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This paper gives a unified mathematical theory for numerical treatment of two-point
boundary value problems of the form −(p(x)u′)′ + f(x, u, u′) = 0, a ≤ x ≤ b, α0u(a) −
α1u′(a) = α, β0u(b) + β1u′(b) = β, α0, α1, β0, β1 ≥ 0, α0 + α1 > 0, β0 + β1 > 0,
α0 + β0 > 0. Firstly, a unique existence of solution is shown with the use of the Schauder

fixed point theorem, which improves Keller’s result [6]. Next, a new discrete boundary
value problem with arbitrary nodes is proposed. The unique existence of solution for the
problem is also proved by using the Brouwer theorem, which extends some results in Keller
[6] and Ortega-Rheinboldt [10]. Furthermore, it is shown that, under some assumptions
on p and f , the solution for the discrete problem has the second order accuracy O(h2),
where h denotes the maximum mesh size. Finally, observations are given.

Key words: two-point boundary value problems, existence of solution, error estimate, fixed
point theorems, finite difference methods

1. Introduction

Two-point boundary value problems of the form

− d

dx

(
p(x)

du

dx

)
+ f

(
x, u,

du

dx

)
= 0, a ≤ x ≤ b (1.1)

B1(u) ≡ α0u(a) − α1u
′(a) = α, (1.2)

B2(u) ≡ β0u(b) + β1u
′(b) = β, (1.3)

where αi, βi, i = 1, 2, α and β are constants, arise in many areas of applied science.
They are solved numerically on computers by discretizing (1.1)–(1.3) at some nodes
{xi}:

a = x0 < x1 < · · · < xn < xn+1 = b. (1.4)

Throughout this paper, we assume p(x) > 0 in [a, b],

α0 ≥ 0, α1 ≥ 0, α0 + α1 > 0, (1.5)

β0 ≥ 0, β1 ≥ 0, β0 + β1 > 0, (1.6)

α0 + β0 > 0 (1.7)
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and put

D =
{
u ∈ C2[a, b] | B1(u) = B2(u) = 0

}
. (1.8)

hi = xi − xi−1, i = 1, 2, . . . , n+ 1, h = max
i
hi

Our main concerns are the following three subjects.

1. To guarantee existence and uniqueness of solution for (1.1)–(1.3).

2. To guarantee existence and uniqueness of solution for the discretized problem
F (U) = 0, where U = (U0, U1, . . . , Un+1)t and each Ui denotes an approxi-
mation for the exact value ui = u(xi).

3. To estimate the errors for |ui − Ui|, i = 0, 1, 2, . . . , n+ 1.

Concerning the first subject, let p(x) ∈ C1[a, b], and f(x, u, v) be continuous
on R = [a, b] × R × R and satisfy there a uniform Lipschitz condition in u and v.
Furthermore, let f have continuous derivatives on R which satisfy

∂f

∂u
> 0, (1.9)

and ∣∣∣∣∂f∂v
∣∣∣∣ ≤M (1.10)

for some positive constant M . Under these assumptions, Keller ([6], Theorem 1.2.2)
proved that the problem (1.1)–(1.3) has a unique solution u ∈ C2[a, b]. If p = 1,
f = f(x, u) and the conditions (1.2) and (1.3) are of Dirichlet’s type (α0 = β0 =
1, α1 = β1 = 0), then it is also known that (1.1)–(1.3) has a unique solution if

0 ≤ ∂f

∂u
≤ K,

for some positive constant K (Henrici [5]) or, if [a, b] = [0, 1], α = β = 0 and

inf
[a,b]×R

∂f

∂u
> −π2 (Lees [8]).

However, in the case f = f(x, u, v), there is no existence and uniqueness result of
solution for (1.1)–(1.3) under the condition fu ≥ 0.

Concerning the second subject, some results for the case f = f(x, u) can
be found in Ortega-Rheinboldt [10]. For example, if Λ is an M -matrix and Φ :
R

n+2 → R
n+2 is a continuous, diagonal and isotone mapping, then the system of

n+ 2 equations

ΛU + Φ(U) = 0, (1.11)

has a unique solution. Furthermore, in the case f = f(x, u, v), Keller ([6], The-
orem 3.2.2) proved that, if p(x) = 1 and the conditions (1.2) and (1.3) are of
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Dirichlet’s type, then the system of the standard finite difference approximations
with uniform nodes (h = hi ∀i) applied to (1.1)

1
h2

(−Ui−1 + 2Ui − Ui+1) + f

(
xi, Ui,

Ui+1 − Ui−1

2h

)
= 0, 1 ≤ i ≤ n

U0 = α, Un+1 = β

has a unique solution for sufficently small h, provided that f(x, u, v) has continuous
derivatives on R which satisfy (1.10) and

0 < K∗ ≤ ∂f

∂u
≤ K (1.12)

for some positive constants K and K∗. It seems to the authors, however, that no
mention about existence and uniqueness of solution for a discretized system with
nonuniform nodes has also been made under the condition ∂f

∂u ≥ 0.
Concerning the third subject, for the case where (1.1) is of the Sturm-Liouville

type, Tikhonov-Samarskii [11] first pointed out that the usual finite difference ap-
proximation applied to (1.1)–(1.3) has the second order accuracy O(h2) with any
nodes (1.4) under the assumption

0 < C1 ≤ hi+1

hi
≤ C2 ∀i, (1.13)

where C1, C2 are positive constants independent of the nodes. Since the local
truncation error τi at xi is O(h) if hi �= hi+1, this indicates that the order of the local
truncation error is not a true measure for the error of numerical solution. Later, in
1985, Hoog-Jackett [4] proved the same result without assuming (1.13), provided
that f is linear and u ∈ C4[a, b]. More general discussion is given in Manteuffel-
White, Jr. [9] and Kreiss-Manteuffel-Swartz-Wendroff-White, Jr. [7]. Among others,
in the latter paper, this phenomenon is called “supra-convergence”.

