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The Verlinde formulas as fixed point formulas
A. ALEKSEEV, E. MEINRENKEN AND C. WOODWARD

We express the index of the Spin, -Dirac operator on symplectic
quotients of a Hamiltonian loop group manifold in terms of fixed
point data. As an application we prove the Verlinde formulas for
the Spin.-quantization of moduli spaces of flat bundles over sur-
faces.

1. Introduction.

The goal of this paper is to show that the Verlinde formulas [38] for the
geometric quantization of moduli spaces of flat bundles over surfaces follow
from a fixed point principle for loop group actions, in much the same way as
the Weyl or Steinberg formulas can be interpreted as fixed point formulas
for flag varieties [5].

Our fixed point formula is a loop group version of the following principle
for actions of compact, connected groups G. Let M be a compact Hamilto-
nian G-manifold with G-equivariant pre-quantum line bundle L. Let x (M)
be the G-equivariant index of the Spin.-Dirac operator with values in L.
The virtual character x(M) can be computed from the Atiyah-Segal-Singer
theorem in terms of fixed point data, or from the quantization commutes
with reduction principle in terms of indices of symplectic quotients. A com-
bination of these two expressions leads to formulas for indices of symplectic
quotients as a sum of fixed point contributions. For instance, the index of
a symplectic quotient of a coadjoint orbit by the action of a maximal torus
is given by the Weyl character formula, which is a sum over fixed points of
the maximal torus, indexed by elements of the Weyl group.

Our main result is a similar fixed point formula for pre-quantized Hamil-
tonian LG-manifolds M with proper moment map, for G simply connected.
While M itself is infinite-dimensional, the properness assumption implies
that its symplectic quotients are compact. To define fixed point contribu-
tions we consider a finite dimensional compact G-manifold M, obtained from
M asa quotient by the based loop group 2G C LG. Theorem 4.3 below ex-
presses the indices of symplectic quotients of M in terms of fixed point data
on M. The fixed point contributions are reminiscent of the right hand side
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of the equivariant index theorem, although M does not carry a naturally
induced Spin_-structure. Heuristically, the formula follows by application of
the equivariant index theorem to the loop group manifold, and subsequent
“renormalization” of the infinities on both sides.

When we apply the formula to the action of the loop group on the moduli
space of flat bundles on a Riemann surface, and combine our formula with
recent results of Teleman [34] on vanishing of the higher cohomology, we ob-
tain a short proof of the Verlinde formula. It differs from the original proof
given by Tsuchiya-Ueno-Yamada [36], who used the degeneration of the sur-
face and a computation of the Verlinde numbers for the three-holed sphere.
Another proof of the Verlinde formula that does not use degeneration was
outlined by Szenes in [33], and carried out for SU(2) and SU(3). The proof
was extended by Jeffrey-Kirwan [21] to SU(n), and Bismut-Labourie [10] to
arbitrary compact, connected simply-connected groups, for sufficiently high
level. The idea of deriving the Verlinde formula from localization appears
in the physics papers by Gerasimov [18] and Blau and Thompson [11]. The
problem of finding a rigorous approach via localization had been suggested
to us by A. Szenes many years ago. Partial results in this direction were
obtained by S. Chang [13].

An interesting outstanding question is whether our formula may be fit
into the framework of twisted K-theory, as applied to the Verlinde algebra
by Freed, Hopkins, and Teleman [16].

The contents of the paper are as follows. In Section 2 we discuss Spin,-
quantization of finite dimensional Hamiltonian manifolds, and describe the
finite dimensional version of our fixed point formula. Section 3 is dedicated
to a review of loop group actions and group-valued moment maps. The
main theorem is stated in Section 4. In Section 5 we apply the theorem to
a calculation of Verlinde numbers, and in Section 6 we describe its proof.

Notation.

Throughout the paper G will denote a compact, connected Lie group, and
g its Lie algebra. We denote by R(G) the ring of characters of finite-
dimensional virtual representations. We let T' be a maximal torus in G,
and t its Lie algebra. The integral lattice A C t is defined as the kernel of
the exponential map exp : t — T, and the (real) weight lattice A* C t* is its
dual. Embed t* — g* as the fixed point set for the coadjoint action of T
Every p € A* defines a 1-dimensional T-representation, denoted C,, where
t = exp & acts by t# := e2™{#€)  This representation extends uniquely to the
stabilizer group G, of u. We let W be the Weyl group of (G,T") and R C A*
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the set of roots. We fix a set of positive roots By C R and let t; C t and
tY C t* be the corresponding positive Weyl chambers. For any dominant
weight p € A% := A* Nt} we denote by V), the irreducible representation
with highest weight 1 and by x, € R(G) its character. Some additional
notation to be introduced later:

J Weyl denominator; 2.4
A fundamental alcove; 2.4
P, ag, C half-sum of positive roots, highest root,

dual Coxeter number; 2.4

B =By inner product on g, 2.4

Ay, R (G) level k weights, level k characters; 2.4

Ty a certain finite subgroup of T'; 2.4

t element of T} . parametrized by A € A}; 2.4
Gy, LG, stabilizer in G resp. LG of face o C 2; 3.1

Ry oy Postys positive roots for G, their half-sum,
positive Weyl chamber; 3.1

Yo distinguished point in face o C 2; 3.1

LG, QG free loop group, based loop group; 3.1

Wag affine Weyl group; 3.1

fé(k) level k central extension of the loop group; 4.1
gL ok left, right Maurer-Cartan forms; 3.1

2. Spin.~quantization of symplectic manifolds.

In this section we review Spin,-quantization for compact Hamiltonian G-
manifolds. We explain how the fixed point formula for the equivariant index,
together with the “quantization commutes with reduction” principle, leads
to a formula (7) for the index of a symplectic quotient in terms of fixed point
contributions for a certain finite subgroup. This is the finite-dimensional
version of the main result of the paper.

2.1. Spin_-~quantization of Hamiltonian G-spaces.

We refer to Lawson-Michelson [24] for background on Spin_-structures, and
to Duistermaat [15] for a discussion of the symplectic case.
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Let M be a compact, connected manifold with symplectic form w, to-
gether with a symplectic G-action. Given £ € g let &y = %|t:0 exp(t&)*
denote the corresponding vector field on M. The action is called Hamil-
tonian if there exists a G-equivariant map ® € C*®(M,g*)% such that
t(ép)w = d®(€) for all £ The map P is called a moment map and the
triple (M,w, ®) is called a Hamiltonian G-space. By a theorem of Kirwan
[22], the intersection ®(M )Nt} is a convex polytope; it is called the moment
polytope of (M,w, ®).

Suppose (M,w,®) carries a G-equivariant pre-quantum line bundle L.
That is, L comes equipped with an invariant connection V, such that the
Chern form ¢1(L) = 3= curv(V) is equal to w and the vertical part of the
vector field ¢y, is given by Kostant’s formula [23]

(1) Vert (£r) = 2n8(6) o

¢
where 8%> is the generator for the scalar S'-action on the fibers of L. Choose
an invariant almost complex structure I on M that is compatible with w,
in the sense that w(-,-) defines a Riemannian metric. The almost complex
structure I defines a G-equivariant Spin -structure on M, which we twist
by the line bundle L. Any choice of Hermitian connection on T'M defines a
Dirac operator @ for the twisted Spin_-structure, and we define x(M) € R(G)
as its equivariant index

X(M) = indexg (@) € R(G).

The index is independent of the choice of I and of the connection. In case
M is Kahler and L is holomorphic, the index coincides with the Euler char-
acteristic for the sheaf of holomorphic sections of L.

2.2. Quantization commutes with reduction.

Following [27] we call a point u € g* a quasi-regular value of ® if all G-
orbits in ®~!(x) have the same dimension. This includes regular values and
weakly regular values of ®. For any quasi-regular value p € g* the reduced
space (symplectic quotient) M, = ®~1(u)/G,, is a symplectic orbifold. If one
drops the quasi-regularity assumption, the space M, acquires more serious
singularities (cf. [32]). For any dominant weight ;1 € A% which is a quasi-
regular value of @,

L’u = (L|q>—1(“) X C_N)/Gﬂ — MM
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is a pre-quantum orbifold-line bundle over M,. The definition of Spin-
index carries over to the orbifold case, hence x(M,,) is defined. In [27], this is
extended further to the case of singular symplectic quotients, using a partial
desingularization. The following Theorem was conjectured by Guillemin-
Sternberg and is known as “quantization commutes with reduction”.

Theorem 2.1 ([26, 27]). Let (M,w,®) be a compact pre-quantized Hamil-
tonian G-manifold. Then the multiplicity of x, in x(M) € R(G) is equal to
X(Mu)-

In particular, only weights 1 € A% which are contained in the moment
polytope ®(M) Nt can appear in x(M).

2.3. Equivariant index theorem.

The equivariant index theorem expresses the value x (M, g) in terms of local
data at the fixed point set M9. We recall that the connected components
F C M9 are compact, embedded almost complex submanifolds of M. They
are invariant under the action of the centralizer G4, and the pull-backs
wp,®p, Lp of w,®,L give F the structure of a pre-quantized Hamiltonian
Gg4-space. The action of g € G on L restricts to a multiplication by a phase
factor pr(g) € U(1) on L.

Let Td(F') be the Todd form, for any Hermitian connection on T'F, and
let the form D¢ (vr, g) be defined by

De(vp, g) = dete(1 — Ap(g) teftrr/?m),

Here Ap(g) € I'*°(U(vF)) is the unitary bundle automorphism of v induced
by g, and R,, € Q*(F,u(vr)) the curvature of an invariant Hermitian con-
nection on vp. The Atiyah-Segal-Singer fixed point formula [7, 6] asserts
that

(2) X(M,g)= Y x(vr,g)

FCM9
where

Td(F)ect(Elr)
3 g) = oe T
(3) x(vr,g9) = pr(g) /F Delvrig)

(For finite fixed point set, the formula is a special case of the Atiyah-Bott
Lefschetz formula [4].) We will also need an equivalent expression for the
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fixed point contributions, in which the almost complex structure enters only
via the Spin,-line bundle £, given as a tensor product £ = L?Q@ K ! of L L
with the anti-canonical line bundle K~! for the almost complex structure:

A(F)ezar£lr)

(4) X(vr,g) = Cr(g)*/? /F Daorid)

Here (r(g) is the eigenvalue for the action of g on L|r, and the square root
Cr(9)Y? = pr(9)kr(g) /2 is defined as

krp(g) /2 = det(Ap(g)'/?).

where Ap(g)'/? € I°(U(vp)) is the unique square root of Ap(g) having all
its eigenvalues in the set {¢?|0 < ¢ < 7}. Furthermore A(F) is the A-form
of F, and

Da(vp,g) = "0 2dety/*(1 - Ap(g) 'efr/>m),

viewing Ar(g) as a real automorphism, R,, as a o(vp)-valued 2-form, and
taking the positive square root. The fixed point expressions (3) and (4) are
identical because

1
De(vr, g) = Dr(vr, g)e2 Evr) g p(g)!/?

and )
Td(F) = A(F)eze1(Kr)

where K is the canonical bundle of F' and K, that for vp.
2.4. Fixed point formula for multiplicities.

