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Plates are common structural elements of most engineering structures, including
aerospace, automotive, and civil engineering structures. The study of plates from
theoretical perspective as well as experimental viewpoint is fundamental to understanding
of the behavior of such structures. The dynamic characteristics of plates, such as
natural vibrations, transient responses for the external forces and so on, are especially
of importance in actual environments. In this paper, we conside the envelope surface
created by the vibrations of a square plate on a weakly nonliner elastic foundation and
analyze the stability of the uniform solution of the governing equation for the envelope
surface. We derive the two-dimensional equation that governs the spatial and temporal
evolution of the envelope surface on cubic nonlinear elastic foundation. The fact that the
governing equation becomes the quintic nonlinear Schrodinger equation is shown. Also we
obtain the stability condition of the uniform solution of the quintic nonlinear Schrodinger
equation.

Key words: elastic foundation, envelope, nearly monochromatic waves, perturbation,
Schrodinger equation

1. Introduction

Plates are common structural elements of most engineering structures, includ-
ing aerospace, automotive, and civil engineering structures. The study of plates
from theoretical perspective as well as experimental viewpoint is fundamental to
understanding of the behavior of such structures. The dynamic characteristics of
plates, such as natural vibrations, transient responses for the external forces and
so on, are especially of importance in actual environments. In this paper, we con-
side the envelope surface created by the vibrations of a square plate on a weakly
nonliner elastic foundation and analyze the stability of the uniform solution of the
governing equation for the envelope surface. We derive the two-dimensional equa-
tion that governs the spatial and temporal evolution of the envelope surface and
discuss the stability of the uniform solution.

In the course of studying the theory of plates the classical, Kirchhoff plate
theory [1]-[3], in which transverse normal and shear stresses are neglected to study
bending, buckling, and natural vibrations of rectangular plates, was first estab-
lished. The treatment of the linear vibrations of plates is comprehensively given in
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the monograph [4]. The governing equations of the nonlinear vibrations of plates
was also reduced [5]. The first-order shear deformation plate theory extends the
kinematics of the classical, Kirchhoff plate theory by relaxing the normality re-
striction and allowing for arbitrary but constant rotation of transverse normals
[6, 7] and finite element models are developed for the precise analysis of the plate
characteristics in real problems [8].

In general, the Schrodinger equation [9] governs the spatial and temporal evo-
lution of the amplitude of a wavepacket propagating transversely in any dispersive,
lossless medium. The spatial and temporal evolution of the amplitude of a wave-
packet centered around a wavenumber and a frequency is varying slowly in space
and time so that it creates an envelope. In other words, the Schrédinger equation
governs an envelope created by a wavepacket. The nonlinear Schrodinger equation
arises in the nonlinear dispersive characteristics of propagation medium and non-
linear restoring force and so on. Many studies of a wavepacket has been carried
out in water wave [10]-[12], plasma [13], fiber-optic communication systems [14],
and some other area as well. Moreover, several Schrodinger type equations are
derived from the wavenumber-based or directional-based spectrum of nearly mono-
chromatice waves and their stabilities of the solutions are analyzed [15, 16]. Nearly
bichromatic waves which are expanded from nearly monochromatice waves are also
analyzed and the related equations govern envelopes created by nearly bichromatic
waves are derived. The nonlinear dynamics and numerical simulations of its solu-
tions are performed [17]-[20].

We can consider the force due to the elastic foundation is propotional to the
second or third power of the displacement. The past studies have only treated the
second power of the displacement [21]. However, when considering the nonlinearity
of an elastic foundation, the third power of the displacement is naturally considered.
In this paper, we derive the two-dimensional governing equation that describes the
propagation of the envelope surface of a square plate on an elastic foundation using
the method of multiple scales [22]. The obtained equation becomes the quintic
nonlinear Schrodinger equation. We consider the stability of the uniform solution
of the obtained quintic nonlinear Schrodinger equation through the modulational
perturbation. The sufficient condition of the stability is shown.

The following section presents the plate equation on an elastic, weakly non-
linear foundation with cubic nonlinearity. In the third section we derive the gov-
rning equation of the envelope surface of nearly monochromatic waves on cubic
nonlinear elastic foundation using the method of multiple scales. In the fourth
section we analyze the stability of the uniform solution of the obtained governing
equation in the previous section.

2. Preliminary: Plate equation on an elastic, weakly nonlinear founda-
tion [21]

We consider a square plate with side length [. The mass of the plate per unit
area perpendicular to z-axis, the mass density of the plate, the area of the cross
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sectoin of the plate perpendicular to z-axis, the elasticity modulus, and the moment
of inertia of the cross section with respect to the x-axis are denoted by u, p, Ag,
FE, and I, respectively. Moreover, the weight W of the plate per unit area is set to
be constant, that is, W = pug (g is the gravitational acceleration) and we neglect
internal damping. Then, the equation of motion for the vertical displacement of
the plate w(z,y,t), in which ¢ is time, is given by

O%w(x,y,t)
ot?