In this paper, replacing the condition in (1.9) by a weaker one ∂f
∂u ≥ 0, we

shall treat the above three subjects. First, in §2, with the use of the Schauder fixed
point theorem, we shall show that the problem (1.1)–(1.3) has a unique solution
u ∈ C2[a, b] if p ∈ C1[a, b], 0 ≤ fu ≤ K and |fv| ≤ M on R = [a, b] × R × R,
which improves Keller’s result. It should be noted here (cf. Remark 5.1) that,
if f = f(x, u), then the conditions 0 ≤ fu ≤ K can be replaced by fu ≥ 0.
The existence of a constant K is not necessary. Hence our result improves and
generalizes Henrici’s result. Next, in §3, we shall propose an approximate method
with arbitrary nodes (1.4). The method solves a system of n+ 2 equations

F (U) ≡ HAU + f̃(U) = 0, (1.14)

where H is a diagonal matrix, A is a tridiagonal matrix whose elements include∫ xi

xi−1

dt

p(t)
, 1 ≤ i ≤ n+ 1 (1.15)



34 T. Yamamoto and S. Oishi

and f̃(U) is defined in (3.3). As is shown in §3, the matrix A has the distinguished
feature that A−1 = (G(xi, xj)), where G(x, ξ) denotes the Green function for the
operator L = − d

dx

(
p d

dx [ ]
)

: D → C[a, b] and D is defined by (1.8). If we approx-
imate (1.15) by the midpoint rule and the boundary conditions by the fictitious
node method, then the equation (1.14) reduces to the standard finite difference
equation.

In §4, with the use of the Brouwer fixed point theorem, we shall prove that
(1.14) has a unique solution for sufficiently small h, provided that p ∈ C1[a, b],
fu ≥ 0 and |fv| ≤ M . The result generalizes known results in Keller [6], Ortega-
Rheinboldt [10], etc.

Furthermore, in §5, we shall extend Hoog-Jackett’s argument to the case where
f = f(x, u, u′) is nonlinear and prove

ui − Ui = O(h2) ∀i,

provided that p ∈ C2,1[a, b] and f satisfies some smoothness conditions in x, u and
u′ on R.

Finally, in §6, observations will be given.

2. Existence of Solution for (1.1)–(1.3)

In this section, we shall prove the existence and uniqueness of solution for the
problem (1.1)–(1.3). We first remark that if we take a function v(x) = λx2 +μx+ν

where coefficients λ, μ, ν are determined so that B1(v) = α and B2(v) = β, then
w = u− v satisfies B1(w) = B2(w) = 0 and w satisfies a differential equation

− d

dx

(
p
dw

dx

)
+ f̂

(
x,w,

dw

dx

)
= 0

with f̂ = − d
dx

(
p dv

dx

)
+ f
(
x,w + v, dw

dx + dv
dx

)
, which is of the form (1.1). Hence, the

unique existence of solution for the equation (1.1) in D implies that for the problem
(1.1)–(1.3) in C2[a, b].

Before proving the existence theorem of solution for (1.1)–(1.3), we state some
elementary lemmas whose proofs will be given for the sake of completeness.

Lemma 2.1. Let

L u = −p(x)d
2u

dx2
+ q(x)

du

dx
+ r(x)u

with p ∈ C1[a, b], q, r ∈ C[a, b], p > 0 and r ≥ 0 in [a, b]. Then, the Green function
exists for (L ,D).

Proof. It suffices to show that L u = 0 and u ∈ D imply u = 0. To show this,
let

P (x) = e−
� x

a
q(t)
p(t) dt, R(x) = P (x)

r(x)
p(x)

and L̃ =
P (x)
p(x)

L .
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Then P (x) > 0, R(x) ≥ 0 and L u = 0 is equivalent to

L̃ u = − d

dx

(
P (x)

du

dx

)
+R(x)u = 0.

Hence (
L̃ u, u

)
=
∫ b

a

{
− d

dx

(
P (x)

du

dx

)
+R(x)u

}
u dx = 0

or

Φ+
∫ b

a

{
P (x)

(
du

dx

)2

+R(x)u2

}
dx = 0 (2.1)

with Φ = P (a)u′(a)u(a) − P (b)u′(b)u(b).
If α0 > 0, then

P (a)u′(a)u(a) = P (a)
α1

α0
u′(a)2 ≥ 0

and

−P (b)u′(b)u(b) =

⎧⎨⎩P (b)
β1

β0
u′(b)2 (β0 > 0)

0 (β0 = 0)

Hence Φ ≥ 0 and we have from (2.1)

Φ = 0 and
du

dx
≡ 0.

We thus obtain that u is a constant on [a, b]. But, u ∈ D then implies

B1(u) = α0u(a) = 0

and we must have u(a) = 0, i.e., u ≡ 0. Similarly, if β0 > 0, then we obtain u(b) = 0
and u ≡ 0. Consequently, by (1.7), we have u ≡ 0 on [a, b]. Q.E.D.

Lemma 2.2. Let p(x) ∈ C1[a, b], p > 0 in [a, b] and

L u = − d

dx

(
p(x)

du

dx

)
, u ∈ D .

Then the Green function G(x, ξ) for (L ,D) is given by

G(x, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

p(a)p(b)δ

(
α1 + α0p(a)

∫ x

a

dt

p(t)

)(
β1 + β0p(b)

∫ b

ξ

dt

p(t)

)
(x ≤ ξ)

1
p(a)p(b)δ

(
α1 + α0p(a)

∫ ξ

a

dt

p(t)

)(
β1 + β0p(b)

∫ b

x

dt

p(t)

)
(x ≥ ξ)

≤ G(x, x),
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where

δ = α0

(
β0

∫ b

a

dt

p(t)
+

β1

p(b)

)
+
α1β0

p(a)
> 0.