We now use finite Fourier transform to extract the multiplicity of any weight
p € A% from Formula (2). For a different approach using Fourier series, see
Guillemin-Prato [19]. For simplicity, we only consider the case where G is
simply connected.

We need to introduce some extra notation and facts regarding compact
Lie groups. Suppose (for a short moment) that G is simple. Let ag € A* be
the highest root, ho, € tits coroot, p € A* the half-sum of positive roots,
and ¢ = 1+ p(hg,) the dual Coxeter number. The fundamental alcove is
denoted A := {¢ € t;|ap(¢) < 1}. Let the basic inner product B¢ be the
unique invariant inner product on g such that B¢ (hag, hao) = 2. It has the
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important property that it restricts to an integer-valued Z-bilinear form on
the lattice A (see [12], Chapter V.2).
For a general simply connected group G, decompose into simple factors

G = Gy X ... x Gs with dual Coxeter numbers ¢ = (cy,...,cs), and define
A = A; x ... x A, Any invariant symmetric bilinear form on g can be
written

Bp:=> kB,
j=1

where k; € R. We denote by BZ : g — g* the linear map defined by By, and
if all k; # 0 the inverse map is denoted B! = (B2)~!. Suppose all k; are
positive integers. Then By is integer-valued on A, and we have inclusions
Bl(A) C A* and BQ(A*) D A. The finite Fourier transform is taken using
the finite subgroup

T, := Bi(A*)/A

of T =t/A. Let
A= BL(A) C tt, Af=A"NA;.

The weights in A}, are called weights at level k. Using the definition of the
alcove, one verifies that the map

A = Tipey Aty = exp(BE, (A +p))

takes values in T, = Ty, N G™8 and identifies A} = T, /W.

Example 2.2. Suppose G = SU(2). Then p € t* spans the weight lattice,
and ag = 2p is the positive root. Therefore, BZ(A) = 2kA* and T}, = Zoy,.
Furthermore, A7 = {tp|0 < t < k} and A} = {0,p,...,kp}. The dual
Coxeter number is ¢ = 2. For A = [p, the element ¢ is a diagonal matrix
. o i i . _ 4l
with entries €', e~* down the diagonal, where ¢ = s
Let the set of level k characters Ry (G) C R(G) be the additive subgroup
generated by all x,, with u € A}. One has the orthogonality relations,

(5) D@ xu(t)xw ()" = #Thge S, mop' € A
AEAL
(6) o TEIPR(E)xu(t) = #Thge ays AN €A

HEAT



8 A. Alekseev, E. Meinrenken and C. Woodward

where J : T'— C is the Weyl denominator

J(t) =Y (—1)i)gme,

weWw

These formulas are obtained from the Weyl character formula and finite
Fourier transform for T, C T. As a consequence, every level k character
is determined by its restriction to T,z_efc. One may view Ry (G) as a quotient
of R(G) by the ideal of characters vanishing on Tgigc; this defines a ring
structure on Ry (G) known as fusion product.

Let us return to the problem of calculating multiplicities in x (M) from
the fixed point formula. The remark following Theorem 2.1 shows that
X(M) € Ri(G) provided k; > 0 are chosen large enough so that 2 contains
the moment polytope ®(M) N t.. The multiplicity of any p € Af can be
computed from the orthogonality relation (5), substituting the Atiyah-Segal-
Singer fixed point formula for x(M,ty). On the other hand this multiplicity
equals x(M,), by Theorem 2.1. This gives,

Proposition 2.3. Let (M,w,®) be a pre-quantized compact Hamiltonian
G-manifold with character x(M) at level k. Then the index of the reduced
space M, can be expressed in terms of fized point contributions in M :

1
#Tk—i—c

(M x(M) = S I Y xvet)"

AEA] FCMtx

3. Review of loop group actions and group-valued moment
maps.

3.1. Loop groups.

For the material in this subsection we refer to Pressley-Segal [31, Section
4.3]. Let S' = R/Z be the parametrized circle with coordinate s.
Throughout we will fix a “Sobolev level” f > 1. We denote by Q°(S!, g)
the space of g-valued 0-forms of Sobolev class f 4+ 1/2 and by Q'(S!, g) the
g-valued 1-forms of Sobolev class f — 1/2. Then forms in Q°(S!,g) are C*
and those in Q1(S', g) are C°. Let the (free) loop group LG consist of maps
S! — G of Sobolev class f +1/2. Tt is a Banach Lie group with Lie algebra
Lg = 9°(S', g). The kernel of the evaluation mapping LG — G, g +— ¢(0) is
called the based loop group 2G. The free loop group is a semi-direct product
LG = G x QG where G is embedded as constant loops and the action of G
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on G is pointwise conjugation. We embed the lattice A C t into LG by the
map which takes £ € A to the loop,

R/Z — G, s+ exp(—sf).

The loop group LG acts on the affine space A(S') = Q*(S', g) of con-
nections on the trivial G-bundle over S' by gauge transformations

g = Adg(p) — g*o".

Here 6 ¢ Q(G,g) denotes the right-invariant Maurer-Cartan form. The
orbit space for this action can be described as follows. Consider the em-
bedding t C g — Q(S', g) by the map ¢ — &ds. The intersection of any
LG-orbit with t is an orbit of the affine Weyl group Wog = W x A. Hence
there are natural identifications,

Ql(Slvg)/LG = t/Waff = T/W = G/ Ad(G)

In particular, one has a 1-1 correspondence between LG-orbits and conju-
gacy classes in G. For G simply connected, all of these sets are also identified
with the fundamental alcove 2. That is, each coadjoint LG-orbit meets the
alcove 2 in exactly one point.

For s € R and any p € Q(S',g) let Hol,(1) € G denote the parallel
transport from 0 to s. Thus s — h(s) = Hols(x) is the unique solution of
the initial value problem A'(s)h(s)™' = h*#%® = p, h(0) = e. One has the
equivariance property

(8) Hol, (g - ) = g(s) Hols(11)g(0) ",

showing in particular that the based gauge group QG acts freely. Let
Hol(p) := Holy(u) denote holonomy of p around S'. Any two elements
p1,pe € QY(S', g) with Hol(u1) = Hol(ug) are related by a based gauge
transformation, Holy(p1) Holg(u2) L. The holonomy map

Hol: Q'(St,9) = G

gives Ql(S’l, g) the structure of a Banach principal Q2G-bundle over G. It
is equivariant with respect to the evaluation map LG — G and once again
gives the correspondence between LG-orbits and conjugacy classes.

For any p € Q1(S', g), the evaluation map LG — G induces an isomor-

phism, LG, = Gyg(y), with inverse map

(9) GHOlp, — LG,uv g AdHols(,u,) (g)
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In particular this shows that all stabilizer groups LG, are compact.

If we make the additional assumption that G is simply connected, then
all centralizers Gg, hence also all stabilizer groups LG, = Ghol(y), are con-
nected. For any open face o C %, the stabilizer group LG, of u € o is
independent of p and will therefore be denoted LG,. The evaluation map
defines an isomorphism LG, = G, with the centralizer of g = exp(u). If
o C T then LG, C LG, and G, C Gy; in particular every G,, LG, contains
the maximal torus T'. The root system R, of G, consists of all a € R such
that the restriction «|, is integer valued. From the definition of the dual
Coxeter number, it follows that Bg(p) € int(A). Let Ry, be all a € R,
such that a(Bg(p)) > aly, and let 2p, be their sum. One can check (cf.
[28]) that

(10) Yo 1= Bi(p — po)

is always contained in o. The positive Weyl chamber t, , for 53, , is the
cone over A — 5.

3.2. Hamiltonian loop group actions.

The space Lg* := Q!(S',g*) is a dense sub-space of the topological dual
space of Lg = QO(S 1 g), using the pairing of g* and g followed by integration
over S'. Given an invariant inner product B on g, the isomorphism B
g — g* gives rise to an identification B’ : QY(S',g) — Lg*. The affine
LG-action induced on Lg* via this isomorphism will be called the coadjoint
loop group action, and its orbits will be called coadjoint LG-orbits. Recall
that a 2-form on a Banach manifold M is called weakly symplectic if its
kernel is trivial everywhere.

Definition 3.1. A Hamiltonian LG-manifold is a triple (M\ , W, </IS), consist-

ing of a Banach manifold M with a smooth LG-action, a weakly symplectic
2-form @ on M, and an equivariant map ® : M — Lg* satisfying

(11) WE)D = dB(€), €€ Lyg.

Much of the theory of compact Hamiltonian G-spaces carries over to
Hamiltonian loop group spaces if one assumes that the moment map d is
proper. For example, if/\ i € Lg* is a regular value of the moment map
then the reduced space M, = &~ ()/ LG, is a compact, finite dimensional
symplectic orbifold. More generally, this holds true for quasi-regular values
i, i.e. if all LG -orbits in C/I\J_l(,u) have the same dimension.
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For G simply connected and M connected, there is also a convexity
theorem [30, Theorem 4.11], stating the intersection E)(J/\l\ ) N2 is a convex
polytope. We refer to this polytope as the moment polytope of M.

Basic examples for Hamiltonian LG-spaces with proper moment maps
are coadjoint orbits O = LGy for p € Lg*, with moment map the inclusion.
The 2-form is uniquely determined by the moment map condition, and is
given by an analog to the Kirillov-Kostant-Souriau formula. The motivating
examples of moduli spaces of flat bundleson surfaces with boundary are
discussed in Section 5.