+ F(w(z,y,t)) = —pg,
O<zx<l, O<y<l, t>0,

4 4 4

ox* 0x20y? oy*
(1)

where F' is the force in z-direction per unit area acting on the plate due to the
elastic foundation. We consider the free oscillations of the plate without specific
boundary conditions.

We assume that the vertical displacements of the plate are small compared
to the length I. We also assume that the force F(w) can be naturally written as
follows:

F(w) = ksw + bsw?®, (2)

where ks and by are spring constants. Constant ks must be positive physically.
Constant b, takes either zero or positive or negative. If by is zero, then the spring
is a linear spring. For a linear spring, the force is proportional to the displacement.
If b, is not zero, then the spring is a nonlinear spring [23]. If b, is positive (we
call a hard spring), then the nonlinearity increases the force. If by is negative (we
call a soft spring), then the nonlinearity decreases the force. We are interested in a
nonlinear spring, that is, b, is positive or negative. In the appendix, the governing
equation with a nonlinear spring expressed by

F(w) = ksw + bsw? (3)

is shown. In this case, we have the known result [21].
Then Equation (1) becomes

Pw(e,y,t)  BIf0w(z,yt) ,0wzyt) 0w(zyt)
ot? i Ox* 0x20y? oy*

ks bs
+ ;U}(ﬁ,y,t) + ;w(m7yat)3 =9 (4)

In order to simplify equation (4) the term —g will be removed by introducing the
transformation

wle,y, 1) = d(ry,0) + 5 s(.y). (5)
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where s(z,y) satisfies the following time-independent equation:

84S(Iay) 84S(Iay) 845(:E7y) k‘? k‘?
) Vs _ _ s
Ox? Ox20y> Oy* + EIS(Q:’ v) EI’ (6)

where #25(x,y) represents the deflection of the plate in static state due to grav-

ity. Equation (6) is easily solved as the boundary value problem, but we are not
interested in static state. w(x,y,t) is written as follows:

Puo(z,y,t)  EI[*o(r,y,t) *o(r,yt) oy t)| | ks -
ot2 +u{ Ox? 2 0x20y? oyt }—l—uw(:ﬂ,y,t)
by [ . . 3ug
+ M{'UJ(%@/JV + £QW($,y,t)25(x,y)
g\° 7\’
#3(12) st + (B ste)*} =0, ™

Using the dimensionless variables

B l . o T 7 (’/T)2 EIt (8)
wW=—w, T=-—-I = — = (- —
Aa ) l ) y ly7 l u )
equation (7) becomes
*w 0w o*w o*w

ot? + ozt * 285328;72 * oyt

4 by A2 3bs A ug (U_ 1
ks _ sl _3 sfa _o MY Lt
- 7r4EI{ e z v * ¢ ks S(W$7 7Ty>

b A2 (g (11 \\° bl fpg (1_ 1 \\°
+ B w(kss(wx,wy)> +Aa<kss<7rx’7ry>) }—0, (9)

where we simply write w, which is u’)(%i, %gj, (%)2 =7 f) exactly.
We assume that the area A, of the cross section is small compared to the plate
side length I, then we put & = (Al"')2 with & a small parameter. We also assume

that the deflection of the plate in static state due to gravity, 7%s(z,y), is small with

respect to the vertical displacement w. So, we assume that £2s(z,y) is O(é") with
n > 1. Setting

N AN AN 2
5—‘bsg<w) T (W> Bl (10)
equation (9) becomes
Ow  0*w o 0w
= 2 W = ew® + O(e" 11
oz tom T 972072 + a7 +p w = ew” 4+ O(e"), (11)
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with n > 1 and € is a small parameter. We can now write the following equation
governs the vertical displacement of a plate on a weakly nonlinear, elastic founda-
tion, which describes up to O(g"), n > 1:

Pw(x,y,t)  w(xyt)  Ow(z,yt) 0wyt
ot2 Ox* 0x20y? Oy*

= cw(z,y,t)°,

+ pPw(z,y,t)
(12)

O<z<m, O<y<m t>0,

where we drop all bars for convenience. The first four terms in the left-hand side
of equation (12) are the linear part of the plate equation and p?w — ew? represents
the restoring force due to the elastic foundation. Since no other external forces
are considered, equation (12) describes the free osillations on an elastic, weakly
nonlinear foundation.

3. Governing equation of the envelope surface of nearly monochromatic
waves on an elastic, weakly nonlinear foundation

In this section we derive the governing equation for the envelope surface cre-
ated by nearly monochromatic waves propagating in unidirection on an plate with
weakly nonlinear foundation. Nearly monochromatic waves have the wavenumber
spectrum having a peak and spreading over around a peak. So, the energy of nearly
monochromatic waves is almost concentrated in a single wavenumber. The ampli-
tude of such waves varies slowly in time and space so that creates the envelope of
traveling waves.