Proof. Let

ϕ1(x) = −α1 − α0p(a)
∫ x

a

dt

p(t)

ϕ2(x) = β1 − β0p(b)
∫ x

b

dt

p(t)
.

Then Lϕi = 0 and Bi(ϕi) = 0, i = 1, 2. Hence, by the elementary theory on
ordinary differential equations, we have

G(x, ξ) =

⎧⎪⎪⎨⎪⎪⎩
ϕ1(x)ϕ2(ξ)

−p(a)W (ϕ1, ϕ2)(a)
(x ≤ ξ)

ϕ1(ξ)ϕ2(x)
−p(a)W (ϕ1, ϕ2)(a)

(x ≥ ξ),

where W (ϕ1, ϕ2)(x) denotes the Wronskian determinant on ϕ1 and ϕ2. Lemma 2.2
follows from this. Q.E.D.

The following Lemmas 2.3 and 2.4 are analogues of the well known results on
M -matrices.

Lemma 2.3. Assume that p(x) ∈ C1[a, b], r(x) ∈ C1[a, b], p(x) > 0 and
r(x) ≥ 0. Let

Lru = − d

dx

(
p(x)

du

dx

)
+ r(x)u

and Gr(x, ξ) be the Green function for (Lr,D). Then Gr(x, ξ) > 0 for all x, ξ ∈
(a, b).

Proof. Let ϕ1(x) and ϕ2(x) be the solutions of the following initial value
problems, respectively:

Lrϕ1 = 0, ϕ1(a) = α1(≥ 0), ϕ′
1(a) = α0(≥ 0)

Lrϕ2 = 0, ϕ2(b) = β1(≥ 0), ϕ′
2(b) = −β0(≤ 0).

Then Bi(ϕi) = 0, i = 1, 2. The Green function Gr(x, ξ) is given by

Gr(x, ξ) =

⎧⎪⎪⎨⎪⎪⎩
1
W0

ϕ1(x)ϕ2(ξ) (x ≤ ξ)

1
W0

ϕ1(ξ)ϕ2(x) (x ≥ ξ)

where

W0 = −p(a)W (ϕ1, ϕ2)(a).
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Observe that W0 �= 0 since the existence of the Green function by Lemma 2.1
implies B1(ϕ2) �= 0 and B2(ϕ1) �= 0 and ϕ1, ϕ2 are linearly independent. We have

p(x)ϕ′
1(x) = p(a)ϕ′

1(a) +
∫ x

a

r(t)ϕ1(t)dt ≥
∫ x

a

r(t)ϕ1(t)dt (2.2)

and

p(x)ϕ′
2(x) = p(b)ϕ′

2(b) +
∫ x

b

r(t)ϕ2(t)dt ≤
∫ x

b

r(t)ϕ2(t)dt. (2.3)

It is now easy to see from (2.2) and (2.3) that ϕ1(x) > 0, ϕ′
1(x) ≥ 0, ϕ2(x) > 0 and

ϕ′
2(x) ≤ 0, a < x < b. Hence, by noting W0 �= 0, we obtain

W0 = −p(a) (ϕ1(a)ϕ′
2(a) − ϕ2(a)ϕ′

1(a)) > 0,

and Gr(x, ξ) > 0 for all x, ξ ∈ (a, b). Q.E.D.

Lemma 2.4. We keep the notation and assumptions of Lemma 2.3. If s(x) ∈
C[a, b] and r(x) ≤ s(x), a ≤ x ≤ b, then

Gr(x, ξ) ≥ Gs(x, ξ)

for all x, ξ ∈ [a, b].

Proof. Let Gr : C[a, b] → D be the Green operator defined by

Grϕ =
∫ b

a

Gr(x, ξ)ϕ(ξ)dξ, ϕ ∈ C[a, b].

If ϕ ≥ 0, then, noting GrLr = I = LsGs, we have for any x ∈ [a, b]

Grϕ− Gsϕ = −Gr (Lr − Ls) Gsϕ

= −Gr (r(x) − s(x)) Gsϕ

= −
∫ b

a

[
Gr(x, ξ) (r(ξ) − s(ξ))

∫ b

a

Gs(ξ, η)ϕ(η)dη
]
dξ

=
∫ b

a

[
Gr(x, ξ) (s(ξ) − r(ξ))

∫ b

a

Gs(ξ, η)ϕ(η)dη
]
dξ

≥ 0,

where we have used Lemma 2.3 and the assumption s(x) ≥ r(x) in [a, b]. Hence∫ b

a

{Gr(x, ξ) −Gs(x, ξ)}ϕ(ξ) ≥ 0

for any nonnegative function ϕ ∈ C[a, b]. This implies Gr(x, ξ) − Gs(x, ξ) ≥ 0 for
all x, ξ ∈ [a, b]. Q.E.D.
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We are now in a position to prove the existence and uniqueness of solution for
the problem (1.1)–(1.3).

Theorem 2.1. Assume that p ∈ C1[a, b], and f(x, u, v) is continuous on
R = [a, b] × R

2 and has continuous derivatives ∂f
∂u and ∂f

∂v there which satisfy, for
some constants K and M ,

0 ≤ ∂f

∂u
≤ K (2.4)

and ∣∣∣∣∂f∂v
∣∣∣∣ ≤M. (2.5)

Then the equation (1.1) has a unique solution in D so that the boundary value
problem (1.1)–(1.3) has a unique solution u ∈ C2[a, b].

Proof. For the sake of simplicity, we give a proof for the case α0α1β0β1 �= 0.
The treatment of the other case is similar.

