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We consider the asymptotic behavior of the complete system of equations governing a
heat-conductive, reactive, compressible viscous gas bounded by two infinite parallel plates.
The motion is proved to tend towards the corresponding constant state, as time tends to
infinity. Moreover, the decay rate is investigated.
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1. Introduction

In this paper, we investigate the asymptotic behavior of the complete sys-
tem of equations governing a heat-conductive, reactive, compressible viscous gas
bounded by two parallel infinite plates. We assume that its describing param-
eters vary spatially only in one direction perpendicular to the plates. Then, in
the Lagrangian mass coordinate, such a model is well-formulated by the system of
equations (see [5]):

vy — Uy = 0,
k(i) =n(%),
v xT v xT

2
et:)\g(ew) —i—)\lu—x—k’eux +6f<’l),9,2’),
v x v

v

(1.1)

Zx
2t = >\3 (’U2> - f(’l},g,Z),

in@Q={(z,t) |0 <z <1, t>0}, with the boundary conditions
w(0,t) = u(l,t) = 0,(0,t) = 0,(1,t) = 2,(0,t) = z.(1,¢) =0, t >0, (1.2)
and the initial conditions

v(z,0) = vo(x), u(z,0)=ug(z), 6(x,0)=0(z), =z(z,0)=z(z), z€]l0,1],
(1.3)
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where v, u, 6, and z denote the specific volume, the velocity, the temperature, and
the concentration of the unburned fuel, respectively, while k, A; (i = 1,2,3) and
§ are positive constants. The function f represents the intensity of the chemical
reaction, whose typical example is (see [5])

f(v,0,2) = akv™m ™ exp(aael) (1.4)

where a and m are positive constants. We note that the exponent m means the
overall sum of the individual reaction orders for fuel and oxidizer, which will be an
important parameter of our calculation.

As basic assumptions, we assume

'UOaGOvZO S Hl(oa 1)7 ug € H(%(Oa 1)) (15)
Cy' <wolx) < Co, Gyt <bp(x) <Co, 0< 20(x) <Co, x€0,1], (1.6)

with some constant Cy > 1, and normalize as

/ vo(x)de = 1. (1.7)
0

Furthermore, we assume (1.4) with
0<m<2. (1.8)

For this initial-boundary value problem (1.1)-(1.3), the existence and the
uniqueness of a generalized global-in-time solution was studied by many authors
including Bressan [1], Bebernes—Bressan [2, 3|, Bebernes-Eberly [4], and so on.
Among them, Bebernes—Bressan [3] showed that for arbitrary fixed T' > 0, there
exists a unique set of functions (v, u, 0, z), belonging to

ve L>®(0,T; H(0,1)), v, € L°(0,T;L?(0,1)), (1.9)
(u,0,z) € L>=(0,T; H'(0,1)) N L*(0,T; H*(0,1)), (us, 0, 2;) € L*(0,T; L*(0,1)),
(1.10)

satisfying equations (1.1) almost everywhere and initial-boundary conditions (1.2),
(1.3) in the sense of traces. The essential point of their proof was to obtain a priori
bound of the form

Cl<w(r,t)<C, C'<O(x,t)<C, 0<2(x,t) <O, (x,t) €[0,1] x [0,T],

(1.11)
with some constant C' > 1. We note that their constant C' depends on T, so that
they did not obtain uniform boundedness of the solution with respect to time, or
the asymptotic behavior of the solution.
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From this points of view, Yanagi [6] showed that the solution tends exponential-
ly towards a constant state as time tends to infinity, provided that the function f
is given by (1.4) with m = 1; namely, f = akz exp(ec:el).

In the current paper, we aim to extend this results for 0 < m < 2. To state
our results precisely, let us consider the following stationary problem associated

with (1.1)—(1.3):

_ﬂm = 0,
k (? = )\1 (uj:) )
v x v x
) 02 04 j_1 (1.12)
A2 (f) + )\1u7w - e?w + adkp—m L zm eXp(‘9 - ) =0,
v/, 0 0 af
Z 01
~r _ ~—m+1zm _
)\3(172)1 akv z exp( i > ,
@(0) = a(1) = 0'(0) = 0'(1) = 2'(0) = 2'(1) = 0, (1.13)
with conditions
1
/ vdr =1, (1.14)
0
and
1/ ~
/ <2a2 +0+ 52) dx = A, (1.15)
0
where
71
A= /0 (ng + 60+ 52()) dz. (1.16)

We note that these conditions come from the following (see [6]):

ProrosIiTION 1.1. We have

1
/ vdr =1, (1.17)
0

1
/ (;u2+9+5z) de = A, (1.18)
0

for any t > 0.