In order to derivate the equation govern the envelope of nearly monochromatic
waves centered around the wavenumber k,, and the angular frequency w, we use
the method of multiple scales [22]. We introduce the slow time scales 77 = et, and
Ty = €t in addition to the original time scale Ty = t. Moreover we introduce the
long scales X = ex, Xy = €22, Y] = ey, and Y5 = €2y in addition to the original
space scale Xog = x and Yy = y. Here € is a small parameter, which is physically
different from e in equation (10). Both € and e are the same small parameter
mathematically and we assume that € and ¢ are of the same order, so we denote €
without distinction. Hence the time and space derivatives become

o o 9 4,0

o o, Ton T oy
o d o 5, 0
or  ox, Sox, T oxy, (13)
o 0 o 5,0
t+e tE .

dy Y,  ov: | oYs

Then we seek a second-order solution in the form

2
w(z,y,te) = "wn(Xo, X1, X2, Y0, V1, Y2, To, Ty, To) + O(e%).  (14)

n=0
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Substituting equation (14) into equation (12), using equation (13), and equating
coefficients of like powers of €, we obtain

6411}0 6411}0 (947110 (927110 9
ox? +26X§8Y02+ v + T2 +p wo = 0, (15)
541111 84101 84’101 82101 2
oxs TPoxzovg T ovg T omg UM
— 4 8411)0 _ 84100 B 8411)0
0X30X, 0Xp0X10Y3 0X320Y,0Y1
34w0 8211)0 3
— — —+ w, s 16
avRoy, “or,or, P (16)
84102 8411)2 641112 6211}2 2
2
oxi ' “oxzovz  ovi arz TP
— 4 (9411)1 _ 8411}1 _ 84’11}1
0X30X, 0X00X,0Y3 0X20Y,0Y1
4 O*wq - 0w B *wo B *wy g 0*wo
Yo, 0Ty0T, 0X20X? 0X30Xo 0Xp0X10Yy0Yq
_9 8411)0 _ 84w0 B 8411)0 _ 84100
IX320Y7 0X00X20Y3 OX320Y? IX30Y,0Y>
4 4 2 2
_ 2w Owo _Two o, 0o g2, (17)

IYROYZ  OYRIY, OTE T OTydTh

To analyze the propagation of nearly monochromatic waves centered around the
wavenumber k,, and the angular frequency w, we take the solution of equation (15)
in the form

wo = A(Xl,X27Y17Y27T1’T2)ei(kaO cos Op+kw Yo sin 0p—wTy)

+ A* (Xla )(27 Yl, }/2’ Tl, TQ)efi(kag cos Og+k. Yo sin@ofwTo).

We write this equation as follows for convenience (hereinafter, “cc” is used as the
same manner):

wo = A(Xl, XQ,H, YVQ,Tl,TQ)ei(kaO cos 0o+ky Yo sin g —wT)) + cc. (18)

Equation (18) describes the propagation of nearly monochromatic waves whose
propagation direction is 0y (0 < 6y < 7/2) in the (z,y) plane. In other words,
A of equation (18) presents the envelope surface created by nearly monochromatic
waves. We derive the governing equation for A using equations (15), (16), (17),
and (18).

First, the dispersion relation for A is led by substituting equation (18) into
equation (15)

w? = kj, + p*. (19)
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Next, substituting equation (18) into equation (16) and eliminating the terms that
produce secular terms yield the following solvability condition

0A 0A 0A
23 2
4ik;), <c0590 X, + sin 0y —— Y, ) + 2iw T +3|A\ A=0, (20)

and we have the equation w; satisfies as follows:

84w1 84101 84U)1 a w1
2 _ AS 3i(kw Xo cos Op+kqy Yo sin 0g—wTh)
oxa t2axzove T v Tz TP e
(21)
Then the solution of equation (21) becomes
3
w, = A 31k Xo cos Oo-+ku Yo sin b0 —wTo) | 0. (22)

8(9’%1%) - p2)

Similarly, we eliminate the terms that produce secular terms in the equation
obtained from equations (17), (18), and (22), then we obtain the solvability condi-
tion as follows:
0%2A 0A 0%A

4ik3 —_— 42 200 ————
8X2+ ik, 005908X2—|— k= sin 908X18Y1

. 0?A 0A . 0A  9%A
+ (6k2 sin? 0y + 2k?2 cos® 90)8Y2 + 4ik3 sin Op —— oY, + 2zwa—T2 ~ =0. (23)

(6k2 cos? By + 2k sin? )

Equations (20) and (23) describe the evolution of the complex amplitude A
with the slow and long scales. We obtain the governing equation for A, which is
accomplished by combining equations (20) and (23). First, from equation (19), we
obtain the following relations:

4k,

ww' =2k3 | w” = 6k2 — 142

(24)

where w’' = dw/dk,, and W = d’w/dk?. We use these relations in the calculation
below. Next, from equation (20), we have

