(ξL) = 0. �
Corollary 6.9. Let L be a transverse representative of a negative torus link.
Then c(ξL) = 0.

7. Relation with Khovanov homology

Now we explore the connection to the Khovanov homology mentioned in the
introduction. We consider the Khovanov homology with Z/2Z coefficients.

We very briefly recall the relevant constructions. (Our review here is
similar to the one in [22].)The starting point for defining the Khovanov
homology [23] of a smooth link L ⊂ S3 is a link diagram (which we still
denote L). Let n be the number of crossings in L. Khovanov homology
Kh(L) is the homology of the chain complex CKh(L), which is formed by
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dv    v’

CKhv (L)

CKhv’ (L)

0−resolution

1−resolution

Figure 6. Crossing resolutions and differentials.

considering all “complete resolutions” of L. Each crossing can be resolved
in two ways, (“0-resolution” and “1-resolution”, see Figure 6), so that com-
plete resolutions can be written as Lv, indexed by v ∈ [0, 1]n. Each com-
plete resolution consists of a few disjoint circles; let Lv consist of m circles.
To obtain the generators for CKh(Lv), label each of the circles by either
u− or u+ (that is, set CKh(Lv) = U⊗m, where U is a vector space with
basis {u−,u+}). The underlying space for the Khovanov complex is then
CKh(L) = ⊕v∈{0,1}nCKh(Lv). The differential d is defined as a sum of its
components dv→v′ : CKh(v) → CKh(v′) for all v, v′ which are adjacent ver-
tices of the cube [0, 1]n, so that L′

v can be obtained from Lv by changing a
0-resolution of one crossing into a 1-resolution. The chain complex CKh(L)
is bi-graded; up to a correction term, the homological grading of all ele-
ments in CKh(Lv) is given by the number of zeroes among the coordinates
of v ∈ {0, 1}n, so that d raises the homological grading by 1. We do not
describe the differential in detail, nor do we discuss the quantum grading
on CKh(L). (The reader is referred to the original paper [23] or to surveys
such as [12].)

The reduced complex C̃Kh(L) is defined for a link with a marked point.
Each complete resolution now has one marked circle; let CKhu−(L) be gen-
erated by those u± ⊗ · · · ⊗ u± that have the label u− on the marked circle.
Then, the reduced complex is defined as C̃Kh(L) = CKh(L)/CKhu−(L).
The group ˜Kh(L) is the reduced Khovanov homology group.

Given a transverse link L ⊂ S3, we define an invariant ψ(L) ∈ ˜Kh(L)
[10]. We represent L as a transverse braid and take the oriented resolution
Lo of the braid diagram (i.e., the resolution that consists of parallel strings).
For unreduced Khovanov homology, we pick the element u− ⊗ u− ⊗ · · · ⊗
u− ∈ CKh(L), that is, we label every component of the oriented resolution
with a u−. For reduced homology, there is an isomorphism C̃Kh(L) ∼=
CKhu−(L) obtained by replacing the label u+ on the marked component
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with a u−; we define ψ̃(L) to be the element of C̃Kh(L) corresponding to
u− ⊗ · · · ⊗ u− ∈ CKhu−(L) under this isomorphism. We show that ψ̃(L)
descends to ψ(L) ∈ ˜Kh(L) and gives an invariant of the transverse link,
well-defined up to a sign. The properties of ψ(L) are similar to those of
c(ξL); in fact, we prove analogs of results of Section 6. In the introduction,
we have conjectured that ψ(L) “corresponds” to c(ξL) under the spectral
sequence of [11] which relates ˜Kh(L) and ̂HF(−Σ(L)).

To be more precise, we consider the special case when the link L is alter-
nating; in this case, the spectral sequence collapses, giving an isomorphism
between ˜Kh(L) and ̂HF(−Σ(L)). We recall how this isomorphism is estab-
lished, describing ̂HF(−Σ(L)) as the homology of the following filtered chain
complex [11]. Given a link diagram L, consider again all complete resolu-
tions Lv, v ∈ {0, 1}n. For each Lv, let Yv = Σ(Lv) be the double cover
of S3 branched over Lv. (Since Lv is simply the disjoint union of say
m + 1 circles, Yv = #mS1 × S2.) Now, let E1 = ⊕v∈{0,1}n ̂HF(−Yv) be
the underlying space of the chain complex, and construct the differential
D = D1 as follows. As in Khovanov’s theory, D is the sum of its com-
ponents Dv→v′ : ̂HF(−Yv) → ̂HF(−Yv′) for all adjacent v, v′ (such that
L′

v is obtained from Lv by changing a 0-resolution of one crossing into a
1-resolution). Then, Yv is obtained from Yv′ by a single 2-handle attachment.
The map Dv→v′ is then defined as a map on Heegaard Floer homology asso-
ciated to the handle attachment cobordism. The filtration grading on E1

parallels the homological grading in Khovanov’s theory; again, on ̂HF(−Yv),
it is given by the number of zeroes among the coordinates of v ∈ {0, 1}n (it
is convenient to introduce a correction term, too, so that the two gradings
are the same).