3.3. Group-valued moment maps.

Suppose (J/M\ ,&3,@) is a Hamiltonian LG-space with proper moment map.
As mentioned above, the holonomy map Hol : Lg* — G is a principal
QG-bundle. By equivariance of the moment map, the based loop group
QG also acts freely on M and by properness the quotient M := M / QG
is a compact, smooth, finite dimensional manifold [29, Section 3.2.1]. The
action of LG = G x QG descends to a G-action on M, and the moment map
d to a G-equivariant map ® : M — G, which makes the following diagram
commute:

— >

M — Lg*

\: \
®

M — G

We call M the holonomy manifold of M. In [1] M is interpreted as a
Hamiltonian G-space with group valued moment map ®. The definition is
as follows. Let 6%, 0% be the left resp. right invariant Maurer-Cartan forms
on G, and 1 € 3(G) the canonical closed, bi-invariant 3-form

1 1
= —B(0",[0",0"])) = —B(", 9", 67)).
n= 5807 16%,07]) = 5 B0, [07,67)

Define a 2-form on Lg* by

1
w=1[ B/(Hol6E, 9 Hol* 6% | ds.
2 0 s 88 s

By [1, Proposition 8.1] the form w has the property deww = Hol* ), and its
contractions with generating vector fields for the LG-action are

U€Lg)m = —du(€) + & Hol* B(8" + 6%, £(0)).
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Here p(&) is the function on Lg* taking p € Lg* to the pairing with £ € Lg.
It follows that & — ®*w € Q2(M) = Hol* w for a unique 2-form w € Q?(M).
As shown in [1], this 2-form has properties

(12) dw = ™,
(13) (ép)w = %CI)*B(HL + 9R,§), for all € € g,
(14) ker(wm) = {€m(m)| Adg(n) & = —&}

and conversely every compact G-manifold M with an equivariant map ® €
C*®(M,G) and an invariant 2-form w with these three properties defines
a Hamiltonian LG-manifold with proper moment map. We call (M, w, ®)
with properties (12), (13), (14) a group-valued Hamiltonian G-space. As for
g*-valued moment maps, we call an element g € G a quasi-regular value of ®
if all G g-orbits in 1(g) have the same dimension. It is proved in [1] that in
this case the reduced space M, = ®~!(g)/G, is a symplectic orbifold, with
2-form induced from w. Given p € Lg* with g = Hol(u), one finds that g is
quasi-regular for @ if and only if y is quasi-regular for </IS, and M, u =M, as
symplectic spaces.

4. The fixed point formula for loop group actions.
In this Section, we discuss pre-quantization of Hamiltonian loop group mani-
folds and state the main result of this paper, the fixed point formula Theorem
4.3.
4.1. Central extension of LG.
We will assume for the rest of this paper that G is simply connected, and
let G = Gy X ... x G be its decomposition into simple factors. Eagtl of

the bilinear forms B = Bj, | € R®, on g defines a central extension Lg of
Lg = Q°(S!, g) by R, with cocycle

¢: Lgx Lg — R, ¢(&1,&) = /Sl B(&1,d&).

The dual action of LG on I/JE* = 0S8, g*) x R is given by the formula,
g-(u,71)=(p0— TBb(g*HR),T). If B is non-degenerate, it identifies Lg* =
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QYS! g) x R and the gauge action of LG on A(S') becomes the action on
the affine hyperplane 7 = 1.

It is known [31, Theorem (4.4.1)] that the Lie algebra extension expo-
nentiates to a group extension

(15) 1 U(1) > LG — LG — 1

exactly if all /; are integers. Since LG is connected and simply connected,
the extension is unique. For any subgroup H C LG, we denote by # the
pull-back of the central extension. Since the defining cocycle ¢ vanishes on
g, and since G is connected and simply connected, the central extension G
is canonically trivial. That is, there is an embedding

(16) G — LG,

and LG is a semi-direct product LG = G x QG. The following proposition
describes the central extensions for various subgroups of LG.

—_ —(1
Proposition 4.1. Let |l € 7Z° and LG = LG() the corresponding central

extension of the loop group.

(a) Let&,¢ € A, and £,€ € N arbitrary lifts. Then the Lie group commu-
tator is given by the formula

(€8] = (-1)Pe.
In particular, if all l; are even, the central extension A is trivial.

(b) Embed T' — LG using (16). The central extension of LT C LG is a
semi-direct product e .
LT =T x QT

where the action of T on S/ZT, over the connected bcomponerdﬁ of QT
containing £ € A, is given by multiplication with tB ().

(c) Suppose alll; > 0. The central extension of Ty x QT is a direct product,

Ty x QT = T x QT.

Proof. Part (a) is proved by Pressley-Segal [31, Section 4.8] for simply laced
groups, and by Toledano Laredo [35, Proposition 3.1] in the general case.
Part (c) follows from part (b) since tB'©) =1 for ¢ € A, t €T}
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It remains to prove part (b). Since the conjugation action of 7" on Q7 is
trivial, its action on any connected component of QT is scalar multiplication
on the fibers by some character for T'. To compute the weight for this action
at £ € A C QT, let a € QY(LG) be the left-invariant connection 1-form
defined by the splitting I//E; = Lg x R. The weight p € A* for the T-action
on the fiber over £ is given by

(1,¢) = (ag Gy €t

Where § is any lift of £&. In left trivialization of the cotangent bundle of
LG, « is the constant map from LG to (0,1) € Lg . This shows that its
contraction with the left-invariant vector field generated by ( is zero. To
compute its contractions with the right-invariant vector field generated by
¢, we note that under the right action of f ,

Ri_,a=Adja=¢-(0,1) = (B'(6),1).

Since (77 is the difference between left and right invariant vector fields, we
find that (g, (z5) = (B’(£),(), proving p = B’(€). O

Below we will often use the following terminology. A level l line bundle

—(l
over an LG-space X is an LG( )—equivariant line bundle L — X where the
central U(1) acts by scalar multiplication with weight 1. Equivalently, L

— (1
carries actions of the central extensions LG]-( ) where the central U(1)’s act
with weights [;. The tensor product of two line bundles at levels [,I’ is at
level [+1’, and line bundles at level 0 are simply LG-equivariant line bundles.

4.2, Fixed point formula for Hamiltonian loop group actions.

Suppose now that B = Bj where all k; are positive integers, and let

IG = EE(’“). Using B we identify g = g and QY(S',g) = Lg*. The

formula for the coadjoint action of LG on Lg shows that a Hamiltonian
LG-manifold (M , W, <I>) is equivalently a Hamiltonian LG-manifold on which
the central U(1) acts trivially, with moment map 1. Accordingly we define
a pre-quantum line bundle to be a level k line bundle L — M with invariant
connection, such that the Chern form c;(L) is equal to the symplectic form
w and such that the vertical part of the fundamental vector fields is given
by Kostant’s formula.
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Example 4.2. The coadjoint orbit LG u through p € 2}, is pre-quantizable
if and only if © € A}. The pre-quantum line bundle is the associated bundle
G X1G, C(u,)- If X is a compact oriented surface with boundary, the
moduli space M(X) of flat G-connections by based gauge equivalence is
pre-quantizable. (For non-simply connected groups the situation is more
complicated.)

Suppose the moment map d is proper and p € A} is a quasi-regular
value. Then J\//.Tu is a symplectic orbifold with pre-quantum orbifold line
bundle .

Ly (L|<1> 1(p) ,(#,1))/LGH.

(Notice that in fact LG, acts on the tensor product, for the central
U(1) C f(\}’u acts with weights +1 and —1 on the two factors and hence
acts trivially on the product.) Hence the Spin,-index x(1, 1) is defined for
quasi-regular © € Aj. If 41 is not quasi-regular one can still define x( u) by
a partial desingularization as in [30]. The collection of Spin -indices X(]/\/I\ )
is determined by the restriction of the level k character ZueA* (M\u)Xu to
Tres

k+c*
The main result of the paper is the following loop group analog of Equa-

tion (7).

Theorem 4.3 (Fixed Point Formula). Suppose (J\//.T,ZJ,EI;) is a pre-qu-
antized Hamiltonian LG-manifold with proper moment map. For all t €

reg
Tk:+c’

(17) ST x(M)xut) = > x(vr,t)
BEA} FCM?

Here the right hand side is a sum over components of the fized point set for
the action of t on M = M /QG, and the fixed point contributions have the
form

A(F)ese(Lr)
(18) X, t) = Cr(t)V? /F %

The terms entering the integral (18) will be explained in Subsection 4.3 below.

Using the orthogonality relations for level k characters, the Theorem
shows that for all u € A},

Z Xp t/\ |J ty | Z X(VF,t,\)*.

X( u
#Tk+c )\EA* Fth/\
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The proof of Theorem 4.3 will be given in the final Section of this paper.
4.3. The fixed point contributions.

In general, the holonomy manifold M does not carry a naturally induced
Spin_-structure, even though the expressions (18) resemble the fixed point
contributions of a Spin_-Dirac operator. Our strategy for defining the terms
entering (18) is to first restrict data on M to a certain finite dimensional
submanifold F C M? covering F'; and then to show that the restrictions
descend to F' itself.

Proposition 4.4. Let (M,w,®) be a Hamiltonian G-space with group val-

ued moment map, and (]/\/[\ w C/I\J) the corresponding loop group space. Let
tc T8, and F C M a connected component of the fized point set. Let F
be the pre- zmage of F' under the map Mt — M?, and F the intersection of
F with ®7(t).

(a) F is a group-valued Hamiltonian T-space, with symplectic form wp
and moment map ®r the pull-backs of w, ®.

(b) Fisa (possibly disconnected) Hamiltonian LT -manifold, with 2-form
and moment map the pull-backs of W, ®. It has (F,wr,®Fr) as its
holonomy manifold.

(c) Fisa finite-dimensional Hamiltonian T-manifold, with 2-form and
moment map the pull-backs of @, d. It carries a free symplectic action
of the lattice A which commutes with the action of T. One has F =
F/A as a symplectic T-manifold, and F = ﬁ/QoT where QT is the
identity component of QT .

Proof. We begin by showing that F is symplectic. Since t is a regular
element, ®(F) C G* =T. Let m € F, g = ®(m), and consider the splitting
of the tangent space

TwM = E & g

where E = (d,®)7!(gy) and the second summand is embedded by the
generating vector fields. By [1, Section 7], the splitting is w-orthogonal
and the restriction of w to E is symplectic. Since the action of ¢t on E
preserves the 2-form, the subspace T,,F = (T,,M)! = E! is symplectic
as well. This shows that wp is non-degenerate. It is closed since dwp =
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15 ®*n = ®.uhn = 0. The moment map condition for (F,wp,®r) follows
from that for (M,w, ®). This proves (a).