(i) Existence of Solution. We prove the existence of solution with the use of
the Schauder fixed point theorem. Let X = C1[a, b] and define a norm ‖ · ‖ on X

by

‖u‖ ≡ ‖u‖∞ + ‖u′‖∞ = max
a≤x≤b

|u(x)| + max
a≤x≤b

|u′(x)|, u ∈ X.

Then (X, ‖ · ‖) is a Banach space. For each u ∈ X, we put

q(x;u) =
∫ 1

0

∂f

∂v
(x, θu(x), θu′(x)) dθ

r(x;u) =
∫ 1

0

∂f

∂u
(x, θu(x), θu′(x)) dθ

f0(x) = f(x, 0, 0).

Then

f(x, u, u′) = f0(x) + q(x;u)u′ + r(x;u)u,

|q(x;u)| ≤M, r(x;u) ≥ 0,

and, by Lemma 2.1, the linear boundary value problem

− d

dx

(
p(x)

dw

dx

)
+ q(x;u)

dw

dx
+ r(x;u)w = −f0(x), a ≤ x ≤ b,

w ∈ D

has a unique solution w = w(x;u) ∈ C2[a, b].
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To estimate ‖w‖, we set

P (x;u) = e
� x

a
p′(t)−q(t;u)

p(t) dt, R(x;u) =
P (x;u)
p(x)

r(x;u), g(x;u) = −P (x;u)
p(x)

f0(x),

P∗ = min
a≤x≤b

e
� x

a
p′(t)−M

p(t) dt, P ∗ = max
a≤x≤b

e
� x

a
p′(t)+M

p(t) dt.

Then

− d

dx

(
P (x;u)

dw

dx

)
+R(x;u)w = g(x;u), P (x;u) > 0, R(x;u) ≥ 0

so that

w(x;u) =
∫ b

a

ĜR(x, ξ)g(ξ;u(ξ))dξ,

where ĜR(x, ξ) denotes the Green function for
(− d

dx

(
P (x;u) d

dx [ ]
)

+R(x;u)[ ],D
)
,

whose existence is guaranteed by Lemma 2.1.
In the following, for the sake of simplicity, we write P (x;u), R(x;u), g(x;u)

and w(x;u) as P (x), R(x), g(x) and w(x), respectively. Then, by Lemmas 2.2–2.4,
we have

0 < ĜR(x, ξ) ≤ Ĝ0(x, ξ) ≡ Ĝ(x, ξ) ≤ Ĝ(x, x), x, ξ ∈ [a, b]

and

|w(x)| ≤
∫ b

a

Ĝ(x, ξ) |g(ξ)| dξ

≤ Ĝ(x, x)
P ∗

p∗
‖f0‖∞(b− a),

where p∗ = mina≤x≤b p(x) > 0. Furthermore, we have from Lemma 2.2

Ĝ(x, x) =
1

P (a)P (b)Δ

(
α1 + α0P (a)

∫ x

a

dt

P (t)

)
×
(
β1 + β0P (b)

∫ b

x

dt

P (t)

)
≤ 1
P∗Δ

(
α1 + α0

∫ x

a

dt

P∗

)(
β1 + β0P

∗
∫ b

x

dt

P∗

)
≤ 1
P∗Δ

(
α1 + α0

b− a

P∗

)(
β1 + β0

P ∗

P∗
(b− a)

)
=

1
P∗Δ

γ

where

Δ = α0

(
β0

∫ b

a

dt

P (t)
+

β1

P (b)

)
+
α1β0

P (a)

= α0

(
β0

∫ b

a

dt

P (t)
+

β1

P (b)

)
+ α1β0

≥ Δ∗ ≡ α0

P ∗ (β0(b− a) + β1) + α1β0 > 0 (2.6)
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and

γ =
(
α1 + α0

b− a

P∗

)(
β1 + β0

P ∗

P∗
(b− a)

)
.

Hence

|w(x)| ≤ 1
P∗Δ∗

γ
P ∗

p∗
‖f0‖∞(b− a) ≡ δ0 (say). (2.7)

On the other hand, it follows from

− d

dx

(
P (x)

dw

dx

)
= g(x) −R(x)w, w ∈ D

that

w(x) =
∫ b

a

Ĝ(x, ξ) (g(ξ) −R(ξ)w(ξ)) dξ

and an application of Lemma 2.2 yields

dw(x)
dx

=
∂

∂x

(∫ x

a

+
∫ b

x

)
Ĝ(x, ξ) (g(ξ) −R(ξ)w(ξ)) dξ

= Ĝ(x, x− 0) (g(x) −R(x)w(x)) − Ĝ(x, x+ 0) (g(x) −R(x)w(x))

+
(∫ x

a

+
∫ b

x

)
∂Ĝ(x, ξ)
∂x

(g(ξ) −R(ξ)w(ξ)) dξ

=
∫ x

a

−β0

ΔP (x)

(
α1 + α0

∫ ξ

a

dt

P (t)

)
(g(ξ) −R(ξ)w(ξ)) dξ

+
∫ b

x

α0

P (b)ΔP (x)

(
β1 + β0P (b)

∫ b

ξ

dt

P (t)

)
(g(ξ) −R(ξ)w(ξ)) dξ,

where Δ is defined by (2.6). Since

Δ = β0

(
α1 + α0

∫ b

a

dt

P (t)

)
+
α0β1

P (b)

≥ β0

(
α1 + α0

∫ ξ

a

dt

P (t)

)
∀ξ ∈ [a, b]

and

P (b)Δ = α0

(
β0P (b)

∫ b

a

dt

P (t)
+ β1

)
+ α1β0P (b)

≥ α0

(
β0P (b)