Theorem 7.1 [11]. Let L be an alternating link, and fix its alternating
diagram. The homology of the filtered chain complex (E1, D) is ̂HF(−Σ(L)).
On the other hand, the associated graded complex of (E1, D) is isomorphic
to (C̃Kh(L), d). (For both theories, the coefficients are taken in Z/2Z.)

The isomorphism between the two chain complexes comes as part of the
construction: indeed, ̂HF(−Yv) = ̂HF(#mS1 × S2) = C̃Kh(Lv), and the
maps Dv→v′ are the same as dv→v′ under this equivalence. When the link
diagram is fixed, this provides a canonical isomorphism between ˜Kh(L) and
the associated graded group of ̂HF(−Σ(L)). (The latter is non-canonically
isomorphic to ̂HF(−Σ(L)).)

Remark 7.2. As notation suggests, (E1, D1) is the first term of a certain
spectral sequence [11]. This spectral sequence has “higher order” differen-
tials defined via maps Dv→v′ , with v, v′ not necessarily adjacent. For a
general smooth link, its E2 term gives ˜Kh(L), and E∞ = ̂HF(−Σ(L)).
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One of the key features of the Heegaard Floer theory is the surgery
exact triangle. In the correspondence of [11], it parallels the skein exact
sequence for the Khovanov homology. The skein exact sequence for a link
L relates ˜Kh(L), ˜Kh(L0), and ˜Kh(L1), where L0 and L1 stand for the 0-
and 1-resolution of a given crossing of L. The surgery exact sequence for
a 3-manifold Y and a framed knot γ ∈ Y relates ̂HF(Y ), ̂HF(Y1(γ)), and
̂HF(Y0(γ)), where the manifolds Y1(γ) and Y0(γ) are obtained as the result of
1- resp. 0-surgery on K. Since crossing resolutions for links induce surgeries
on the branched double covers, the surgery triangle relates the Heegaard
Floer homology groups of manifolds Σ(L), Σ(L0), and Σ(L1), and the result-
ing exact sequence looks very similar to the skein sequence for the Khovanov
homology. When the link L is alternating (and so are its resolutions L0 and
L1), the two exact sequences fit together nicely.

Lemma 7.3. Let the link L be given by an alternating diagram, and let the
links L0 and L1 be obtained by the 0- and 1-resolution of a given crossing.
Then the diagram
(7.1)

−−−−→ ˜Kh(L) −−−−→ ˜Kh(L0) −−−−→ ˜Kh(L1) −−−−→
⏐

⏐

�

⏐

⏐

�

⏐

⏐

�

−−−−→ ̂HF(−Σ(L)) −−−−→ ̂HF(−Σ(L0)) −−−−→ ̂HF(−Σ(L1)) −−−−→
commutes. (That is, the two squares shown commute, and the third square
implicit in the diagram also commutes.) Here the maps on the Heegaard Floer
homology are induced by handle attachments, the maps on the Khovanov
homology are induced by the crossing change, and the vertical maps are the
isomorphisms provided by Theorem 7.1; to simplify notation here and below,
we write ̂HF(−Σ(L)) for the corresponding associated graded group.

As Peter Ozsváth explained to the author, the proof of this lemma follows
from the arguments and techniques of [11]. (In fact, we should consider maps
on the corresponding filtered and associated graded complexes.) To avoid
a lengthy review, we do not include this proof here. Instead, we consider
a simple example which illustrates the commutativity of the diagram (7.1)
and the interplay between ψ(L) and c(ξL).