Clearly Fis QT-invariant, and its image under the moment map is con-
tained in (Lg*)! = Lt*. Also F/ QT C F. To prove the reverse inclusion,
suppose m € F. Its pre-image under the map M — M meets &~ L(Ltr).
We need to show that any pre-image m € 3~ L(Lt*) is fixed under t. By
definition of the action on M, any pre-image satisfies t - m = g - m for some
g € QG. By equivariance and since T acts trivially on Lt*, this means
d(1) = g- ®(m). Since QG acts freely, we conclude g = e and therefore
t-m = m. Viewing Lt* — T as a principal Q7-bundle, F — F is the
pull-back bundle under the map ®r : FF — T. From the constructions, it
follows that F is the Hamiltonian LT-manifold associated to F, proving (b).

Now view t — T as a A-principal sub-bundle of Lt* — T. We have
Lt*/QoT = t since every QOT—orblt in Lt* passes through a unique point in
t. Then (c) follows since F — Fand F — F are pull-back bundles with
respect to ®p : F — T, and from the fact that the form w € Q?(Lg*)
vanishes if pulled back to t C Lt*. O

Remark 4.5. By a similar argument, the fixed point set M9 of any group
element g € G is a group valued Hamiltonian G -manifold, with the pull-
backs of w and ® as 2-form and moment map.

Under the assumptions of Theorem 4.3, we are now going to explain the
ingredients of the fixed point contributions (18). First, we will define a level
2(k +¢) “Spin,” line bundle £ := L’ ®@ K~ — M, where K~ is the “anti-
canonical line bundle” K~! for Hamiltonian loop group manifolds [28]. As
we will explain, the restriction £|z descends to a Ty, )-equivariant line
bundle L — F. The element ¢ acts on L as scalar multiplication by some
element (p(t), and we will show how to choose a square root.

To carry out the details, we need the symplectic cross-section theorem
for Hamiltonian LG-manifolds, cf. [30]. It is an analog of the Guillemin-
Sternberg cross-section theorem [20] for compact groups. For any vertex o
of 2, let A, C 2 denote the complement of the closed face opposite o. Given
an arbitrary open face o, define 2, to be the intersection of all 2, with 7 a
vertex of . Then the flow-outs

Uy := LG, - A, C Q1(S*, g) = Lg*

are smooth, finite dimensional submanifolds, and are slices for points in
o. The maps LG xrg, U, — Lg* are embeddings as open subsets and
their images form an open cover. The cross-section theorem states that the
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pre-images Y, = 3! (U,) are LG,-invariant, finite dimensional symplectlc
submanifolds, and are Hamiltonian LG -manifolds with the restriction 3,

of ® as a moment map. (The central circle U(1) C LG, acts trivially,
with moment map 1.) If L — M is a pre-quantum line bundle, it restricts
to an fag—equivariant pre-quantum line bundle for Y,. In analogy to the
finite dimensional setting, we define a “Spin,”-line bundle £ — M as a
tensor-product of L? with an anti-canonical line bundle K—! — M. The
notion of anti-canonical line bundle for Hamiltonian loop group manifolds
was introduced in [28]. K ! is a level 2c line bundle with the property that

—— (2
for each cross-section Y, there is an LGE, C)—equivarian‘c isomorphism
“1| ~ g1
(19) K |Yo' = Ka ® CQ(pfpo,c)

where K, is the canonical line bundle for Y,. Here we are using that since

Yo = Bg(p — po) is contained in o, the weight 2(p — p,,c) defines a 1-
(20)

dimensional representation of ZEG The conditions (19) are consistent
because for ¢ C 7, there is an LG -equivariant isomorphism

K 'y, = K. 1 @ Cyp, p,)-

Assume t € T"8 and let F' C M be a connected component of the fixed

) 2(k+e .
point set. By part (c) of Proposition 4.1, the action of LG’( (<) restricts

to an action of Th(pe) ¥ AC (k+¢))and furthermore by part (a) the central
extension A2(*+9) ig trivial. Choosing any trivialization (by choosing lifts
generators of A), we obtain a T5(k+c)-equivariant line bundle Lp — F, by
setting Lp := L]z/A.

Suppose now that ¢ € T,ffc and let (r(t) be the eigenvalue for the action
on Lp. We show how to specify a square root (p(t)"/2. Let

(), (), k(t) : F = U(1)

be the (locally constant) eigenvalues for the action of ¢ on Lz, L|z, K|,
respectively. Then (i(t) = pg(t)*sz(t) 1. In order to define the square
root of (7(t) we need to define the square root Iiﬁ(t)_l/2. Given a face o of
A and w € Wyg let Yo := g+ Yy, where g € Ng(T') x A C LG represents w.
It is a finite dimensional symplectic submanifold, invariant under the action

of LG o := Adg(LG,). Then

cU U Y

ocCRAweEW, g
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so that the intersections Yy, N F cover F. By (19), if H%U(t)_l is the
eigenvalue for the action on the anti-canonical line bundle for Y.,

K=(t) 1 _ = k()L ¢2wle—po)

A0, =R

where w(p — p,) is defined using the level ¢ action of Wg. As in Section 2.3
we can define the square root of n%”(t)_l.

Lemma 4.6. There exists a unique locally constant U(1)-valued function
,%p:(t)*l/2 on F such that

—1/2 _ e(w,0)+l(w) . wo —1/2 2mi{w(p—pe),v
(20) K(t) / Ymnﬁ_(_l)( )+ )’iﬁ (t)~1/2e2mi(wlpo=po)v)

Here v € t is the unique vector in W -2 with exp(v) = t, l(w) is the length of
w, and e(w, o) is the number of positive roots o € Ry , of G, (cf. Section
3.1) such that (wic,v) < 0, where wi € W is the image of w under the
quotient map Wog — W. Under the action of £ € A,

é-*KIF_‘(t)—l/Q _ th(E)mp(t)_l/Q.

Proof. Note first of all that the right hand side of (20) is well-defined. Indeed,
if w is replaced by w' with we = w'c, the factor e2™(w(P—ro)¥) does not
change because p — p, € BY(0) is fixed under the level ¢ action of any
element of W,g fixing o, and [(w) + €(w, o) changes by an even number.
Given faces 0 C T of the alcove and any w € W,g, the symplectic normal
bundle of Yy, inside Y, is T' C LG-equivariantly isomorphic to g, /g,, with
T acting via the isomorphism w; L. T — T induced by w;. Using the sign
convention from Section 2.3, the square root of the eigenvalue for the action
of t = exp(v) on g/t is given by (—1)€(w’”)e2”i<”07w1_1”>, and similarly for
the action on g./t. Therefore,

(_1)e(w,a)mga(m’ t)_1/2 — (_1)e(w,7),{lt;17(m7 t)—1/262m'(w1(p7)—w1(pa),v>‘

Since wi(pr) — wi(ps) = —w(p — pr) + w(p — ps), we have shown that the
right hand sides of equation (20) patch together to a well-defined locally
constant function on F.

The action of £ € A C W,g amounts to replacing w by £ - w. This
does not change e(w, 7), and changes [(w) by an even number. The factor

e2mi(w(p=po):v) changes by EAG) O
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Using Lemma 4.6, we define

GOV = up(t) mp(t) 2
Under the action of £ € A it transforms according to §*Cﬁ(t)1/2

tBesk(© Cﬁ(t)lﬂ. But tB++©) = 1 since ¢ € Tk+c. Hence Cﬁ(t)l/2 is actu-
ally a constant, which defines (p(t)'/2.

Remark 4.7. The following special case of the definition will be used in
our applications to Verlinde formulas. Suppose that F' contains a point m €
®~1(e), and let 1 € F be the unique point in the zero level set mapping to m.
Then the tangent space 1), M is symplectic, and the quotient map Mo M
induces a t-equivariant isomorphism of symplectic vector spaces, T;7 Y0} =
T,,M. Hence, choosing any t-invariant compatible complex structure on
T M and letting A(t) € Autc(T, M) denote the action of ¢,

(21) kit ) M2 = detc(A(D)Y?).

If we know in addition that ¢ acts trivially on the fiber Ly (e.g., if ¢t is in
the identity component of LG,;), we obtain

Cr()'? = dete(A(t)'?)

with no explicit reference to the loop group space.
4.4. Alternative version of the fixed point expressions.

The expression for the fixed point contribution of ¢ € T, simplifies if for
some o C 2,
O(F) C W -exp(2As).

Let W, be the Weyl group of G, that is, the subgroup of W fixing exp(c) C
T. The connected components of W - exp(2,) are W-translates of W, -
exp(Us). Let w € W be such that w(W, exp(2,)) contains ®(F'). The LG-
equivariant pre-quantum bundle on M restricts to a pre-quantum bundle for
the Hamiltonian T-action on Yy, where T is embedded in LG using (16).

Proposition 4.8. The fized point contribution x(vr,t) is related to the fized
point contribution x(vi?,t) for the Hamiltonian T-space Y7 (defined using
(3) or (4)) by

De(go/t, wtt)

D(C(g/tv wilt) '

In particular, if o = {0}, we have x(vp,t) = x(Vf,t).

X(VFv t) = X(V%o'v t)
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Proof. The projection map M — M restricts to an equivariant diffeomor-
phism FNY,, - F. Let £L,, be Spin_-line bundle corresponding to Y.
Then

£w0|1§ Z2LrF® C?’w(p—pg)'
The normal bundle of F' in M splits T-equivariantly into the normal bundle

vp? in Yy and the constant bundle g/g,. Using Dr(g/gos,t)Pr(g9s/t,t) =
Dr(g/t,t) we obtain,

DR(g/tv t)

Dr(vp,t) = DR(V%MJ)W-

Let ¢7(t)1/2 € U(1) be the square root for the action on L,,. We have

DR(VFat) DR(V}:‘Uaat)

(o (t)? De(go/t, w™'t)
DR(Vgovt) D(C(g/tawilt) '

CF (t)1/2 _ C}'UU (t) 12 _1)e(w,0')+l(w) e?wi(w(p—pg)ﬂ;) DR(gd/ta t)
DR (g/ta t)

5. Verlinde formula.
5.1. The moduli space of flat connections.

We begin with a brief review of the gauge theory construction of moduli
spaces of flat connections. More details can be found in [3], [30], and [14].
Let ¥ = X} denote a compact, connected, oriented surface of genus h with
r boundary components. Given a compact, connected, simply-connected
Lie group G, let A(X) = QY(Z,g) be the affine space of connections on
the trivial G-bundle over ¥, equipped with the action of G(X) by gauge
transformations

(22) g-A=Ad,(A) — g 0%,

where 6 is the right-invariant Maurer-Cartan form. Let Gy(X) C G(X)
be the kernel of the restriction map G(¥) — G(0%). Since G is simply

connected, the restriction map is surjective, and therefore G(X)/Gy(X) =
G(0%). We define

(23) M(2) = Agat(E)/Ga (),
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the moduli space of flat G-connections under based gauge equivalence. If
0¥ # 0, it is a smooth G(9X)-equivariant Banach manifold. Pull-back of
connections to the boundary induces a map,

d: M(T) — QY9%, g).