This stationary problem (1.12)—(1.16) can be solved by the following procedure:
it is easily seen from (1.12); and (1.13) that @ = 0. Integrating (1.12), (or (1.12),)
over [0,1] together with (1.13) yields fol oML IM exp (:91) dx = 0. Noting that

C~1 <% < C, Z >0, which are consequences of (1.11), we have Z = 0. Therefore,
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it follows from (1.12), and (1.13) that 6 = const., and from (1.12), that & = const.
Using (1.14) and (1.15), we conclude # = 1 and 6 = A.
Our main result is the following;:

THEOREM 1.1.  Assume (1.5)—(1.8). Let (v,u,0,z) be a unique generalized
solution to (1.1)—(1.3) in Q. Then there exist positive constants C and v such that
the following inequality is satisfied:

Cexp (—vt) for0<m <1,

1.19
C(1+ t)72(m1—1> for 1<m <2, (1.19)

(v —=1,u,0 = A, 2)(-,t)[1 < {

where || - ||1 denotes a norm in H'(0,1).

In the following section, we shall obtain the uniform boundedness of the so-
lution, namely the a priori bound of the form (1.11) with the constant C' being
independent of T'. The proof of Theorem 1.1 shall be done in Sec. 3.

2. Uniform boundedness of the solution

In this section, we shall prove the following theorem:

THEOREM 2.1. Under the same assumptions as in Theorem 1.1, we have

sup ||('U,’U,797 Z)( : vt)Hl S C7 (21)
>0

C™' <w(x,t) <C, |u(z,t) <C, C'<O(x,t)<C,

_ (2.2)
0<z(x,t) <C, forall (x,t) € Q,

where, and in what follows, the letter C' denotes a positive universal constant
depending only on the given data. We begin with the following four propositions.

PROPOSITION 2.1. There exists a constant C' > 1 such that

C_l S é) t 2 O; (23)

ot g2 2 f
xS < 2.4
/O/O<v€2+w+9>dxdt_c, (2.4)

j— /0 pd. (2.5)

and

where
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PROPOSITION 2.2. We have
0(z,t) < C(1+ [v]cI(t)), (2.6)

for any (x,t) € Q, where | - |s denotes a sup-norm in Q, while

1 p2
I(t) = /O %dx. (2.7)

Here, we note that the estimation

/ T iwa<c, (2.8)

0
which will be used frequently, is already obtained in (2.4).
PROPOSITION 2.3. There exists a constant C > 1 such that

C ! <oz t)<C (2.9)

holds for all (z,t) € Q.
COROLLARY 2.1. There exists a positive constant C' such that

oo

maxu? dt < C. (2.10)
o [01]

COROLLARY 2.2. There exists a positive constant C such that
|01/2 — 012 < CI(t)"/2. (2.11)

ProPOSITION 2.4. We have

/OOO/OI(Q—H)dedth. (2.12)

Since the proofs of the propositions 2.1-2.4 are similar to those in reference [6],
we omit the details.

PROPOSITION 2.5.  For any | > 0, there exists a constant C > 0 such that

1 oo rl
/ 2dr + / / (2™ 4 22)dedt < C. (2.13)
0 o Jo
Proof. Multiplying (1.1), by 2! and integrating it over [0, 1] implies
1od [t a1 Lo
_— d Asl £d dr =0 2.14
I+1dt )y ~ x+3/0 2 x+/0f293 : (2.14)
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which together with (2.9) gives