Example 7.4. Consider the transverse unknots L+ and L− (Figure 7),
given by braid diagrams with one positive resp. one negative crossing, and
their 0- and 1-resolutions. The exact triangles in the Heegaard Floer and the
Khovanov theory look as follows. For the link L+, we have ̂HF(−Σ(L+)) =
̂HF(S3) = Z/2Z, and also ̂HF(−Σ(L+

1 )) = Z/2Z, while ̂HF(−Σ(L+
0 )) =

̂HF(S1 × S2) = Z/2Z(−1/2) ⊕ Z/2Z(+1/2), where the subscripts indicate the
gradings. The map F : ̂HF(−Σ(L+)) → ̂HF(−Σ(L+

0 )) of the surgery exact
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L0
+

L
+

L1
+ L1

L0
−

L
−

−

Figure 7. The two unknots.

sequence is the isomorphism between Z/2Z and Z/2Z(+1/2) ⊂ ̂HF(−Σ(L+
0 ));

the map D : ̂HF(−Σ(L+
0 )) → ̂HF(−Σ(L+

1 )) is an isomorphism between
Z/2Z(−1/2) and Z/2Z = ̂HF(−Σ(L+

1 )). On the other hand, ˜Kh(L+) = Z/2Z

is generated by a u+, and so is ˜Kh(L+
1 ) = Z/2Z. The group ˜Kh(L+

0 ) =
Z/2Z⊕Z/2Z is generated by u−⊗u+ and u+⊗u+. The map f : ˜Kh(L+) →
˜Kh(L+

0 ) sends u+ to u− ⊗ u+, while d : ˜Kh(L+
0 ) → ˜Kh(L+

1 ) sends u+ ⊗ u+

to u+. The groups ̂HF(−Σ(L+)) and ˜Kh(L+) can be obtained as homology
of complexes ( ̂HF(−Σ(L+

0 )) ⊕ ̂HF(−Σ(L+
1 )), D) and (˜Kh(L+

0 ) ⊕ ˜Kh(L+
1 ), d),

respectively.
We observe:

1) c(ξL+) = 1 ∈ Z/2Z = ̂HF(−Σ(L+)), and ψ(L+) = u+ ∈ Z/2Z =
˜Kh(L+);

2) The maps F and f are associated to a positive crossing resolution, so
F (c(ξL+)) = c(ξL+

0
) = 1 ∈ Z/2Z+1/2, f(ψ(L+)) = ψ(L+

0 ) = u− ⊗ u+;
3) D(c(ξL+

0
)) = 0 = d(ψ(L+

0 ));

4) As an element of ˜Kh(L+
0 ) ⊕ ˜Kh(L+

1 ) = C̃Kh(L), ψ(L+
0 )) = u− ⊗ u+

is the element ψ̃(L+) that represents the class of ψ(L+). The identity
d(ψ̃(L+)) = 0 means that ψ̃(L+) is a cycle.

For the link L−, we have ̂HF(−Σ(L−)) = ̂HF(S3) = Z/2Z, and now
̂HF(−Σ(L−

0 )) = Z/2Z, while ̂HF(−Σ(L−
1 )) = ̂HF(S1 × S2) = Z/2Z(−1/2) ⊕

Z/2Z(+1/2). The map F : ̂HF(−Σ(L−
1 )) → ̂HF(−Σ(L−)) of the surgery

exact sequence is the isomorphism between Z/2Z(−1/2) ⊂ ̂HF(−Σ(L−
1 )) and

Z/2Z = ̂HF(−Σ(L−)). The map D : ̂HF(−Σ(L−
0 )) → ̂HF(−Σ(L−

1 )) is an
isomorphism between Z/2Z = ̂HF(−Σ(L−

0 )) and Z/2Z(+1/2). The Khovanov
homology ˜Kh(L−) = Z/2Z is generated by a u+, and so is ˜Kh(L−

0 ) = Z/2Z,
while ˜Kh(L−

1 ) = Z/2Z⊕Z/2Z is generated by u−⊗u+ and u+⊗u+. The map
f : ˜Kh(L−

1 ) → ˜Kh(L−) sends u+ ⊗ u+ to u+, and d : ˜Kh(L−
0 ) → ˜Kh(L−

1 )
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sends u+ to u− ⊗ u+. In this case, we have:
1) c(ξL−) = 0, and ψ(L−) = 0;
2) The maps F and f are associated to a positive crossing resolution, so

F (c(ξL−
1
)) = c(ξL−) = 0, f(ψ(L−

1 )) = ψ(L−) = 0;
3) The element c(ξL−

1
) = 1 ∈ Z/2Z+1/2 is the image under D of the

generator of ̂HF(−Σ(L−
0 ); ψ(L−

1 ) is the image of u+ ∈ ˜Kh(L−
0 ) under

d. As an element of C̃Kh(L−), ψ(L−
1 ) is precisely ψ̃(L−), and the

identity ψ̃(L−) = d(u+) means that the invariant ψ(L−) vanishes in
˜Kh(L−).