The map d is smooth and proper, and is equivariant for the gauge action
of G(0%). Let B = By, be an invariant inner product on g, with k; € Z-.
A symplectic form on A(X) is given by the integration pairing of 1-forms
(a1,a2) — [gB(a1 A ag). As observed by Atiyah-Bott [3], the action of
Gs(X) is Hamiltonian, with moment map the curvature. Hence (23) is a
symplectic quotient and M (X) inherits a symplectic 2-form @. Moreover,
the residual action of G(9%) on M(X) is Hamiltonian with moment map
</I;, using the pairing of Q'(0%, g) and Q°(9%, g) given by the inner product
and integration over 0X. A choice of parametrization of the boundary 0% =
(S1)" induces isomorphisms

G(ox) 2 LG", QY(9%,g) = Q'(S',¢").

Thus (M(Z),G,:I;) is an example of a Hamiltonian LG"-manifold with
proper moment map. For any g = (p1,...,4r) € L(g")*, the symplec-
tic quotient M(X), is the moduli space of flat connections for which the
holonomy around the jth boundary component is contained in the conju-
gacy class of Hol(u;). This also covers the case without boundary, since
M) = M(Sh)o.

Occasionally we will also use the notation M(%,G), in order to indicate
the structure group. The decomposition into simple factors G = G1 X - - X Gy
defines a decomposition of the loop group LG = LGy X --- X LG, and the
moduli space is the direct product

M(E,G) =M(E,G1) X -+ x M(E,Gs).
5.2. Pre-quantization of the moduli space.

The space M(X) is pre-quantizable at integer level, that is if all k; are
integers (see e.g., Section 3.3. of [30] or [17]). For later use, we recall the
construction of the pre-quantum line bundle. The central extension G (2) of
G(X) is defined by the cocycle

(24) ¢(g1,92) = exp <m /E B(g:0, g;eR)).
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The group G(X) acts on the trivial line bundle over A() by

(25) (9,2) - (A,w) = <g-A,eXp (—m /E B(g*eL,A)) zw) .

The 1-form a — 3 [, B(4,a) on A(X) defines an invariant pre-quantum

connection. A trivialization of G(Z) over the subgroup Gp(Z) is given by
the map

(26) a: Gy(X) = U(1), a(g) =exp <2m/2><[0 : §*77) .

Here 7 is the canonical 3-form on G, and g € G(X x [0, 1]) is any extension
such that g = g on ¥ x {0} and g = e on (¥ x {1}) U (0% x [0,1]). The
map « is well-defined and satisfies the coboundary condition a(gig2) =
a(g1)a(g2)c(g1, g2). One defines the pre-quantum line bundle as a quotient
L(X) = (Agat(X) x C)/Gy(X); it comes equipped with an action of LG =
G(%)/G5(%).

Our fixed point formula gives a formula for the Spin -index x(M(X),).
To apply the fixed point formula we have to (i) describe the holonomy man-
ifold M(X) := M(X)/QG", (ii) determine the fixed point manifolds for
elements (ty,,...,t),), and (iii) evaluate the fixed point data. These steps
will be carried out in the subsequent sections.

5.3. Holonomy manifolds.

The holonomy manifold M(X) := M(X)/QQG" can be interpreted as the
moduli space of flat connections

M(2) = Agat(2)/{g € G(E)9(p1) = ... = g(p) = €}

where pi,...,p, are the base points on the boundary circles. The group-
valued moment map ® : M(X) — G" takes an equivalence class of flat
connections to its holonomies around the boundary circles. The 2-form w
has the following explicit description (see [1, Section 9].) We begin with the
case of a 2-holed sphere E%. The surface E% is obtained from a 4-gon by
identifying the sides according to the word D;AD;A~!. Parallel transport
along the paths A and A~'D; defines a diffeomorphism

M(323) =G x G.
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The G2-action is given by

(27) (91,92) - (a,b) = (g1a95 ", g2bg7 ).
The moment map is

(28) ®(a,b) = (ab,a b 1)

and the 2-form is given by

(29) w = 1(B(a*0",b*0%) + B(a*0%,b*0")).

The holonomy manifolds for the general case ¥ = X} are obtained from
M(22) by fusion, which we recall in Appendix C. First, the moduli space
M(2}) for the 1-punctured torus is

M(Zh) = M(23)gs = G2

The G-action is conjugation on each factor and the moment map is the Lie
group commutator ®(a,b) = [a,b] = aba 'b~!. The moduli space for the
surface of genus h with 1 boundary component is an h-fold fusion product

M(Zh) =MED®...® M(Z]) = G*.

G acts by conjugation on each factor, and the moment map is a product of
Lie group commutators. The moduli space for the r-holed sphere 3 is an
(r — 1)-fold fusion product

M(Eh) =ME)®...e M(E3) =G

where we fuse with respect to the first G-factor for each G*-space M (X2).
Finally, the moduli space for 37 is

M(Zh) = M(2}) @ M(5h) = GHA+r=1),
5.4. The fixed point sets.

The fixed point sets for the action on the holonomy manifold are symplectic
tori:

Proposition 5.1. The fized point set for the action of (ty,,...,tx,) on
M(Z7) = GHr=1) s empty unless Ay = ... = A\, =: A, and

M(Ez)(t)\,...,t)\) — F - T2(h+7"_1)'
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Proof. Since M (X}) is obtained from a direct product of h +r — 1 copies of
M(22) by passing to diagonal actions for some of the G-factors, it suffices
to prove Proposition 5.1 for ¥3. By (27), an element (a,b) € M (X2) is fixed
by (tx,,tr,) if and only if

(30) t/\l = Ad, t)\2, t)‘2 = Adbt)\l.

Both ¢y, and ¢y, belong to the exponential of the alcove exp(2l). Since each
conjugacy class meet exp(2l) only once, (30) holds if and only if A\; = Ag. O

Notice that the fixed point set is independent of A; in fact, F' is fixed by
the full diagonal torus T' C G".

5.5. Evaluation of the fixed point contributions.

Let ¥ = X} and g = (p1,...,pr) with p; € A7. By Theorem 4.3, the
Spin_ -index is given by the formula

B1) xM(E)u) = 22 X () X () [T (B P X (v, )"

AEAL

# k+c

Here we abbreviated (ty,...,t)) to ty, viewing T' as diagonally embedded
into G". For the calculation of the fixed point contribution

R 1
A(F)ez(r)
vity) = Cr(t 1/2/ ik A
x(wrta) = Cr(ts) r Dr(ve,ty)
note first of all that
(32) AF)=1

since F' is a torus. Furthermore, since the normal bundle vgp is T-

equivariantly isomorphic to (g/t)%( h‘” ), we have

(33) DR(VF,t)\) = J(t)‘)Q(h-l-T—l) — (—1)(h+T_1)#m|J(t)\)|2(h+T_1)_

It remains to work out the integral [, exp(ici(Lr)) and to calculate the

phase factor (g (ty)'/2.

Proposition 5.2. The integral ofexp( c1(Lr)) over F equals (#T,H_C)h”*l,
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Proof. The line bundle £ = L(X)? @ K~! is LG"-equivariant at levels
2(k +¢),...,2(k + ¢). Since M(X) carries up to isomorphism a unique
line bundle at every level [29, 3.12], it follows that £ is the pre-quantum
line bundle for the symplectic structure defined by By(;.). Hence L is a
pre-quantum line bundle for the corresponding symplectic structure on F
(cf. [?], Subsection 4.4.3), and [, exp(3ci(LF)) is the symplectic volume
Volp, . (F) for the 2-form defined using Bji.. We claim that the sym-
plectic volume coincides with the Riemannian volume, which will complete
the proof since Volp,, (T?) = #Tj . (see e.g., Beauville [8, Remark 9.9],
Bismut-Labourie [10, Prop. 1.2, 1.3]). By our description of M (X}) as a fu-
sion product, the fixed point manifold F' = F'(X}) is obtained from the fixed
point manifold F(X2) (viewed as a group valued Hamiltonian 72-space) by
fusion: F(2}) = F(323)g,s and

F(Z) =F(E)® - @ F(3) ® F(53) @ - ® F(5F),

with h factors F(X}) and (r — 1) factors F(X3). Lemma C.2 from Ap-
pendix C says that the symplectic volume of group valued Hamiltonian
torus spaces does not change under fusion. Hence Volg,, (F(X})) =
Volg,,, (F(X3))"*"=1. Finally, the expression (29) for the 2-form on M (X2)
shows that Volp,, (F(X%)) coincides with the Riemannian volume of T2
with respect to By4c. O

Proposition 5.3. The phase factor is given by (p(ty)Y/? = (—1)r+r—D#Ry,

Proof. The point m = (e,...,e) € F lies in identity level set of ®, and
its stabilizer in G" is the image of the diagonal embedding of G. The 2-
form w restricts to a symplectic form on the tangent space E = T,,M(X).
By Equations (27) and (29) of [?], ¢p(tx)"/? can be computed in terms
of the symplectomorphism A of E defined by t): Choose an A-invariant
compatible complex structure on E to view A as a unitary transformation,
and let A'/2 be the unique square root having all its eigenvalues in the set
{€?]0 < ¢ < m}. Then Cp(ty)'/? = det(A'/?).

We first apply this recipe for the 2-holed sphere 2(2), so that £ =
T,M(Z3) = g ® g. Formula (29) shows that w,, is the standard 2-form
on g ® g, given by the inner product B. A compatible complex structure
is given by the endomorphism (§,17) — (—n,§). Thus, as a complex G-
representation E is just the complexification E = g€. It follows that the
eigenvalues of A (other than 1) come in complex conjugate pairs

ei‘tj,e*i‘bj, 0<¢; <m/2,
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and the corresponding eigenvalues of AY2 are e%i/2 and ei™"¥i/2 —
—e%%i/2. Hence
Cr(ta)'? = (—1)#%.