∫ b

ξ

dt

P (t)
+ β1

)
∀ξ ∈ [a, b],



Nonlinear Two-Point Boundary Value Problems 41

we obtain∣∣∣∣dw(x)
dx

∣∣∣∣ ≤ ∫ x

a

1
P (x)

|g(ξ) −R(ξ)w(ξ)| dξ +
∫ b

x

1
P (x)

|g(ξ) −R(ξ)w(ξ)| dξ

=
∫ b

a

1
P (x)

|g(ξ) −R(ξ)w(ξ)| dξ

≤ 1
P∗

(‖g‖∞ + ‖R‖∞‖w‖∞) (b− a)

≤ 1
P∗

(
P ∗

p∗
‖f0‖∞ +

P ∗

p∗
‖r‖∞δ0

)
(b− a)

≤ P ∗

P∗p∗
(‖f0‖∞ +Kδ0) (b− a) ≡ δ1 (say). (2.8)

Hence, putting δ = δ0 + δ1 and

S = {u ∈ X | ‖u‖ ≤ δ, B1(u) = B2(u) = 0} ,

we have

‖w‖ = ‖w‖∞ + ‖w′‖∞ ≤ δ0 + δ1 = δ ∀u ∈ S .

A continuous map T : S → C2[a, b]∩S ⊂ S is thus defined by Tu = w for u ∈ S .
S is a closed convex subset of X and the set F = T (S ) is equicontinuous, since

|w(t1) − w(t2)| ≤
∣∣∣∣∫ t1

t2

|w′(t)| dt
∣∣∣∣ ≤ δ1 |t1 − t2| , t1, t2 ∈ [a, b].

Hence, by Ascoli-Arzela’s theorem, any infinite sequence {wn}, n = 1, 2, · · · of F

contains a subsequence {wnj}, n1 < n2 < · · · which converges uniformly on [a, b]
to a function w̃ ∈ C[a, b] as j → ∞. Then the set F ′ = {w′

nj
} is also uniformly

bounded and equicontinuous since ‖w′
nj
‖∞ ≤ δ1 ∀j and

w′
nj

(t1) − w′
nj

(t2) =
∫ t1

t2

w′′
nj

(t)dt

=
∫ t1

t2

1
p

[
−p′w′

nj
+ qw′

nj
+ rwnj + f0

]
dt,

t1, t2 ∈ [a, b]

so that∣∣∣w′
nj

(t1) − w′
nj

(t2)
∣∣∣ ≤ 1

p∗
{(‖p′‖∞ +M) δ1 +Kδ0 + ‖f0‖∞} |t1 − t2|.

Therefore, we can again employ the Ascoli-Arzela theorem to extract a uniformly
convergent subsequence {w′

njk
} of F ′. Then it is easy to see that the limit function
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w̃ of {wnj} is differentiable and w̃′ is the limit function of {w′
njk

} : w′
njk

→ w̃′ as
k → ∞ with respect to the norm ‖ · ‖∞. Hence∥∥∥wnjk

− w̃
∥∥∥ =

∥∥∥wnjk
− w̃
∥∥∥
∞

+
∥∥∥w′

njk
− w̃′

∥∥∥
∞

→ 0

as k → ∞, which implies that the set F is relatively compact in the Banach space
(X, ‖ ·‖). Consequently we can apply the Schauder fixed point theorem to conclude
that T has a fixed point u in S . Since Tu ∈ C2[a, b] by definition of T , we obtain
u(= Tu) ∈ C2[a, b] and u is a solution of (1.1) in D , which proves the existence of
a solution for (1.1) in D . Hence the problem (1.1)–(1.3) has a solution in C2[a, b].

(ii) Uniqueness. Let u and v be two solutions for (1.1)–(1.3), which belong
to C2[a, b], and put w = u− v. Then

f(x, u, u′) − f(x, v, v′) = r(x)w + q(x)w′

with

r(x) = r(x;u, v) :=
∫ 1

0

fu (x, v + θw, v′ + θw′) dθ

q(x) = q(x;u, v) :=
∫ 1

0

fu′ (x, v + θw, v′ + θw′) dθ,

which leads to the equation

− (pw′)′ + qw′ + rw = 0, a ≤ x ≤ b, w ∈ D . (2.9)

We again put

P (x) = e
� x

a
p′(t)−q(t)

p(t) dt, R(x) = P (x)
r(x)
p(x)

and rewrite (2.9) as

− d

dx

(
P (x)

dw

dx

)
+R(x)w = 0, w ∈ D .

Multiplying both sides by w(x) and integrating from a to b, we have[
−P (x)

dw

dx
w

]b

a

+
∫ b

a

{
P (x)

(
dw

dx

)2

+R(x)w2

}
dx = 0.

As in the proof of Lemma 2.1, we can show[
−P (x)

dw

dx
w

]b

a

≥ 0

and w ≡ 0 since α0 + β0 > 0 by (1.7). This proves the uniqueness of solution for
(1.1)–(1.3), which completes the proof of Theorem 2.1. Q.E.D.



Nonlinear Two-Point Boundary Value Problems 43

Remark 2.1. If f = f(x, u), then the conditions (2.4) in Theorem 2.1 can
be replaced by weaker condition ∂f

∂u ≥ 0. In fact, for such a function f , the above
proof shows that we can replace the constant K in (2.8) and the set S by

sup
[a,b]×[−δ0,δ0]

fu(x, u)

and

S̃ = {u ∈ X | ‖u‖ ≤ δ, ‖u‖∞ ≤ δ0, B1(u) = B2(u) = 0} ,

respectively, and the similar argument can be applied to prove the existence of a
solution of (1.1) in D . This improves and generalizes Henrici’s result mentioned in
§1.