1 oo pl
/ 2 dx —|—/ / A2 dedt < C, (2.15)
0 o Jo
for any [ > 0. Especially, we have
oo rl
/ / 22drdt < C, (2.16)
o Jo
and since z! < C(1 + 2!™1), we can easily obtain
1
/ Adr < C. (2.17)
0
Next, it follows from (2.14) that
Ldr 2 dx + 5/1 g(@)v=m T gy <0 (2.18)
I+1dt J, 0 -7 ’

where 3 = akexp(2), and g(f) = exp(=;). Since g(f) — g(f) < 0 for 6 > 6, and
g (n) < 4ae=? for n > 0, we have from (2.18)

1L d
I+ 1dt ),

< /0 (9(6) — g(8))r—+1 2+ dy

1 1
A de + 6/ g(@)v~mHLmH g
0

<6 [ (60~ g0yt
0<0
1
- 6/ _ (/ VACEA(ER)) da’) (0 — O)v= ™ zmH gy
0<6 0
< 4aﬂe‘2/ (60— )u=mHymH g
9<0
= 4Ozﬁe*2/ (0_1/2 + 91/2) (9—1/2 _ 91/2)v—m+1zm+l da
0<0

S 8\/20&6672/ (él/Q _ 01/2)U7m+1zm+l d{E
0<0

1
<C’I(t)1/2/ 2™ dy
0
1 1
Ss/ et da:+C’I(t)/ 2 g
0 0

1
<e / 2" dx + CI(t) (2.19)
0



Asymptotic Behavior of a Reactive Gas 105
for any ¢ > 0, where in the seventh line, we have used (1.18), in the eighth line,
we have used (2.9), (2.11), and in the final line, we have used (2.17). Considering
(2.3), (2.9), and choosing ¢ sufficiently small, we get

1 1
% / AMldg 4071 / 2 dy < CI(t), (2.20)
0 0

which together with (2.8) implies

oo pl
/ / 2 Hdedt < C, (2.21)
0 0

which completes the proof of Prop. 2.5. O

ProrosIiTION 2.6. We have
oo prl

/ / (A—0)*drdt <C. (2.22)
0 0

Proof. From (2.12), (1.18), (2.10), (2.13), and (1.8), the inequality (2.22) is
derived as follows:

/OOO/Ol(A—G)zdxdtS 0/000/01{(‘4_9)2+(9—9)2}da:dt

oo prl
C+C/ /(u4+22)dxdt
o Jo

IA

[e’e) oo prl1
§C+C’/ maqudt—&—C/ / 22 dx dt
o [01] o Jo
<. (2.23)
O
PROPOSITION 2.7. There exists a constant C' > 0 such that
1 oo pl
/ (u2+v—logv—1)dx+/ / u? drdt < C. (2.24)
0 o Jo

Proof.  We rewrite (1.1), as

RO RO
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Multiplying (2.25) by u and integrating it over [0, 1] gives

d 1, L2
had - _ 1 x
p {2u + kA(v —logv )}dm—f—)\l/o » dz

1 —
:k/ de
0

v
)\ 1 2 1
<2 Zegeio | (0 A)?da, (2.26)
2 Jo v 0
which together with (2.22) completes the proof of Prop. 2.7. O

ProPOSITION 2.8. We have

1 oo rl
/ {(u?+0—0+2)*+u*}de +/ / (w*u? + 602)dxdt < C. (2.27)
0 0 0

Proof. Multiplying (1.1), by w, multiplying (1.1), by —1 and integrating it
over [0, 1], multiplying (1.1), by 0, adding these three results together with (1.1),,

we get
j( u? +6— 9+5z>
( ku—e + Aluu"” +ale +6>\3Z§>
v v/,
1 1
—)\1/ u—“’dm—&-k/ fus d;v—é/ fdz. (2.28)
o v o v 0
Multiplying (2.28) by fu®+ 6 — 6 + §z, integrating it over [0, 1], we obtain
ld 2 ! uQui 9923 9 zg
+)\1/ wdm/ (u—i—&z)dw—i—é/ fdx/ (u—l—&z)dm

2
:/ (ku Uy0 Lk w0, kéuezx Y U50, Con Ul 2oy
0 v v v v

v
)dx

Uy, 01 0.z uunﬂ Zo
— Ay

Y S VR SW
v
+k/ ou”ﬁd / ( u +5z>dx
<5/ xdm
0 ,I.)