Now consider the case 7 > 1, h arbitrary. The tangent space is T,, M (X}) =
(5@ g)"*™"~1, but because of the fusion terms the symplectic form is not the
standard symplectic form defined by the inner product on g. However, by
Appendix C, Lemma C.3 it is equivariantly and symplectically isotopic to
the standard symplectic form. Since the phase factor Cp(t,\)1/2 is a root of

unity, it is invariant under equivariant symplectic isotopies, and we conclude
as before that (p(ty)'/? = (—1)(Fr—D#R+ 0

We conclude that the fixed point integral is given by

#Tk+c ) htr-1
| ()2

(34) X, t) = (
5.6. Verlinde formula.

From (34) and (31) we obtain:

Theorem 5.4 (Verlinde Formula). Let G be a simply connected Lie
group and k a given integral level. The Spin,-index of the moduli space
of flat connections on ¥} at level k, with markings pn = (g1, ..., pr) € (A})"
is given by the formula

(35)  X(M(ZR)) = (#Tese)" ™ D TP X (82) -+~ X, (£2)-

XeA,

Remarks 5.5. (a) Theorem (5.4) also covers the case without boundary,
since M(X9) = M(Z1,0). One obtains

XIM(ER)) = (#Thr )" 1 D 1T

AEA]

(b) For the two-holed sphere 3, formula (35) simplifies by the orthogonal-
ity relations for level k characters, and gives X (M (X2) 1 1s) = Oprxp0-

(c) In Bismut-Labourie [10] the Spin_-indices x(M(X}),) are computed
by direct application of the Kawasaki-Riemann-Roch formula to the
reduced spaces. Their approach involves a description of all orbifold
strata of the reduced space. The equality with the above sum over
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level k& weights is non-trivial; it is established in [10] for sufficiently
high level k.

(d) Theorem 5.4 gives a formula for a Spin -index rather than the dimen-
sion of a space of holomorphic sections. Vanishing results for higher
cohomology groups have recently been proved by Teleman [34, Section
8].

(e) It is possible to extend our approach to arbitrary semi-simple, com-
pact, connected groups which need not be simply connected. The
calculation is more involved since there are more fixed point compo-
nents in general. The non-simply connected case will be discussed in
a sequel to this paper.

6. Proof of the fixed point formula.

Our proof of the fixed point formula proceeds in two stages. First, we
show that in case M admits a global cross-section, the formula follows from
the “quantization commutes with reduction theorem” applied to the cross-
section. In a second step we reduce to this case using the method of sym-
plectic cutting.

6.1. An identity for level k characters.

Let G be equipped with inner product B = By, where k € (Z~¢)®. We will
need a Lemma expressing the restrictions of irreducible level k£ characters
of G to the group Ty, in terms of characters of central extensions @g of
G, obtained as the pull-back of f(\?(k) by the map G, = LG, (cf. (9)).
For 0 C T we have embeddings @T C (A;c,, in particular every (A;c, contains
T as a maximal torus. Let 7' = T x U(1) be the trivialization obtained by
restricting the trivialization (16). In terms of the corresponding splitting
t = t* x R, the action of W, on t* reads

(36) wy - (M,T) = (wl,u + TBb('YU - wl’Ya)a T)
and a positive Weyl chamber for @U is given by
e = (G x {0 +R- (B (%), 1).

For any level k weight 1 € A}, the weight (u,1) € A* x Z is contained in
the positive Weyl chamber for G,, and hence parametrizes an irreducible
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representation. Consider the restriction of its character x, o, € Coo(éa) to
Tyie CT CT C G,.

We identify W/W, with the set of all w € W such that w(ty) C ty ,. Every
element in W can be uniquely written in the form ww; with w € W/W,,
and wy, € W,.

Lemma 6.1. For allt € Ty, and all pp € A},

De(go/t, w™lt)

W= B st G

weW/We

Proof. By the Weyl character formula,

D twwi(pt+p)—p

= > > (—1)Hwe Dela/tt)

wEW/Wg w1 EWO'

2w W, (= 1) wn) (g~ 1g)wrpte)—rp
) we%/:wg Dc(g/t, wit)

Given t € W/W, let t; = w™'t. We claim that the sum over W, is just

Dc(gg/f, tl)X,u,o(tl) — Z (_1)l(w1)t11171(M+Pa,1)—(l’a,0)‘
w1 EW,

Indeed, by (36) and since p, = p — B>(7,), we have

Wi (B + oy 1) = (o, 0) = (wi(p + p) — p+ Bhy (Yo — w170), 1).

Bb o o . —
But t, ereome1%0) 1 Gince ti1 € Tgye Hence tqfl(‘ﬁp"’l) (0o,0)

tqfl(’ﬁp)_p, proving the claim. O

6.2. Proof in case of a global cross-section.

We now explain the proof of Theorem 4.3 in the special case where (]/\4\ , W, </I;)
admits a global cross-section. That is, we make the assumption that for
some face o of the alcove, the moment polytope is contained in ,. As a
consequence

M =LG x1¢, Ys.
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Using the identification f@a = @U, we view Y, as a Hamiltonian ég—space.

Clearly, M, = (Y,), for all 4 € A}. Using Lemma 6.1 and the “quantization
commutes with reduction” principle (Theorem 2.1),

r 1, D (ga/tvw_lt)
2 XMt = 3 () D Xue(w D S

HEA], HEA], weW/We
D t,w 't
= Y x(Y,,,wlt)—DC(g"/t ’wlt).

Theorem 4.3 now follows by an application of the fixed point formula to Y,
and using Proposition 4.8 for the fixed point contributions.

6.3. Proof in the general case.

Our proof of Theorem 4.3 in the general case is an application of symplectic
cutting, reviewed in Appendix B.

Denote by ¥ : M — 2 the composition of the map ¢ : M — G with
the quotient map G — G/ Ad(G) = . For suitable polytopes @ C t, the
cut spaces Mg will be obtained by collapsing the boundary of ¥~1(Q) in a
certain way. The polytopes @) are defined as follows.

Pick a rational point u € A ®z Q in the interior of the alcove, and let
€ € Q with 0 < € < 1. For any face o of 2, let Q@ = Q, be the convex hull
of all conjugates of (1 — €)g + ep C A under the affine action of W,. (See
Figure 1). The polytope @ is simplicial; choose integral labels as in B.1.
Notice that QNA C A, for all 7 C 7.

Figure 1: The polytopes Q. for G2. The bold-faced line indicates the bound-
ary of the Weyl alcove 2.
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The polytope Q = Q, will be called ®-admissible if it is ;I;U—admissible
(cf. Appendix B.2) for Y,,. It is then also &, -admissible for Y; for each 7 C 5.
The cut spaces satisfy (Y5)g = G» xq, (Y7)Q, so that the orbifold Mg :=
G x @, (Y7)q is independent of the choice of 7 with 7 C 7. There is a natural
map U~1(Q) — Mg which is a diffeomorphism over ¥~!(int(Q)). More
generally, for @ a face of Q, we let (Y;)g be the corresponding symplectic
sub-orbifold of (Y;)g,, and Mg := G x¢q, (Yr)g is a sub-orbifold of Mg, .
Guided by Lemma 6.1 we define, for ¢t € Ty,

De(g-/t, w1t)

De(g/t, w1t) x((Y7)g, w_lt)v

X(Mg,t) == >

which again is independent of the choice of 7.

Let Q be the collection of all @Q,, along with their conjugates under the
action of the affine Weyl group Wag. By a generic choice of p,€, we can
assume that all Q = @, are ®-admissible. Let Q be the set of all polytopes
Q € Q, and all of their closed faces. The following observation is our starting
point for the proof of Theorem 4.3.

Lemma 6.2. For allt € T,

(37) X(M,8) = Y (=1)°WmCx (Mg, t).

QeQ

Proof. For all € A N Q, with Q N2A C A, we have (Yo)o)y = M,.
Hence, “quantization commutes with reduction” (Theorem 2.1) together
with Lemma 6.1 shows that

x(Mgq,t) = Z X (M) xp(2)-
HEATNQ
Let 1g be the characteristic function of ). Using the Euler formula
> (~1edm Qg (p) = 1,

Qed

the alternating sum over x(Mg,t) equals ZMEI\Z X(J/W\#)Xu(t). O

The orbifold version of the fixed point formula, Theorem A.2 in Appendix
A, expresses all indices x((Y5)g@,t), and therefore all x(Mg,t), as a sum
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over fixed point contributions. QOur aim is to identify this sum with the
sum over fixed point contributions ) s X(Vr,t). To obtain the required
gluing formula, we would like to localize further to the fixed point set of the
maximal torus 7' C G. However, a problem arises because the T5(;)-action
on Lr — F need not extend to a T-action. Over each F'NY, such a T-action
can be introduced by choice of a moment map, however the local T-actions
obtained in this way do not fit together in general.

In order to get around this problem, we proceed as in [30, Appendix A]
and consider a second collection S = {S} of integral labeled polytopes in t.
The polytopes in S are constructed just like those in @, but with € replaced
by some € > €. By a generic choice of u, €, ¢’ we may assume that all S € S
and all intersections SN Q with S € § and Q) € Q are admissible. Given
SeSandteT,E, we define

xs(M,t) = " xs(vr,t),
FCM?

where xs(vr,t) is defined by an integral similar to x(vp,t) (cf. (18)), but
integrating only over the subset F N ¥~1(9):

A\(F)e%q(LF)

7t = t 1/2/
Xs(l/F ) CF() FRo-1(5) DR(VFat)

Lemma 6.3. For all S € S, the integral xs(vr,t) is independent of the
choices of differential form representatives A\(F), c1(Lr) and Dr(vp,t), pro-
vided these are chosen in such a way that for each boundary face R C S, the
pull-back of the form to F N W~Y(R) is Tr-basic. We have

(38) X(vr,t) = xs(ve,t).