3. A Discretization for (1.1)–(1.3)

To discretize (1.1)–(1.3) under the assumptions of Theorem 2.1, we consider
the case α0α1β0β1 �= 0 for the sake of simplicity. The treatment of other cases is
similar. We take any nodes {xi} as in (1.4) and set

xi+ 1
2

=
1
2
(xi + xi+1)

ωi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2
h1 (i = 0)

1
2
(hi + hi+1) (1 ≤ i ≤ n)

1
2
hn+1 (i = n+ 1)

H = diag
(

1
ω0
,

1
ω1
, . . . ,

1
ωn+1

)

ai =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α0

α1
p(a) (i = 0)

1∫ xi

xi−1

dt
p(t)

(1 ≤ i ≤ n+ 1)

β0

β1
p(b) (i = n+ 2)

A =

⎛⎜⎜⎜⎜⎜⎝
a0 + a1 −a1

−a1 a1 + a2 −a2

. . . . . . . . .
−an an + an+1 −an+1

−an+1 an+1 + an+2

⎞⎟⎟⎟⎟⎟⎠ (3.1)
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f(U) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f

(
x0, U0,

α0U0 − α

α1

)
f

(
x1, U1,

U2 − U0

h1 + h2

)
...

f

(
xn, Un,

Un+1 − Un−1

hn + hn+1

)
f

(
xn+1, Un+1,

β − β0Un+1

β1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.2)

f̃(U) = f(U) −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
h1

α

α1
p0

0
...
0

2
hn+1

β

β1
pn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.3)

Then a discretized system which we propose here is

HAU + f̃(U) = 0. (3.4)

The matrix A in (3.4) has the following property.

Lemma 3.1 ([16]). Let L be the operator defined as in Lemma 2.2 and
G(x, ξ) be the Green function for (L ,D). Then A−1 = (G(xi, xj)).

Proof. Let A−1 = (αij). Then by an inversion formula for tridiagonal matri-
ces [14], we have

αij =

⎧⎪⎪⎨⎪⎪⎩
1

zn+2
zi (zn+2 − zj) (i ≤ j)

1
zn+2

zj (zn+2 − zi) (i ≥ j),
(3.5)

where

zi =
i∑

k=0

1
ak

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α1

α0p(a)
(i = 0)

α1

α0p(a)
+
∫ xi

a

dt

p(t)
(1 ≤ i ≤ n+ 1)

α1

α0p(a)
+

β1

β0p(b)
+
∫ b

a

dt

p(t)
(i = n+ 2).

(3.6)

Therefore

zn+2 − zj =
n+2∑

k=j+1

1
ak

=
β1

β0p(b)
+
∫ b

xj

dt

p(t)
. (3.7)
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Comparing (3.5)–(3.7) with the expression of G(x, ξ) in Lemma 2.2, we see αij =
G(xi, xj). Q.E.D.

4. Existence of Solution for (3.4)

Since the discretized system (3.4) is nonlinear if f is nonlinear, it is interesting
to know whether (3.4) has a unique solution or not. In this section we shall show
that, under weaker assumptions than those of Theorem 2.1 (that is, (2.4) is replaced
by fu ≥ 0), (3.4) has a unique solution if h = maxi hi is sufficiently small. This is
done along the similar line as in §2.

Let

d0 =
∫ 1

0

fu

(
x0, θU0,

−α+ θα0U0

α1

)
dθ,

di =
∫ 1

0

fu

(
xi, θUi, θ

Ui+1 − Ui−1

hi+1 + hi

)
dθ (1 ≤ i ≤ n) ,

dn+1 =
∫ 1

0

fu

(
xn+1, θUn+1,

β − θβ0Un+1

β1

)
dθ,

σ0 =
α0

α1
ω0

∫ 1

0

fu′

(
x0, θU0,

−α+ θα0U0

α1

)
dθ,

σi =
1
2

∫ 1

0

fu′

(
xi, θUi, θ

Ui+1 − Ui−1

hi+1 + hi

)
dθ (1 ≤ i ≤ n),

σn+1 = −β0

β1
ωn+1

∫ 1

0

fu′

(
xn+1, θUn+1,

β − θβ0Un+1

β1

)
dθ,

D = diag (d0, d1, . . . , dn+1)

and

E =

⎛⎜⎜⎜⎜⎜⎝
σ0 0
−σ1 0 σ1

. . . . . . . . .
−σn 0 σn

0 σn+1

⎞⎟⎟⎟⎟⎟⎠ .

Then (3.4) can be written

H
(
A+ E +H−1D

)
U = −f̃(0),

since

f̃(U) = f̃(0) +
(∫ 1

0

f̃
′
(θU)dθ

)
U ,
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where

f̃(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f

(
x0, 0,− α

α1

)
− 2
h1

α

α1
p0

f(x1, 0, 0)
...

f(xn, 0, 0)

f

(
xn+1, 0,

β

β1

)
− 2
hn+1

β

β1
pn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Furthermore, Z = A + E + H−1D is an irreducibly diagonally dominant L-
matrix so that Z is nonsingular and, given U ∈ R

n+2, the linear system

HZW = −f̃(0) (4.1)

has a unique solution W = −Z−1H−1f̃(0). In order to estimate ‖W ‖∞, we take
a diagonal matrix Q = diag(1, ρ1, . . . , ρn+1) with ρi > 0 such that B = Q(A + E)
is symmetric. We then have

B =

⎛⎜⎜⎜⎜⎜⎜⎝
�a0 + a1 −a1

−ρ1(a1 + σ1) ρ1(a1 + a2) −ρ1(a2 − σ1)

. . .
. . .

. . .

−ρn(an + σn) ρn(an + an+1) −ρn(an+1 − σn)

−ρn+1an+1 ρn+1an+1 + ρn+1�an+2

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.2)

where

â0 = a0 + σ0 = a0 +O(h1),

ân+2 = an+2 + σn+1 = an+2 +O(hn+1).

Lemma 4.1. If h is sufficiently so small that M
∫ xi

xi−1

dt
p(t) ≤ 1 ∀i, then

e−
3M
2

� xi
a

dt
p(t) ≤ ρi ≤ e

3M
2

� xi
a

dt
p(t) , 1 ≤ i ≤ n+ 1.