0A k2 0A 0A i3 9
aT, -2 " (cosGOaX —l—sm@oay ) + $|A| A. (25)

Differentiating both sides of equation (25) with respect to T} yields

olAP 2
oo (At g 14
0A 0 814) 13 <2| |2 0A 8A*

9 2
= —w (cos@oaXl o7 +SH908Y T % o7 + o7 A ) (26)

4 _
a12 ~

0A | ., 0 0A
0X, 0Ty 09y, o1,

—w <COS 0y —— 4 +s
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Substituting equation (25) to equation (26) yields
D?A 0 0A 0A 3
3T2 = —w |:C05906X1{ w (CObﬁoaX +blneoay>+2w|A|2A}

. 0 0A 0A i3, 9
+Sm908Yl{ w <cos€08X —i—sm&oay> +—|A\ AH
i3 9 0A 0A
+ W [2A| {—w (cosﬂoaX +s1n908Y > + f|A| A}

0A* 0A*
2 PAVES
+ A { (cosGOaX + sin 0y —— oY, ) % —|A]°A H

0%A . 0%A . 0% A
=W (cos2 0o X2 + 2 cos 6 sin HOW + sin? 6, 6}/12)

6w’ o 0A 0A
_ 7|A| <cos GOW +sinfy 3Y1>

3w’ 0A* 0A* 9 4
- TA <COS€08X + sin Oy —— oY, ) 1t Al*A. (27)

Substituting equation (27) into equation (23) and arranging terms leads to

’ %-I- 98A+1n9 o4 +3W|A|2 98A+1n9 o4
0Ty OR0x, T gy, ) T L2 O0ex, T 0y,

3 DA* A"
+2w A <cos€06X +Sln008Y1>}
1 1 w2\ . 0%A
+ {2w" cos? 0y + G (w” + w> sin? 90} X7

1 1 w'? 9%A 1 w'? 02A
+{w"sin290+<w"+> Cos290}+ W’ — =—)sin20) ———
2 6 w oY ? 3( )

9
—|A]*A =0.
+8w3| | 0

Expressing X1, Xs, Y1, Y5, and T in terms of the original z, y, and ¢ variables, we

obtain
0A ;3w 0A 0A
{ 5 + ( 5|4 ><cos€06 + sinfp 8y>
3ew’ OA* . 0A*
+ 52 A? (cos 0o o + sin 6y a9y )}

1 1 2 0%2A
§w” cos? Oy + G <w" + ww ) sin? 00}8362
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To eliminate the cross term of we transform the coordinate system by

881/’
T \/[7—\/50 x
vl =1vB va oflv]: (30)
t 0 0 1 t

where a = Jw” cos? 0 + & (W + ¢ )sm 00, B = 2w sin O + & (" + )cos 0o.

(Note that & > 0, 8 > 0 are easily found using equation (24).) We also let = i}—‘é’,
2 = 301 = Sfj;, c3 = g2, and v = (" — “5/2)3111 260y, then equation (29) is

transformed to the new coordinate system (z, 7, ) as follows:

{%j—&-(w’—i—ecﬂA (fcos@o—f \fCOSl90+\/abm€0)8

)

=0. (31)

+ eczAQ( (\/ cosby — \/asmﬁo \/>COS90 + \/5511190)8a )}
+ (208 + vV

Hereinafter, we use anew z, y, and t instead of , ¢, and £ in order to avoid a
nuisance of symbols and we introduce the following symbols:

a=+/B cosy—asinby, b=/3 cosbly—+asinby,
c=2af —yVab, d=2ab+vVas.

Summarizing this section, we obtain the governing equation of the envelope

(32)

surface of nearly monochromatic waves on an elastic, weakly nonlinear foundation

as follows:
0A , 9 0A 0A of O0A* 0A*
A —_— — A
{(%—!-(w + ecq| |)(a6 —|—ba )—&—e@ ( p. +bay>}
0%A 82A 4
+Cw+ a a9 + € C3‘A| A_O (33)

We note that equation (33) is a quintic nonlinear Schrodinger equation.

4. Stability analysis of the uniform solution

In this section, we analyze the stability of the uniform solution of equation
(33). We obtain the following uniform solution of equation (33):

A(t) _ Aoei(szcsAgt+ﬁo)7 (34)

where Ay and [, are real constants. We consider a modulational perturbation [24]
of equation (34) and express it in the form

A(z,y,t) = A(t){1 + B(z,y,t)}, (35)
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where perturbed quantity B(x,y,t) is written
B(l‘ y t) _ Bleﬂt+ik(z cos 04y sin 0) + 3269*15—2']{(1 cos 04y sin 0) (36)
Here B;, {2, k and 0 are a complex constant, a growth rate with a complex quantity,

the wavenumber and propagation direction of the modulational wave, respectively.
Also superscript * means complex conjugate.