Proof of Theorem 1.6. Let the transverse link be represented by a braid L
whose diagram is alternating. First of all, we observe that such a braid
enjoys little freedom. Indeed, suppose there is a factor of σ1 in the braid
word. This gives a positive crossing in the diagram, which means that the
“neighboring” crossing must be negative. Considering the crossings one by
one, we can conclude that all factors of σ1 in the braid word come with
positive exponents, all factors of σ2 come with negative exponents (that
is, the braid word contains σ−1

2 ’s but no σ2’s), all factors for σ3 again have
positive exponents, and so on. Proposition 6.8 and the analogous proposition
of [10] imply that c(ξL) = 0 and ψ(L) = 0 unless the braid word for L
contains no σ2k for any k > 0. The latter situation means that L is simply
a disjoint union of (2, ni) torus links, and this is the only case where the
theorem needs proof.

When L = T (2, n) is given by a 2-braid with n positive crossings, both
c(ξL) and ψ(L) are non-zero. The map f is associated to the resolution
of a positive crossing; by definition, ψ(L) is a homogeneous element of
homological degree 0 [10]. Recall that Khovanov homology ˜Kh(T (2, n))
has a special form [23], so that in every homological degree the component
of ˜Kh(T (2, n)) is at most one-dimensional; we can then say that ψ(L) is
the (unique) element of the lowest homological grading in ˜Kh(L). Also,
̂HF(−Σ(L)) = (Z/2Z)n since Σ(L) is the lens space −L(n, 1). When n = 1,
it follows that c(ξL) = c0(ξL) = ψ(L).

When n > 1, we proceed by induction. Consider the link L = T (2, n + 1)
and its two resolutions L0 = T (2, n) and L1 = unknot (Figure 8).

For these three links, (7.1) becomes
(7.2)

· · · −−−−→ Z/2Z −−−−→ ˜Kh(L)
f−−−−→ ˜Kh(T (2, n)) −−−−→ · · ·

⏐

⏐

�

⏐

⏐

�

⏐

⏐

�

· · · −−−−→ Z/2Z −−−−→ ̂HF(−Σ(L)) F−−−−→ ̂HF(−Σ(T (2, n)) −−−−→ · · ·
where Z/2Z is the homology of the unknot.
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L=T(2,n+1)
T(2,n)

unknot

Figure 8. The torus link L and its resolutions.

The image of Z/2Z in ˜Kh(L) lies in the homological degree higher than
the minimal degree 0 (where ψ(L) lives). Then, in the lower row of the above
diagram, the image of Z/2Z in the associated graded group of ̂HF(−Σ(L))
also lies in the higher filtration degree. The map F on ̂HF(−Σ(L)) is
induced by the resolution of a positive crossing, so F (c(ξL)) = c(ξT (2,n)).
By the induction hypothesis, c0(ξT (2,n)) lies in the lowest degree subquo-
tient of ̂HF(−Σ(T (2, n))) and agrees with ψ(T (2, n)). The map F preserves
the filtration; it follows that it must send the lowest degree subquotient
of ̂HF(−Σ(L)) to the lowest degree subquotient of ̂HF(−Σ(T (2, n))), since
otherwise we could not have F (c(ξL)) = c(ξT (2,n)). Then, c0(ξL) is also
non-trivial, and so c0(ξL) = ψ(L).

It remains to deal with the case when L is a disjoint union of torus
links. Let T1 = T (2, n1), T2 = T (2, n2), and L = T1 � T2. Then,
the contact manifold (Σ(L), ξL) is the connected sum of (Σ(T1), ξT1),
(Σ(T2), ξT2), and (S1 × S2, ξ0). Then, ̂HF(−Σ(L)) = ̂HF(−Σ(T (2, n1))) ⊗
̂HF(−Σ(T (2, n2))) ⊗ ̂HF(−S1 × S2), and c(ξL) = c(ξT1) ⊗ c(ξT2) ⊗ c(ξ0),
where c(ξ0) ∈ ̂HF(−S1 × S2) = Z/2Z(−1/2) ⊕ Z/2Z(+1/2) is the gen-
erator of Z/2Z(+1/2). Similarly, for the Khovanov homology, we have
˜Kh(L) = ˜Kh(T1) ⊗ Kh(T2) = ˜Kh(T1) ⊗ ˜Kh(T2) ⊗ (Z/2Z ⊕ Z/2Z), and
ψ(L) = ψ(T1) ⊗ ψ(T2) ⊗ u−. The correspondence ψ(L) = c0(ξL) follows,
since the isomorphism between the homology groups maps the generator of
Z/2Z(+1/2) to the u−. �
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