1
+C(1+ 5*1)/ {wPuZ +u?0* + 22+ (0 — 0)? +u? +u + 22} de,  (2.29)
0
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for any € > 0, where we have used (1.18). Choosing ¢ properly, we get

4 (g gy d +C_1/192d

i |, S U z) dx e x
1

§C/ {uu? +u?0% + 22 + (0 — 0)? + 2 +u* + 2} du. (2.30)
0

Multiplying (1.1), by u® and integrating it over [0, 1] yields

1 1.2 2 1,2
1i/ u4dﬂc+3)\1/ u“mdmzsk/ Wl g
4dt 0 0 v 0 v

1,2 2 1 292
< )\1/ YU gt o | L dr, (231)
o v o v
which immediately leads to
d [t 1 1
— [ wtdz+Ct / u?u? dr < C/ u?6? du. (2.32)
dt Jo 0 0

Multiplying (2.30) by &, adding it to (2.32), choosing &¢ sufficiently small, we have
d [ Lo 7 2 R P
— el zu"+0—-0+z) +u* pde+C (u“us + 03) dx
1
< C/ {w?0? + 22+ (0 — 0)* +u2 +u* + 22} da
0
1 —
< c/ W2{1+ (0 — 0)2) da
0
1 —
+C/ {2240 -0 +u2+u*+2°}da
0
1 —
< Cmaqu/ (0 —0)?dx
[0,1] 0

1
—|—C’/ {u? + 224 (0 — 0)® + u2 +u' + 22} du. (2.33)
0

Considering (2.10), (2.13), (2.12), and (2.24), we have from integrating (2.33)
over [0, t]

1 t 1
/ {(u2+9—§+z)2+u4}dx+// (uu? + 602) da dr
0 0o

< c+0/0t (ma)]{u2>(7')/01(9—0)2da:d7', (2.34)

[0,1
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which together with (2.13) gives

/01(9—0_)2dx<2/1(u +0—0+2)? +2/01(u2+z)2da:
< c+c/ <maxu) /(9 02dudr.  (2.35)

[0,1] 0

Using (2.10) and Gronwall’s inequality, we have from (2.35)

/1(9 0)? dr < C. (2.36)
0

This together with (2.34) and (2.10) completes the proof of Prop. 2.8. O

PROPOSITION 2.9. There exists a constant C' > 0 such that
oo

max( — 0)*dt < C. (2.37)
o [01]

Proof. Using the point x(t) € [0, 1] which satisfies 6(z(t),t) = 0, we obtain

1- 1 1/2 02 1/2
/ 0, dx'| < </ 06> dx) (/ — dx) , (2.38)
() 0 o vo

0-0] =

from which, we get
— 1 1 —
0—0) < CI(t)/ 02 dx < C’I(t)/ {14+(0—0)*}dx < CI(t), (2.39)
0 0

where we have used (2.36). It is easily seen from (2.39) and (2.8) that (2.37) is
satisfied. O

ProrosITION 2.10. We have

1 oo pl
/ v? da + / / Ov? dx dt < C. (2.40)
0 0 0

Proof.  Multiplying (1.1), by “= and integrating it over [0, 1] implies

d [* A v v, 191}2

1 92 1 u2
=z = 2.41
/ " dx—|—/0 " dzx, (2.41)
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from which, we obtain

d [* M v2 o ww k 62
@ M%) g+ d < =102 4l ) de. (2.42
dt/o (21}2 U) m—|—2 0 C/(G —|—um> z )

A1V
4 v

2

Noting (2.4), (2.27), (2.24), and the inequality |“2=| < + )\%u , we conclude

(2.40) by integrating (2.42) over [0, 00). O

PROPOSITION 2.11. There exists a constant C > 0 such that

1 oo pl
/ u? dx + / / u?, drdt < C. (2.43)
0 o Jo

Proof. Multiplying (1.1), by —ug,, integrating it over [0, 1], we obtain

1d [* L2
—— uidw—i—)\l/ Yoz
0 o U

2dt
1
:/ <k0 ,k% /\1%”%> Ugy AT
0
1,2
< 6/ % dzr + C’sfl/ (02 4 0202 +u2v?) de, (2.44)
0 0

for any ¢ > 0. Here, the third and the last terms in the right hand side of (2.44)
can be estimated as