THEOREM 1. We assume that there is the innumerable perturbed quantity,
presented by equation (36), which satisfies 0 < ¢ < ’g—f’ <¢as By — 0. Then the
sufficient condition for the stability of the uniform solution of equation (33) is

A¢{4cs(ccos? 0 + dsin® 0) — c3(acos O + bsin 0)%} 2

k? > 37
(ccos? § 4 dsin? 0)2 (37)
Proof.  Substituting equation (35) into equation (33) yields
0A OB OB OB
i|—(1+B)+A— ' Aj|1+ B*)( aA— + bA— A*(1+ B)?
i\ B+ AT+ et B (A G 40452 ) a1+ B
L0B” .0B” 0*B B 5 4
X (aA 5 +0A oy )} +c Aa 5 +dAW+e c3 A1+ B[*A(1+ B) = 0.
(38)
Using the relation
0A
En — (14 B) =ie?c3 AjA(1 + B), (39)

then it follows that eqation (38) is rewitten

,(8B +(w/+eclA8|1+B|2)( 8B+baB> +ec2A§(1+B)2<aaB +baB ))

ot 0 0 ox dy
9’B  0°B
+c@+da — + s Ag(1+ B)(|1+ B[* = 1) = 0. (40)

Substituting equation (36) into equation (40) yields
th+ik(m cos 04y sin 0)(@1131 + 61235) + eﬂ*tfik(a: cos 0+y sin 0) ( QQIBT + @2232)
+ Z em{Qt+ik(mcosO+ysin0)}+n{g*t—ik(zcosG—i—ysinQ)}fm n(BlaB2) =0, (41)

m=0,1,...,5
n=0,1,...,5
2<m+n<5
where
011 = if2 — k(w' + ec1 A2)(acos @ + bsin ) — k?(ccos? § + dsin? 0) + 2€%c3 Ay,
(42)
O12 = —ekca AZ(acos + bsin ) + 2€2c3 A, (43)
Oo1 = ekcgAZ(acos O + bsin ) + 2€%c3 A, (44)

Oy = i2* + k(w' + ec1 AZ)(acos§ + bsin§) — k*(ccos® 6 + dsin® 0) + 2€%c3 Ap.
(45)
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and fy, »(B1, B2) is shown in Appendix B. We find that f,,, ,,(B1, B2) is the function
of By and Bs, independent of z, y, and t.
Here Substituting (z,y,t) = (x0, Yo, to) into equation (41) yields

¢1(611B1 + 6©12B3) + & (021 By 4+ O22B3) + Z Cmonfmn(B1,B2) =0, (46)

m=0,1,...,5
n=0,1,...,5
2<m+n<5

where ¢1, ¢§ and ¢,,,, are complex constants as follows:

Qto+ik(xzo cos O+yg sin )

61 =e€
ET _ e.Q to—ik(xzg cos 0+yp sin ) (47)

~ _  m{Qto+ik(zo cos O0+yo sin 0) 4+n{2%tg—ik(xo cos O+yo sin 0) }
Cmpn =€ )

We also substitute (z,y,t) = (21,y1, 1) into equation (41) then we have

6/1(91131 + 81235) +6T/(921BI + 92232) + Z dn’nfm,n(Bl,Bg) =0, (48)

m=0,1,...,5
n=0,1,...,5
2<m+n<5

where ¢,¢}" and ¢, ,, are complex constants that (x1,y1,t1) is subsituted into

equation (47) instead of (xg,yo,t0). We devide by B; in Equations (46) and (48)
then we obtain

~ B3 _. BT By _ 7
¢1 <911 + 91231> + CIE (921 + 922Bik> + Z émon fmn(B1, Ba) =0,

m=0,1,...,5
n=0,1,...,5
2<m—+n<5
(49)
5 B3 BT B N 5
& (911 + @mBi) + cl'Bfi <921 + 922Bi> + Y Eunfmn(Bi,B) =0,
1 m=0,1,....5
n=0,1,...,5
2<m+n<5
(50)

where fmm, shown in Appendix C, is transformed from f,, ,, since we prepare later
calculation.

From the assumption of the theorem, we can take the sequences of By and By
such that

*

2
BiIEO Bl b3 ( )

where ¢, € C, since [c, ] is compact. We immediately obtain

Bi 1 . Bi_1

B
lim B, =0 lim By, =0 lim — =¢ lim = im .
Bi—0 2 Bi-0 " B—0B; " B—0By ¢  B-0B; ¢

(52)
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20 There exsists an accumu-

Moreover, we express By as |Bi|e'?" then %‘: =e
lation point of #y¢ in 0 < 0, < 27 from the theorem of Weierstrass-Bolzano. Using
the theorem of Weierstrass-Bolzano again, we can select a partially convergent se-
quence such as lim,, ., 0y, = Oy from the sequences of By that satisfies equation

(51). Therefore,
BT =210y __
Jim, B e = cy. (53)
Using equations (51), (52) and (53) and considering the state of By — 0, we obtain
the following coupled equations from equations (49) and (50):