SeS

Proof. The first part follows by observing that the integral can be re-written
as an integral over the cut space Fg C Mg of F, that is over the image of
FNU=1(S) in Mg =TV~1(9)/ ~:

-~

1
(F)@ECI(LF)
XS(VF ) CF( ) FAw-1(S) DR(VF;t)

(2 A(TF)g)ezer(£r)s)
= (p(t) /FS Dr((vr)s, t)
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Here (T'F)s = TF|png-1(s)/ ~ is the “cut” of TF as explained in Appendix
B.2, and similarly for (vr)s and (Lr)s. Formula (38) is expressing the
integral over F' as a sum of integrals over all pieces F N ¥~1(S) in the
decomposition. O

The integrals xs(vr,t) can be re-written in terms of cross-sections Y.
As above, we identify Y, C M with its image under the map M — M, and
interpret Y, as a Hamiltonian GOv ~ TG o-space. Let U, : Y, — U be the
restrlctlon of ¥. It can be identified Wlth the comp051t10n of the moment
map ®, with the projection map o - tJr D 2 x {1}. The intersection
Y, N¥_1(S) is compact, and we can define

XS(Yaat): Z XS(V%vt)v

FC(Ys)!

with
Td(F)ec1Lolr)

xs(vp,t) = t/ e
(vies8) = por (1) rruzts)  Dc(vgt)

where v is the normal bundle of F'in Y,,. Asin Lemma 6.3, the integral does
not depend on representatives for Td(F'), ¢i1(Ls|r) and Dc(v§,t), provided
for each open face R C S the pull-backs to ¥_!(R) N F descend to the
quotient by Tr. Following the argument in Section 4.4, we have

Z De(go/t, wlt)

o -1
t

XS(VFv t) =

hence

D o/t _
Z DC 9 /t w_lt) S(me lt).
weW/We ¢ g/ w )

Over Y,, we have a Hamiltonian T-action with T-equivariant pre-qu-
antum line bundle. Hence xgs(Y, wilt) can be written as a limit of
xs(Yo,w™(texp&)) as € € t approaches 0, and by the Berline-Vergne for-
mula the integral defining xs(Y,,w ! (texp¢)) localizes to the fixed point
set of T'. The details of this approach are given in Appendix B. In particu-
lar Proposition B.1 allows us to re-write xs(Y,, w™'t) as an alternating sum
over the corresponding terms for the cut spaces (Y5 )g:

(39) Xs (Yo, w t) = Y (=1 5((YVo)q, w ).
Qe
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From (39) we obtain,

> x(vr,t) =) xs(M,t)

FCM? Ses
codim De(gs t,w Lt _
= Y Y eyeme [y D@L D g wty
5e8Qed weW/ W, clg/tw™it)
i De(go/t,w't) 1
= Y (mpedme N Sy (Vo) w )
Qcod wEW/ Wy De(s/tw™'t)
= > (—1)U (Mg, t)
Qed
= x(M,¢).

This completes the proof of Theorem 4.3.
A. The equivariant index theorem for orbifolds.

The equivariant version of Kawasaki’s index theorem for orbifolds is due to
M. Vergne [37]. A good reference is Chapter 14 in Duistermaat’s book [15];
more information can be found in [26, Section 3]. We follow the conventions
for the definition of a G-orbifold M as given in [15].

The Kawasaki-Vergne formula expresses the equivariant index as an inte-
gral over connected components of a certain orbifold M9. There is a natural
surjection from MY onto the fixed point set MY of g, the latter however is
not in general a sub-orbifold of M:

Example A.1. Let G = S' act on C? by €' - (21, 20) = (%21, €%%2), and
let Zy act by (z1,22) — —(z1,22). The G-action descends to M = C?/Zs.
The fixed point set of g = €™ € G is M9 = {(21, 22)| 2122 = 0}/Zs, which is
not a sub-orbifold of M.

Given m € MY, let (V,T',p) be a local orbifold chart around m. Thus V'
is an open subset of R, T" a finite group acting on V, and p: V/T' — M a
homeomorphism onto an open neighborhood of m. The action of g on V/I’
corresponds to some action on V, together with an automorphism ¢ of I’
such that such that vy-g-z =g -¢(y) -z forallz € V, y €TI'. Let I" act on

V9= H V79 x {v}

yel
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by v1 - (z,7) = (=, 717¢(71) 1). The orbifold M?Y is obtained by gluing
together the orbifolds V/ 1’ .= Vo /T. Usually it has a number of connected
components of dlffff/rent dlmensions. The natural maps V9 — V descend to
surjective maps V/ ¥ - (V/T')9, which patch together to a surjective map
M9 — M9. In our applications, the groups I are abelian and the automor-
phism ¢ is trivial. In Example A.1, M9 has two connected components:

M9 = {(21,z2)|Z2 = 0}/Z2 L {(21,z2)|21 = 0}/Z2.

Suppose now that (M, w, ®) is a Hamiltonian G-orbifold. Then all connected
components of MY are symplectic manifolds, with symplectic form the pull-
back of w under the map M9 — M. If M carries a G-equivariant pre-
quantum line bundle L — M then its pull-back L — MY is a pre-quantum
line bundle for this symplectic structure. Local charts for L are obtained
from orbifold charts (V,T',p) for M. In any such chart, L is given by a
I-equivariant pre-quantum line bundle Ly — V, and the pull-back Ly, to
V9 is a -equivariant line bundle, defining local charts for L.

At any point (v,7) € V9, g acts on the fiber over (v,7). The weight for
this action depends only on the connected component F of M9 containing
(v,7), and will be denoted uz(g) € U(1).

For any connected component ﬁ let d denote its multiplicity, that is the
number of elements in the orbifold 1sotr0py group for a point in its smooth
part. Let vz — F be the normal bundle for the immersion £ — M. In local
orbifold charts V9, itis given as the normal bundle vy, of V9in V xT. Again,
its fiber at (v,) carries an action of yg. We let ﬁc(uﬁ,g) € Q(F) be the
differential form given in local charts by D¢ (v, g), using the definition
of D¢ given in Section 2.3. Finally, we can state the fixed point theorem for
this particular case:

Theorem A.2 (Vergne). Let (M,w,®) be a pre-quantized Hamiltonian
G-orbifold. For any g € G, the following fived point formula holds:

(40) x(M,9)= > x(vz9)

where

(41) vz g) = i [ %jhg‘)’

17(9)-
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We will also need a slightly more general version, expressing the index
x(M, g ef) where ¢ is a sufficiently small element in the Lie algebra of the
centralizer of g. Let Ch(L,¢) and Td(ﬁ,ﬁ) and ﬁ@(yﬁ,g,f) denote the
equivariant extensions, defined by replacing curvatures by equivariant cur-
vatures in the definitions. (See e.g. the book [9]). Then Vergne in [37]
proves the more general formula x(M, ge) = > Fcne XV g,€) with

(42) a9 = 1 [

F

Td(F,£) Ch(L,¢)
ﬁC(Vﬁa 9, g)

Lz(9)-

B. Symplectic Cutting.

In this Section we explain the non-abelian version of Lerman’s technique
of symplectic cutting. In a nutshell, the method associates to any com-
pact Hamiltonian G-space (M,w,®), and certain “®-admissible” poly-
topes @ C t*, a Hamiltonian G-orbifold (Mg,wqg, ®g) with moment poly-
tope ®o(Mg) Nt = &(M) NtL N Q. The space Mg is obtained from
G-oHQn %) C M by collapsing the boundary in a certain way.

B.1. Labeled Polytopes.

Let T be a torus, with lattice A C t. A (rational) polyhedron Q C t* is a
finite intersection of half spaces

N
Q=) {net| (o) >r
j=1

where N is the number of codimension 1 faces, v; € A are non-zero lattice
vectors and 7; € R. Compact polyhedra will be called polytopes. @ is
called simplicial if for all p € Q, the vectors v; for which (u,v;) = r; are
linearly independent. Following [25], we define a labeled polyhedron to be a
polyhedron @ C t* with a choice of inward pointing normal vectors v; € A
for each codimension 1 face. From @ and the labels v; one recovers the
defining inequalities (u,v;) > r;. We call a labeled polyhedron integral if all
rj € Z. Note this does not imply that the vertices of ) are integral.
Associated to any codimension k face S of a simplicial labeled polyhe-
dron @ is a k-dimensional sub-torus Ts C T', with Lie algebra tg the space
orthogonal to S. Letting (v;, ,...,v;,) be the labels of codimension 1 faces
containing S, the map R¥ — tg which takes the jth standard basis vector
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to v;; defines a covering (S1)* — Tg, the kernel of which is isomorphic to
the quotient of A Ntg by the lattice generated by the vectors v;;.

B.2. Non-abelian cutting.

Let (M,w,®) be a connected Hamiltonian G-manifold. We denote by
¥ : M — t% the composition of the moment map ® with the quotient map
g* — g*/Ad(G) = t.. It is well-known that over ¥ !(int(t%)), the map ¥
is smooth and generates a GG-equivariant Hamiltonian T-action. More gen-
erally, if o is an open face of t, and Z(G,) C T the center of its centralizer,
the composition of ¥ with projection to 3(G,)* is smooth near ¥~!(o), and
generates a G-equivariant Hamiltonian Z(G,)-action.

Let Q C t* be a simplicial labeled polyhedron, with the property that
U~1(Q) is compact and connected. Suppose that

(43) If S C Q and o C tI are open faces
with SNoN¥(M) #0, then Ts C Z(Gy,).

It then follows that on a G-invariant neighborhood of ¥~1(S), the compo-
sition of ¥ with projection pg : t* — tg generates a Hamiltonian T's-action.
The polyhedron @ will be called ®-admissible if it has the property (43),
and in addition satisfies

(44) The action of Ts on ¥~ 1(S) is locally free.

Given a polyhedron @ satisfying condition (43), condition (44) can be
achieved by an arbitrarily small perturbation of the parameters r;. Assum-
ing (43), (44), choose a G-invariant neighborhood Ug of ¥ 1(S) on which
the action of Ty is locally free.

Let (S*)* act on Us by means of the covering, (S1)* — T. As a moment
map ¢g for this action we take the moment map pg o ¥ for the Tg-action,
shifted by vg = pg(S):

¢5 :=p50\If—V5: US—)’L*S% (Rk)*
The various torus actions and moment maps are compatible, in the sense

that if S; C So, the restriction of ¢g, to Us, N Us, is a component of ¢g, .
For any face S counsider the symplectic quotients

(Us)g := (Us x C*) j(S*)*
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under the diagonal action, using the standard action on C*. From the
canonical isomorphism,

U HQ)NUs = (Us x C*)(Sh)*

where C is the symplectic manifold with boundary C = S* x Ry C T*(SY),
one sees that there is a canonical surjective map ¥~1(Q) N Us — (Us)g,
which is a symplectomorphism over ¥~!(int(Q)).

One obtains a Hamiltonian G-orbifold (Mg,wq,®q), called the cut
space, by gluing the open subsets (Us)g. The cut space is a union of
G-invariant symplectic sub-orbifolds Mg := ¥~1(S)/Ts, and there is a
natural surjection ¥ 1(Q) — Mg which restricts to the quotient maps
¥~1(S) — Mg. The normal bundle of Mg in Mg is the associated orb-
ifold bundle,

vg = U7H(S) xz, (CF/Ts) — Ms,

where I's is the kernel of the homomorphism (S')¥ — Ty, and the action of
Ts is induced from the natural (S*)¥-action on C*.