1 1
/ 6202 dax < / {(6—0)* +200}v2 dx
0 0

< Cr[raaix(e 0) +C/ Ov? dz, (2.45)
1 1 1 1
/ u2v? dr < / v dx <62/ u?, dx—l—C%*Z/ u? da:)
0 0 0 0
1,2 1
< Cez/ ﬂdaH—CE_Q/ u? d, (2.46)
o v 0
where we have used (2.40). Substituting (2.45) and (2.46) into (2.44), choosing e
sufficiently small, we have (2.43) from (2.27), (2.37), (2.40), and (2.24). O

By using the equality: u = fox ug dz’, the following is easily obtained from
Prop. 2.11:

COROLLARY 2.3.
lulo < C. (2.47)

ProrosiTION 2.12.  We have

1 co pl
/ 02 dx + / / 02, dxdt < C. (2.48)
0 0 0
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Proof. Multiplying (1.1); by —6,, and integrating it over [0, 1] yields

1d 2 Lo2,
1
_ / ()\2%9 _ )\1— +k9& —6f) 0,0 d
O U
1 92 1
< 5/ Ly + Cet / (V202 4 u + 0%u2 + 2°™) dx, (2.49)
o v 0

for any € > 0. Here, the second, the third, and the fourth terms in the right hand
side of (2.49) can be estimated as

/ 202dx<C/ v dx( /92 dw+€_2/ eid:p)

< Cé? / O dr + Ce™? / 02 da, (2.50)
o Y 0
1 1 1
/ U dx<C/ U dx(/ u d:c—i—/ ufmdm)
0 0
< C/ u dx—i—C’/ u?, dr, (2.51)

1
/ 0*uZdr < C {1—|—(9—§)2}uidx

0

< C/ u dx+cmax( —0)?, (2.52)

[0,1]

where we have used (2.40) and (2.43). Substituting (2.50)—(2.52) into (2.49), choos-
ing e sufficiently small, we get (2.48) from (2.27), (2.24), (2.43), (2.37), and (2.13).
O

From (2.38) and this proposition, we get
COROLLARY 2.4.

O(x,t) <C, (x,t) €Q. (2.53)

ProrosITION 2.13. We have

1 oo pl
/ 22 dx + / / 22 drdt < C. (2.54)
0 o Jo
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Proof. Multiplying (1.1), by —z,, and integrating it over [0, 1] yields

1d 22,

:2)\3/ vwzmzm / fzee dx

1,2
< 5/ ZJ; dx + Ce™ 1/ (V222 4 2*™) dx, (2.55)
0 0

for any € > 0. Here, the second term in the right hand side of (2.55) can be
estimated as

1 1 1 1
/ viz2dr < C/ v2 dx (EQ/ zf,xdx—i—a_Q/ zidx)
0 0 0 0
1.2 1
< Ce? / ﬁdahLC’a’z / 22 dx, (2.56)
0 0

where we have used (2.40). Substituting (2.56) into (2.55), choosing ¢ sufficiently
small, we get (2.54) from (2.13). O

From (1.11), (1.18), and this proposition, we get

COROLLARY 2.5.

0<2<C, (2,t)€Qq. (2.57)

PROPOSITION 2.14. We have
|
/ gz 4w < C. (2.58)
0

Proof. Multiplying (1.1)5 by — 3 and integrating it over [0, 1] implies

02 2 f
th/ —d +/ (3/\2 94+A1—+6 )
1 2
Uy ug [ 1 A —0
—’f/o v —’“/0 v(142+/1202>dx
<kd/1(lo v—v+1)dm+C/1|u|A—91dx (2.59)
=Aza J, V® ) e gz " ‘
where we have used (1.17) and (2.53). Therefore, we get
1y el o1
0 0Jo

Applying Gronwall’s inequality to (2.60), considering

max u? dt </ / us, dedt < C, (2.61)

o [0.1]
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and
maxA 0) dt<C’/ max{(A —0)* + (6 — 0)*} dt
[ ax{(4 - 00 + (0~ )
oo pl
<C max(@ 0)% dt + C’/ / (u* + 22) dx dt
o [01] o Jo
<C, (2.62)
we complete the proof of (2.58). O

From this proposition, it is not difficult to obtain the boundedness of # from
below.