¢1(O11 + ¢ 012) + Ecg(Oa1 + ¢ O22) =0, (54)
5’1(911 + Cp 912) + 6{’09(921 + Cz 922) = 0 (55)

Combining equations (54) and (55),
¢ Cicp ) (O + 612 _ (0 (56)
5’1 6?’09 1 + e Ooo 0/)°

Here, we can select (zg, yo,to) and (x1,y1,t1) such that a matrix (g,l SI,C:G) has full
1 *1

rank. Therefore, from equation (56)

011 + 612 =0,

(57)
691 + ¢; O22 = 0.
We finally obtain the relation

61165, — 012605, = 0. (58)

We obtain {2 by solving equation (58) as follows:

2 = —ik(w' + ecy A2)(acosd + bsin h)

+ [k?{? Aj{4cs(ccos® O 4 dsin? 0) — c3(acos O + bsin 0)?}

— (ccos® 0 + dsin® 0)%k*}]3 . (59)

In order to be stable in the perturbation, the content of root of equation (59) must
not be positive. This leads to the theorem. O

REMARK 1. We assume that 0 < ¢ < |g—f| < ¢ only in this theorem. Al-

though we don’t assume the convergence of g—%, we have the convergent point ¢,
determined uniquely by equation (57), which is unrelated to how to take partial
sequences of By and Bs.

REMARK 2. In equation (59), {2 has one or two points on the imaginary axis
when equation (37) holds. However, when equation (37) doesn’t hold, {2 has one
stable point and one unstable point. Therefore, 2 is structurally unstable.
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Appendix A.
We consider a nonlinear spring, which characteristics is presented by

F(w) = kyw + byw?, (A1)
instead of equation (2), where by # 0. This characteristics is not so real in engineer-

ing. However, the result from equation (A.1) is important in mathematics. Then
equation (4) becomes

Pwlwy,t) Bl [w(z,yt) 0wyt 0w(z,yt)
ot? m Ozt 0x20y>? oyt
ky

b,
+ —w(z,y,t) + —w(z,y,t)* = —g.
H H

(A.2)

Using the same transformation (equation (5)) and dimensionless variables (equation
(8)), equation (A.2) becomes

0%w N o*w Lo 0w N 0*w
otz ozt 072052 Oyt

14 b, A g (11 bl (g (1 1 \\°
oo i sila _9 s M R YUst [ KT = Y= _
+7T4EI{ b+ — 0" + o s(ﬂx,ﬁy>w+Aa<kbs<ﬂx, y)) } 0,

™

(A.3)
Here we put € = % with & a small parameter. Using equation (10), then we have
the following governing equation, which describes up to O(e™),n > 1:

Pw(z,y,t) | 9'w(x,y,t)

'w(z,y,t) | 'w(x,y,t)
ot? Ox?

0x20y>? Oy*
+ (e, y,t) = ew(w,y, )2, (A4)

O<z<m O<y<m t>0,

where all bars are dropped for convenience. In this case, p?w — ew? represents the
restoring force due to the elastic foundation.

Substituting equation (14) into equation (A.4), we obtain

84111() 84w0 84w0 82w0 2

2 - A.
ox: Caxzovy T vy T amg TP (A-5)
8411)1 34101 84w1 82w1 2

2
oxi | “axzovz ovg orz P
o 6411.)0 6411)0 (94100
T TYOXEOX, T T OXo0X,0v2 | OX20Y,0Y,

84100 6211)0

2
- _ A.
ovgoy, “omyor 0 (A.6)
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*tw O*wy 0wy 0%wo

2 2
ox: " Caxzovy T avg Tamg TP
— 4 8411)1 _ 8411)1 4 8411}1
OXI0X: | OXo0X,0YZ | OXZ0Y,0v:
4 O*wq - 0w, B *wo B *wo g 0*wp
OY30Y,  COT,0T;, OX20XZ  0X30X,  0Xo0X,0Y,0Y)
L *wp .y O*wg Ly *wyo .y *wp
ox20v2  YoX,0X,0v2  OX20YE | toX20Yo0Ys
_oLwo _y Owo  Puwy , Pwo o (A7)

IYZOYE  TOYROY, OT? T OTy T,
Equation (A.5) is the same of equation (15) so that we have the same dispersion

relation of equation (19). Furthermore, we have the following solvability condition
from equation (A.6):

0A . 0A 0A
2]{13} COS 0087)(1 —+ 2]{53] S 0087)/1 + (.L)aTl = 0, (AS)
and we have the equation w; satisfies as follows:
34’11}1 84101 84101 82w1 2
2
ox1 | “oxzovz  ovg arz P
_ A262i(ka0 cos Op+ky Yo sin 0g—wTy) + |A|2 + cc. (A9)
Then the solution of equation (A.9) becomes
wy = A2 e2i(ka0 cos Op+kyw Yo sin g —wTp) 4 i|A‘2 + cc. (AlO)
3(4ky, — p?) »’