Proof. Since B is symmetric, we have

ρ1 =
a1

a1 + σ1
, ρi =

ai − σi−1

ai + σi
ρi−1 (2 ≤ i ≤ n), ρn+1 =

an+1 − σn

an+1
ρn.

We remark here that the assumptions M
∫ xi

xi−1

dt
p(t) ≤ 1 ∀i imply ρi > 0,

1 ≤ i ≤ n+ 1. In fact, we have

|σi| ≤ M

2
, 1 ≤ i ≤ n
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so that

ai + σi ≥ 1∫ xi

xi−1

dt
p(t)

− M

2
> 0, 1 ≤ i ≤ n

and

ai − σi−1 ≥ 1∫ xi

xi−1

dt
p(t)

− M

2
> 0, 2 ≤ i ≤ n+ 1.

In the following, we use elementary inequalities

1 − θ ≥ 1
1 + 2θ

≥ e−2θ and e2θ ≥ 1
1 − θ

≥ eθ

if 0 ≤ θ ≤ 1
2 . Then, we have

0 < ρ1 <
1

1 − M
2a1

≤ e
M
a1 < e

3M
2a1

and, by induction on i (2 ≤ i ≤ n)

0 < ρi ≤
1 + M

2ai

1 − M
2ai

ρi−1 < e
M
2ai · eM

ai · e 3M
2

� xi−1
a

dt
p(t) < e

3M
2

� xi
a

dt
p(t)

Furthermore, we have

0 < ρn+1 =
(

1 − σn

an+1

)
ρn ≤

(
1 +

M

2an+1

)
ρn

< e
M

2an+1 · e 3M
2

� xn
a

dt
p(t) < e

3M
2

� xn+1
a

dt
p(t) .

Similarly, we have

ρ1 ≥ 1
1 + M

2a1

≥ 1

e
M
2a1

≥ e−
3M
2

� x1
a

dt
p(t) ,

ρi ≥
1 − M

2ai

1 + M
2ai

ρi−1 ≥ e
−M

ai

e
M
2ai

· e− 3M
2

� xi−1
a

dt
p(t) = e−

3M
2

� xi
a

dt
p(t) (2 ≤ i ≤ n)

and

ρn+1 ≥
(

1 − M

2an+1

)
ρn > e

− M
an+1 · e− 3M

2

� xn
a

dt
p(t) > e−

3M
2

� xn+1
a

dt
p(t) .

Q.E.D.
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Lemma 4.2. Let B be the symmetric matrix defined as in (4.2). If h is suf-
ficiently small, then

B−1 ≤ e7M
� b

a
dt

p(t) ·A−1.

Proof. Let B−1 = (βij). Then, as in the proof of Lemma 3.1, we have

βij =

⎧⎪⎪⎨⎪⎪⎩
1

zn+2
zi (zn+2 − zj) (i ≤ j)

1
zn+2

zj (zn+2 − zi) (i ≥ j),

where

zi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
â0

(i = 0)

zi−1 +
1

ρi(ai + σi)
(1 ≤ i ≤ n)

zi−1 +
1

ρn+1an+1
(i = n+ 1)

zi−1 +
1

ρn+1ân+2
(i = n+ 2).

We repeat the same argument as in the proof of Lemma 4.1 to obtain

zi <

(
1
a0

+ · · · + 1
ai

)
e

5M
2

� b
a

dt
p(t) , 0 ≤ i ≤ n+ 1.

In fact, we have for sufficiently small h

z0 =
1
â0

=
1

a0 + σ0
≤ 1

a0

(
1 − Mh1

2p(a)

) ≤ 1
a0
e

Mh1
p(a) <

1
a0
e

5M
2

� b
a

dt
p(t) ,

z1 = z0 +
1
a1

<

(
1
a0

+
1
a1

)
e

5M
2

� b
a

dt
p(t)

By induction on i (2 ≤ i ≤ n)

zi = zi−1 +
1

ρi (ai + σi)
≤ zi−1 +

1
ai

· e 3M
2

� xi
a

dt
p(t) · eM

� xi
xi−1

dt
p(t)

≤
(

1
a0

+ · · · + 1
ai−1

)
e

5M
2

� b
a

dt
p(t) +

1
ai
e

5M
2

� xi
a

dt
p(t)

<

(
1
a0

+ · · · + 1
ai

)
e

5M
2

� b
a

dt
p(t) .

Furthermore, we have

zn+1 = zn +
1

ρn+1an+1
≤
(

1
a0

+ · · · + 1
an

)
e

5M
2

� b
a

dt
p(t) +

1
an+1

e
3M
2

� b
a

dt
p(t)

<

(
1
a0

+ · · · + 1
an+1

)
e

5M
2

� b
a

dt
p(t)
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On the other hand,

zn+2 − zj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
k=j+1

1
ρk(ak + σk)

+
1

ρn+1an+1
+

1
ρn+1ân+2

(0 ≤ j ≤ n− 1)

1
ρn+1an+1

+
1

ρn+1ân+2
(j = n)

1
ρn+1ân+2

(j = n+ 1).

Hence, if 0 ≤ j ≤ n− 1, then

zn+2 − zj ≤
n∑

k=j+1

1
ak

· e 3M
2

� xk
a

dt
p(t) · eM

� xk
xk−1

dt
p(t) +

1
an+1

· e 3M
2

� xn+1
a

dt
p(t)

+
1

an+2
· e 3M

2

� xn+1
a

dt
p(t) · eM

� xn+1
xn

dt
p(t)

<

(
n+2∑

k=j+1

1
ak

)
e

5M
2

� b
a

dt
p(t) .