PROPOSITION 2.15. There exists a constant C > 1 such that
O(x,t) > C* (2.63)

is satisfied for any (v,t) € Q.

Proof. By using a point x(t) which satisfies 6(x(t),t) = 0, (2.63) is easily
obtained by the following inequality:

T 1
[log 6] = logéJr/ e—zdm §C+C’/ <9§+12> dx < C, (2.64)
2(t) 0 0 ¢
where we have used (2.3), (2.48), and (2.58). O

3. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. In what follows, we shall obtain
eight differential inequalities.

ProprosITION 3.1.

1

d 1
= (z+z2)d:c+0*1/ MM 4 22) dr < 0. (3.1)
0 0

Proof. Integrating (1.1), over [0, 1] implies

d I 1
a/o zdm—i—/o fdx=0. (3.2)

Multiplying (1.1), by z, integrating it over [0, 1], we have

1d ', 1,2 1
—— dx + )\ Zd dz = 0. 3.3
sdt |, z4dr + 3/0 2 T+ ; fzdx (3.3)

It follows from (1.4), (2.9), and (2.63) that f > C~'2™, which together with
(3.2)-(3.3) leads to (3.1). O
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Put # = A — §. Then we have
PROPOSITION 3.2.
A, 1 A~ A~
E/ {6 + Au® + 2kA*(v — 1 — logv) } dz + C_l/ (0> +62+u2)d
0 0
1
< C'/ (us + 2™) dx (3.4)
0
Proof. Repeating the same arguments as in Prop. 2.6, we have
1 1 1
/ 0?dx < C’/ (02 +u' +2%) dx < C/ (02 + u2 + 2%) da. (3.5)
0 0 0
Multiplying the equation:
~ ég; ’U,?c Uy AUy
Oe=Xo| —) —M—=+EkEA— —kO0— —0F, (3.6)
v/, v v v

which comes from (1.1),, by 0, integrating it over [0,1], we obtain

2 l
th/gdx—i-)\g/ dx
u2f

N2
:/ ( )\1—+kA——ku‘”9 —5f9>dx
0

1 1 n
ge/ éde+cs*1/(u§+z2m)dx+kA/ u%edx,
0 0 0

(3.7)

where we have estimated the third term in the second line in (3.7) as k"“Téz‘ <
£08/3 4 Ce~lul, and have used the boundedness of 6. Multiplying (1.1)5 by u and
integrating it over [0, 1] implies

-
i/ {1 2+kA(v—1—logv)}dx+)\1/ Y gy :—k/ usf
dt 2 o

v

dz.  (3.8)

Considering 22, 22™ < C2™, we conclude (3.4) by multiplying (3.8) by A, multiply-
. f .

ing (3.5) by &, adding the results together with (3.7), and finally choosing € and &
properly. O

PRroPOSITION 3.3.
d

1 x 1
—/ {u/ (v—l)dx’+)\1(v—1—logv)}dx—i—C_l/ (v—1)2dx
dt Jo 0 0

1
gC/ (6 + 2) do.
0

(3.9)
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Proof. Multiplying (1.1), by fom (v—1)da’ and integrating it over [0, 1] yields

d 1 T 1 1 0
— udx/ (v—l)dm’—/qux—k‘ (—9+9—A>(U—1)dm
dt Jo 0 0 0o \v

1 1
= —)\1/ &(’U —1)de =—-X\ / (v—1—1logv); dz, (3.10)
o v 0
from which, we get

d 1 T 19
— {u/ (vl)da:’+)\1(vllogv)}dx+k/ —(v—1)%dx
dt 0 0 o VU

_ /Ol{k(a ~ A - 1)+ u?) da

k ['o !
gf/ —(v—1)2de+C 02dx+/ u? da. (3.11)
2 Jo v 0
This completes the proof of Prop. 3.3. (]

PROPOSITION 3.4.

d ! 0 Lrgz w2

= §—A— Alog— | d -1 Zrog Zz) g

ai J, ( OgA> vHe /0<1292+v9> g
1

SC’/ (ui+92—|—zm)d1‘. (3.12)
0

Proof. Multiplying (1.1), by 1 — % and integrating it over [0, 1] immediately
leads to (3.12). O

Finally, repeating the same computations as in Prop. 2.10-2.13, we have

PROPOSITION 3.5.