Another solvability condition is obtained from equations (A.7) and (A.10) as follows:

2A A 2A
(6k2, cos® O + 2k2, sin® 0 ng + 4ik3 cos 00687)(2 + 4k2 sin 29()%
. 0%A . ) 0A 04 0%A
—+ (Gki Sln2 00 + 2]433} C082 90)875/12 —+ 41]{2} Sin 9087}/2 -+ 220}877_,2 — 871_‘12 + 5|A‘2A

—0, (A.11)



Quintic Nonlinear Schrodinger Equation for a Square Plate 175

where § = %. Using equations (A.8), (A.11) and (24), we have

0A 0A 0A
Qiw—— + ik
zwaT2 + 4dik;, <cos Oo—— X, + sin 6y 8Y2)

1 0%A
+ {ww” cos? Oy + 3 (ww” + w’Q) sin? 00} e

1 0%A
.2 2 2
+ {ww” sin® @y + 3 <ww” + o ) cos 90}83’12

9%A

_ga 24 _
gy HolArA=0. (A.12)

1
+ 3 (2ww” — w’2> sin 26,

Expressing X1, Xs, Y1, Y5, and T in terms of the original z, y, and ¢ variables, we

5 W' cos 05, sin an

1 1 2 0%A
+ 2{w” cos® 0y + 3 <w” + L‘;) sin? 90}(%:2

1 1 2 0%A
+ z{w” sin® 0y + 3 <w” + u;) cos? 00}81;2

1/, w? PA 25,
+ G(Qw 5 sm2906 oy + 2w|A| A=0. (A.13)

finally obtain

Equation (A.13) is rewritten by the transformation of equation (30) as follows:

{%?—i—w(fcos@o—\/asmt% \Fcoseo—l—\/asmﬁo)(z) >}
+ (208 + vV apl

a |A|2A =0. (A.14)

When using the symbols a, b, ¢, and d in equation (32), we obtain the governing
equation of the envelope surface of nearly monochromatic waves on an elastic,
weakly nonlinear foundation with the characteristics of equation (3) as follows:

— 4w las—+b— )|+ +d=5 + —|A\2A_0 (A.15)

0A 0A  0A 0?A 0?A €%
ot Ox Oy Ox? 0y?

where ~ is omitted for convenience. Equation (A.15) is a standard nonlinear
Schrodinger equation with cubic nonlinearlity.

Appendix B.

f2.0(B1, Ba) = —ec1 AZk(acos 0 + bsin 0)(By + B3) By
— 2ecy AZk(acos 0 + bsin 0) By By + e*c3 Aj(3B? + 6B, B3 + B3?)
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fo.2(B1, Ba) =eci AZk(acos 0 + bsin0) (B} + Bz)Ba
+ 2eco Agk(acos 0 + bsin 0) B By + €2c3 AS(B? + 6B By + 3B3)
f1.1(B1, Bo) =eci A2k(acos O + bsin 0) (| Bz|* — | B1|?)
+ 2eco AZk(acos @ + bsin 0)(|By|* — | B2|?)
+ 2c3A3{6(|B1|? + | B2|*) + 6B, By + 2B B3}
f3.0(B1, Ba) = —eci A2k(acos O + bsin 0) B? By — eco A2k(a cos 6 + bsin 0) B B}
+ e?c3 Ay (B} + 6B B; + 3B, B3?)
fo.3(B1, Ba) =eci Aik(acos 0 + bsin 0) By BS + eco Agk(acos 0 + bsin 0) Bf B3
+ e2c3Ay(B3 + 6B} B3 + 3B By)
f2.1(B1, Bo) = —eci A2k(acos 0 + bsin 0) By | By |
+ eca AZk(acos 0 4 bsin 0)(By| By |* — 2B1|Bs|?)
+ s AG{(|B1|? + | B2|*) (681 + 2B3)
+4|B1|>B; + 6B1|Bs|* + 3B} By + B | By |’}
f1.2(B1, By) = eci AZk(a cos 0 + bsin 0) By| By |*
— ecy AZk(acos O + bsin 0)(By| By |* — 2| By |*Bs)
+ es AG{(|B1]* + | B2|*) (2B + 6Bs)
+4B7|Ba|* + 6|B1|> By + 3B B + B |B1|*}
f10(By, Ba) = €% cs A{{ B} B;? + 2(B} B; + B{ B3®)}
foa(Bi, Bo) = 3 Ag{ Bi* B + 2(B{* B3 + B B3)}
f2.2(B1, Bo) = €2c3 Ag{(| B1|* + | B2|*)? + | By Bo |2
+2(|B1” +|Ba|*)(2B1 B2 + | B1 [* + | B2|?)
+2B5(|B1[* By + Bi|Ba|*) +2B:1(|B1|* B2 + B | B2|*)}
f3,1(Bi, B2) = 3 Ag{2(BF + 2B1B3)(|B1* + | Ba|?)
+2(B1B;|B1|* 4+ B1B; | By|* + 4B} | By [*)}
f13(Br, B2) = € e3 Ag{2(B3 + 2B{ B2 )(|B1* + | Ba/?)
+2(B} Ba| B1[* + B} Ba| Ba|? + 4| B1|° B3 )}