We now extend the cutting construction to G-equivariant vector bundles
E — M. Suppose that for all open faces S C @ the Ts-action on Ug lifts
to a G-equivariant action of its cover (S')¥ — T, and that for faces Si, So
with S; C Ss, these torus actions are compatible in the natural way. Define
(E|Us)g — (Us)q by pulling E back to Ug x C¥, restricting to the zero level
set for the (S!)*-action, and taking the quotient. These local bundles glue
together to give a G-equivariant orbifold bundle Eg — Mg. Its restriction
to Mg is Eg := (E|®~1(S))/(SY)*.

We note that the cut (7'M )¢ of the tangent bundle 7'M is not isomorphic
to T'(Mgq). Indeed, for any face S of Q,

(45) (TM)glus = T(Mg)®C*  while  T(Mg)|us = T(Mg) & v3.

Suppose L — M is a G-equivariant pre-quantum line bundle. The Ts-action
on Ug admits a G-equivariant pre-quantum lift (with respect to the moment
map pgs o ¥) to L|Ug. Since the moment map for (S')* is obtained by shift
by vg, the (S')*-action admits a pre-quantum lift if and only if vg € ty = RF
is contained in the lattice ZF. Clearly, this is the case if Q is an integral
labeled polyhedron. Since the trivial line bundle is pre-quantum for C*, the
cut bundle Ly — Mg becomes then a G-equivariant pre-quantum bundle
for the cut space.
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B.3. The gluing formula.

Let (M,w,®) be a compact, connected Hamiltonian G-manifold with pre-
quantum line bundle L — M. A ®-admissible labeled polyhedral subdivision
of t* is a collection of ®-admissible labeled polyhedra Q@ = {Q} such that the
collection covers t*, the intersection of any two polyhedra is either empty or
is a face of each, and the labels attached to a common codimension 1 face
of any two polyhedra coincide up to sign. We call Q integral if all of the
polytopes ) € Q are integral labeled polyhedra. Let Q be the collection of
all closed faces of @ € Q; thus Q are the top-dimensional polyhedra in Q.
To every ) € Q corresponds a pre-quantized Hamiltonian G-orbifold Mg
which is a symplectic sub-orbifold in each Mg, such that @ is a closed face of
Q' € Q. One has the following gluing formula [26] relating the Spin_-indices
of the cut spaces:

(46) X(M, g) =Y (~1)°mx(My, g)-

Qe0
In this paper we need a refined version of (46), along ideas developed in
[30]. Suppose (M,w,®) is a pre-quantized Hamiltonian G-manifold, and S
a ®-admissible integral labeled polyhedron. Consider the expression

(47) sOhg)= Y elo) [ Td(F) Ch(L)

Fents Fre-1(s) Dc(vr,g)

where the representatives for the Todd class, Chern class and D¢(vp,g)
are chosen in such a way that for all faces R C S, the pull-back to the
submanifold ¥~!(R) descends to a form on Mr = ¥~Y(R)/Tg. Provided
that the representatives satisfy this boundary condition, (47) is independent
of their choice because the integral can be re-written as an integral over the
cut space Fg C (M')g C M}:

(48) L) = Y uro) / Td((TF)s) Ch(Ls)

FCMy Fs Dc((vr)s,9)

Suppose that Q@ = {Q} is a ®-admissible, integral, polyhedral subdivision,
and also that all intersections SN Q with @ € Q are admissible. For any
Q € Q let xs(Mg,g) be defined by a formula similar to (47), by taking the

integral in the Kawasaki-Vergne formula only over the part Fs mapping to

S.

Td((TF)s) Ch((Lg)s)
4 Mg, 9) = F D ‘
(49) xs(Ma»9) FE(EJVI:Q)Q He(9) /ﬁs De((vi)s: 9)
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The following Proposition extends formula (34) in [30] to the equivariant
case:

Proposition B.1. One has the gluing formula,

(50) Xs(M,g) = Y (=1)°%™Cyg(Mqg, ).
Qed

Proof. The proof is an extension of the argument given in [30, p.465]. We
may assume g = t € T. Observe that all of the characteristic forms
n (48) admit T-equivariant extensions. Hence we can write xs(M,t) =
lime_,0 xs(M,t,&) where

Xs(M,t,€) = ) uF(t)/ Td((TF)s,€) Ch(Ls, &)

FCM? Fs De((vr)s,t, &)

Let us apply the Berline-Vergne localization formula for orbifolds (cf. [26])
to this expression. Let X be a fixed point manifold for the T-action on
(M?")g. Letting Ug : Mg — t% be the map induced by ¥, it follows that
Us(X) is a point. Let R C S be the unique open face containing ¥s(X), and
let F C M be the unique connected component with X C Fg. Recall that
by (45) the restriction of (T'M)g to Mg is the tangent bundle of Mg plus
a trivial bundle. Similarly the restriction of (T'F')g is the tangent bundle to
X plus a trivial bundle, and the restriction of (vp)g is the normal bundle
1/)1}2 to X in Mpg. On the other hand, the normal bundle of X in Fg is the
pull-back of the normal bundle V}% of Mr in Mg. We therefore obtain the
formula

/ X)Ch(Lg)
dx Dc UX,texp§) Eul(uR,§)

xs(M,t,6) = Zux texp&)—

We obtain similar formulas for all of the cut spaces Mg:

/ (X) Ch(Lg)
dx D(C I/X,tepr) EUI(VRag)

xs(Mg, t,€) = Zux texp&)—

where the sum is over all connected components X of the T-fixed point set
of ﬁg, for all F' C Mé If X is a fixed point component for the T-action on
(M")g, then ¥(X) is contained in the interior of a unique top-dimensional
polyhedron @) € Q. Hence, the fixed point contribution appears exactly once
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as a T-fixed point contribution of the sum ZQEQ(—I)COdimQXS(MQ,t,{).
We must show that the remaining fixed point contributions cancel. These
other integrals are over connected components X of T-fixed point sets of F. S,
where F C Mé) is defined as in Appendix A. These fixed point components
can be organized as follows. Consider the finite subset of points of the
form (¥g)s(X) € A. Given any such point, there exists a unique open
face R of S containing it. If R = int(S), then X is simply one of the T-
fixed point orbifolds for M, and the cancellation of the corresponding fixed
point contributions is just the gluing formula [26, Theorem 5.4]. In case R
is a proper face of S, the argument from [26] carries over without essential
change, the reason being that the fixed point contributions look exactly like
fixed point contributions for Mg, except for the extra factor Eul(l/}g,&)_l
which appears in all of these integrals. [l

C. Fusion of group valued Hamiltonian G-spaces.

In this appendix we collect some facts about fusion of Hamiltonian G-spaces
with group-valued moment maps.

Theorem C.1 ([1, Theorem 6.1]). Let G, H be compact Lie groups, and
(M,w, (®1,P2,¥)) a group valued Hamiltonian G x G x H-manifold. Let
Myys be the same manifold with diagonal G x H-action, ®gs = ®1P2, and
Wes = W — %B(qﬁﬂ, @35) Then (Msys, Weas, (Prus, ¥)) s a group valued
Hamiltonian G x H-manifold.

The correction term %B (@30, ®30) will be loosely referred to as the “fu-
sion term”. If M = M; x My is a product of two G x H;-valued Hamiltonian
spaces, we also write My ® My := (M1 X Ma)fys.

Recall that if G is a torus, a space with G-valued moment map is just
a symplectic manifold with a multi-valued moment map in the usual sense.
Fusion of such spaces changes the symplectic form, but not the volume:

Lemma C.2. Suppose T is a torus, that (M,w,(®1,P2)) a compact group
valued Hamiltonian T' X T'-space, and (Mpys, wrys, (Prus)) is the group valued
Hamiltonian T -space obtained by fusion. Then the symplectic volumes of M
and My,s are the same.

Proof. This is a special case of a result for non-abelian groups proved in [2].
In the abelian case, the following much simpler argument is available. Notice
that M with diagonal T-action has moment map ®s,s = ®;P2 not only for
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the fusion form wg,g but also for the original symplectic 2-form w. Suppose
t € T is a (weakly) regular value of ®g, so that (®gy) 1(t) is a smooth sub-
manifold and M; = (®gs) 1 (¢)/T is an orbifold. Since the pull-back of the
2-form B(®36, ®56) to (Prus) '(t) vanishes, the reduced symplectic forms
are the same: w; = (wpys):. It follows that the two Duistermaat-Heckman
measures m = %(@fus)*ﬂwnb and mg, = %(Cﬁfus)*(|wgls|) coincide. Since
the symplectic volume is the integral of the Duistermaat-Heckman measure,
the proof is complete. O

For any group-valued Hamiltonian G-space, the 2-form w is non-
degenerate on the tangent space at any point in the identity level set. The
following Lemma shows that fusion does not change the isotopy class of
this symplectic structure. Its proof relies on the notion of exponential of
a Hamiltonian space [1]: Let @ € Q%(g) be the image of exp*n under the
homotopy operator Q*(g) — Q* !(g). Then if (M, wp, ®g) is a Hamiltonian
G-space in the usual sense, with ®o(M) contained in a sufficiently small
neighborhood of 0, then (M, w, ®) with w = wp + ®{w and & = exp(Pp) is
a group valued Hamiltonian G-space. Conversely, if (M,w,®) is a group-
valued Hamiltonian G-space, any small neighborhood of <I>*1(e) is obtained
in this way. The 2-form w vanishes at 0, so that w,, = (wo), for points in
the zero level set.

Lemma C.3. Let (M,w,(®1, P2, ¥)) be a group valued Hamiltonian G X
G x H-space, and (Mp,s, wrys, (Prus, U)) its fusion. Let m € M be a point in
the identity level set of (®1, P2, V). The symplectic 2-forms w|m and weys|m
on Ty, M are isotopic through a path of symplectic forms, invariant under
the stabilizer group (G X H)p,.

Proof. We may assume that M is the exponential of a Hamiltonian GxGx H-
space (M, wo, (®o,1,Po2,¥0)). Rescaling by s > 0, we obtain a family
of Hamiltonian spaces (M, swo, (s®o,1,5%0,2,5¥0)), together with their ex-
ponentials. Let wf  be the corresponding fusion forms. We claim that
silwl‘?’us|m give the required isotopy of symplectic forms. Indeed, each wf _|m
is symplectic, and for s — 0,

Whis|m = Swolm — %B(exp(s@oyl)*e,exp(s<I>0,2)*§)|m = SWo|m + 0(32)

showing that limg_,q s_lwfus|m = wo|m- O
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