1 2 1 1 R
%/ <z§—“§‘”) d:r,—i—C_l/ vgdxgo/ (02 +u2)de,  (3.13)

1

% u? dx 4+ C~ /umd:v<C/ 92+v)d (3.14)
/92da:+c /9 dxgc*/(ég+u§+u§+zm)dx, (3.15)
0

d 1
— zxd:c+C’ / mdmﬁC’/ (2™ + 22) d. (3.16)
dt Jo 0 0

Now, multiplying (3.4) by &1, (3.9) by 2, (3.12) by €3, (3.13) by &4, (3.14)
by €5, (3.15) by ¢, (3.16) by e7, adding all these results together with (3.1), and
choosing ¢; (i =1,2,...,7) properly, we obtain

d 1
aEl( )+ vEy(t) < 0/ ul da, (3.17)
0
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for some constant v > 0, where
1 A, A,
Eit)= [ {(v=12+vi+u+ul+0*+0;+2+2"+ 22} dr, (3.18)
0

and
1 ~ A
Ez(t):/ {w=12+vl+u*+ul+0>+62+2"+2" 422 de. (3.19)
0

Here, for simplicity, we have replaced all coefficients in F; and Es by 1. Noting
that f01 ut dr < |ug | fol u2dr < CEy(t) fol u2, dz, we get from (3.17)

1
%El(t) + B (t) < CEy (1) / 2, da. (3.20)
0

First, we consider the case 0 < m < 1. Since F;(t) < CE5(t) with some constant
C > 0, we have

1
%El (t) + vE(t) < CEL () / u?, de, (3.21)
0

which is equivalent to

1
%{exp (vt)E1(t)} < Cexp (vt)Eq(t) /0 u?, dr, (3.22)

where we have also denoted C~'v by v. From which, we have

1
%log (exp (1) Er (1)) < C / 2, dz. (3.23)
0

It follows from (2.43) and (3.21) that
Eq(t) < Cexp (—vt), (3.24)

which completes the proof of Theorem 1.1 for 0 < m < 1.
Next, we consider the case 1 < m < 2. By using Schwarz inequality and the
boundedness of Fy(t), it follows that F;(t) < CEy(t)'/™. Then we get from (3.20)

d 1
aEl(t) +VE™(t) < CE (1) / u?, dr, (3.25)
0
where, we have also denoted C~™v by v. We put F(t) = E{ ™(t), then this

inequality is reduced to

1
%F(t) +C(m— l)F(t)/O u?, dx > (m—1)v. (3.26)
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Therefore, we obtain

F(t) > F(0) exp<—0(m— 1)/;/011@30 dx ds)

+(m—1)u/0 exp(—C(m—l)/:/Oluizdxds) dr

> C7 1+, (3.27)

where we have used (2.43). Thus, we have

Ey(t) < C(14t)" 7T, (3.28)

which completes the proof of Theorem 1.1.

[1]
[2]

[4]

[5]

References

A. Bressan, Global Solutions for the One-Dimensional Equations of a Viscous Reactive Gas.
Bollettino U.M.I., 6 (1986), 291-308.

J. Bebernes and A. Bressan, Thermal Behavior for a Confined Reactive Gas. J. Diff. Eqns.,
44 (1982), 118-133.

J. Bebernes and A. Bressan, Global a Priori Estimates for a Viscous Reactive Gas. Proc.
Royal Soc. Edinb., 101 (1985), 321-333.

J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory. Springer-
Verlag, New York, 1989.

D. Kassoy and J. Poland, The Induction Period of a Thermal Explosion in a Gas between
Infinite Parallel Plates. Combustion and Flame, 50 (1983), 259-274.

S. Yanagi, Asymptotic Stability of the Solutions to a Full One-Dimensional System of Heat-

Conductive, Reactive, Compressible Viscous Gas. Japan J. Indust. Appl. Math., 15 (1998),
423-442.