f5.0(B1, Ba) = €2c3 A3 B3 B3>

fos(B1, By) =€*c3 Ay Bi*Bi

fa1 (B, Ba) = c3 Ag{ BY| Bo|* By + 2B7 B3 (| B1|* + | B2|*)}

fr.a(By, Ba) = c3 Ag{|B1[* By B3 + 2B1 B3 (| B1|* + | Ba|*)}

fa2(B1, Ba) = c3 Ag{ B1(|B1|* + | B2|*)? + B1| Bi B2 |* + 2B1| B2 [* (| B1|* + | B*) }
f2,3(B1, Ba) = c3 Ag{ Ba(|B1|? + | B2|*)? + Ba| BiBa|* + 2| B1|* Ba(| Bi|* + | Ba*) }
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Appendix C.

~ B*
f2.0(B1,B2) = By {—eclA(Q)k‘(aCOSH + bsin®) (1 + BQ)
1

.. B3 B  (B3\’
— 2eco AZk(acosf + bsind) Bi + 6263Aé{3 + GBj + (Bj) H

Bi . By
Bi BQ{eclAgk(aCOSG + bsind) (1 + Bf)

fo2(B1,Bs) =

B By
+ 2eco A2k (acosf + bsinf) + 2c3 Aj (6 +3 i + 1> }
Bf B

flvl(Bl’BQ) = Br{éclA(Q)k(aCOSG + bsind) (? % — )
121

+ 2eco A2k (acosf + bsinf)
B3

B3 By 9 4 Bs B3 By
_ 22722 A 9 D2 D2
X< BlBT>+603 0 6+63’f+ Bl-l-fiBlBik

f3.0(B1,Ba) = BlBS{—eclAgk(aCOSH + bsing) — eco A2k(acos + bsind)

B B3

2 4 1 2

+ 3 AL 6+ = +

€°C3 0(6 ; 3 1)}

. B*
fo,3(B1,B2) = BlBg{eclAgk(acosﬁ + bsin®) + eco A3k(acos + bsinf)
1

B BT

2 4 2 1
3A51 6+ — +3

+ €7¢c3 0( +BT+ Eg)}

By B}
B; B,

fz,l(Bl,Bg) = |B22{—661A(2)k(acos€ + bsinb)

. B1 BY
+ ey A2k(acosf + bsinf) (B’Q" B; — 2)

By  .B5 .Bi BB
2e3Ag( 12462 32 431 +6 L
+ec3dy + BQ+ BlJr B§+ B: Bs

Bs B}
B} B,

f1,2(B1,Bg) = BfBg{eclA%k(acose + bsin®)

By B}
— ecy A2k (acosh + bsind) (Bi Fj _ >
1

Bf By _By _ByBj

2 4 1 2 2 2 Do
Ad(12+3 6 3 +6—
e 0( B, B T B’{+ B’{Bl)}

1 B
fro(B1,Bs) = B1B22c3 AL 3+ 222
, 2 0 B

2

~ B* B
fo.a(B1,B2) = BfoiBgegc;gAé (3 + 22>
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_ B B B, Bf BB
By . Bo) = B*IBo12e2ca A% [ 11 £ 62 122 132121 | 572 22
f2,2(B1,Bz3) [1B2]"ecs Ay + B; + B} + B3 By + B; B

B By DBy B
10 6222
B VB T B

Bo B, B B}

_ B*
B1,Bs) = =L By|Bs|??c3 AL [ 6+ 222 + 10— + 6= —L
f1,3(B1,Bs) B, 2| Bal“€“c3Ag | 6+ B + B + B; By

f3.1(B1,B2) = |B1|* B’ c3 A} <6 +2

fs.0(B1,By) = B2B3??c3 Al
B* B*
L Baecs Ag—-
Bs

fos(B1,By) = =-
fo,5(B1,B32) B,

- B; B
f471(Bl,B2) = .Bl|.Bl|2.B§62C3146‘L 2 + 372 i
B B;

N B* B* B
B1,By) = 2L B2|B,|2e2cy A (2 + 321 22
J1.4(B1,B2) B 2|Bal"e"cs Ag| 2 + By B

By B By Bj
L2y 322
By By, ' "Bi B

Bi By, _B B’f)

i o(Bi.By) — B*Bo|Bo|22ca At 54 22 3
f2,3(B1,B2) 1 Ba| Ba["€"cs 0( +Ble+ B3 B,

f32(B1,B2) = |B1|*|Ba|*c3 A (5 +
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