Similarly, we have

zn+2 − zn =
1

ρn+1an+1
+

1
ρn+1ân+2

<

(
1

an+1
+

1
an+2

)
e

5M
2

� b
a

dt
p(t) ,

zn+2 − zn+1 <
1

an+2
e

5M
2

� b
a

dt
p(t) ,

and

zn+2 >

(
1
a0

+ · · · + 1
an+2

)
e−2M

� b
a

dt
p(t) ,

since

1
ρi(ai + σi)

>
1
ai
e−

3M
2

� xi
a

dt
p(t) · e−

M
2

� xi
xi−1

dt
p(t) ≥ 1

ai
e−2M

� xi
a

dt
p(t) ,

1 ≤ i ≤ n, etc.

Consequently, we obtain

βij ≤

(
1
a0

+ · · · + 1
ai

)
· e 5M

2

� b
a

dt
p(t) ·

(
n+2∑

k=j+1

1
ak

)
· e 5M

2

� b
a

dt
p(t)(

1
a0

+ · · · + 1
an+2

)
· e−2M

� b
a

dt
p(t)

= αij · e7M
� b

a
dt

p(t)

= G (xi, xj) · e7M
� b

a
dt

p(t) .

Q.E.D.
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We are now in a position to prove the following theorem:

Theorem 4.1. Let p ∈ C1[a, b] and f(x, u, v) be continuous on R = [a, b] ×
R × R and have continuous derivatives fu, fv there which satisfy

fu ≥ 0 and |fv| ≤M,

where M is a constant. If h is sufficiently small, then the equation (3.4) has a
unique solution. (Note that the conditions (2.4) in Theorem 2.1 are relaxed to
fu ≥ 0.)

Proof. (i) Uniqueness. Let

U = (U0, . . . , Un+1)t and V = (V0, . . . , Vn+1)t

be two solutions of (3.4) and put W = U − V = (W0, . . . ,Wn+1)t. Then

HAW + f̃(U) − f̃(V ) = 0. (4.3)

We obtain from (4.3)

(HA+ J)W = 0,

where

J =
∫ 1

0

f̃
′
(V + θ(U − V )) dθ =

∫ 1

0

f ′ (V + θ(U − V )) dθ.

As is easily seen, HA + J is an irreducibly diagonally dominant L-matrix so that
HA+ J is nonsingular, which implies W = 0.

(ii) Existence. We apply the Brouwer fixed point theorem to derive the ex-
istence of solution for (3.4). Given U ∈ R

n+2, consider the linear system (4.1).
Then

|W | =
∣∣∣−Z−1H−1f̃(0)

∣∣∣ ≤ Z−1H−1
∣∣∣f̃(0)

∣∣∣
≤ (A+ E)−1H−1

∣∣∣f̃(0)
∣∣∣ = B−1QH−1

∣∣∣f̃(0)
∣∣∣ , (4.4)

where we put

|W | = (|W0|, . . . , |Wn+1|)t
,

|f̃(0)| =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣f (x0, 0,− α

α1

)
− 2
h1

α

α1
p0

∣∣∣∣
|f(x1, 0, 0)|

...
|f(xn, 0, 0)|∣∣∣∣f (xn+1, 0,
β

β1

)
− 2
hn+1

β

β1
pn+1

∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and used the well known fact that

0 < Z−1 ≤ (A+ E)−1 = B−1Q

since Z as well as A+E is an irreducibly diagonally dominant L-matrix, hence an
M -matrix whose inverse is a positive matrix (cf. [12]).

It now follows from (4.4) and Lemmas 4.1 and 4.2 that

|W | ≤ e7M
� b

a
dt

p(t)A−1QH−1|f̃(0)|

≤ e7M
� b

a
dt

p(t)A−1 · e 3M
2

� b
a

dt
p(t)H−1c∞

⎛⎜⎝ 1
...
1

⎞⎟⎠

= e
17M

2

� b
a

dt
p(t) c∞A−1H−1

⎛⎜⎝ 1
...
1

⎞⎟⎠ ,

where c∞ = ‖f̃(0)‖∞. Hence

|Wi| ≤ c∞e
17M

2

� b
a

dt
p(t)

[
n+1∑
j=0

G(xi, xj)ωj

]

≤ c∞e
17M

2

� b
a

dt
p(t)G(xi, xi)

n+1∑
j=0

ωj

= c∞e
17M

2

� b
a

dt
p(t)G(xi, xi)(b− a)

and

‖W ‖∞ ≤ c∞e
17M

2

� b
a

dt
p(t)

(
max

a≤x≤b
G(x, x)

)
(b− a) ≡ δ (say).

Let

B =
{
U = (U0, . . . , Un+1)t ∈ R

n+2 | ‖U‖∞ ≤ δ
}

and, define a map T : B → B by TU = W for U ∈ B, where W is the unique
solution of (4.1). Then T is a continuous map of the compact convex subset B into
itself. Therefore, by the Brouwer theorem, T has a fixed point U in B, which is a
solution of (3.4). This proves Theorem 4.1. Q.E.D.

5. Error Estimates

Let U = (U0, . . . , Un+1)t be the solution for (3.4) and put u = (u0, . . . , un+1)t,
where ui = u(xi) and u(x) is the solution for (1.1)–(1.3). In this section, we shall
prove

ui − Ui = O(h2) ∀i,
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under some assumptions on p and f which are stronger than those of Theorem 2.1.
We first state the following lemma.

Lemma 5.1. Let p ∈ C2,1[a, b] and f(x, u, v) satisfy the assumptions of The-
orem 2.1. Furthermore, let fx exist on R̃ = [a, b] × [−δ0, δ0] × [−δ1, δ1] and f, fx,

fu and fv satisfy there Lipschitz conditions in x, u and v, where δ0 and δ1 are
constants defined in (2.7) and (2.8). Then u ∈ C3,1[a, b].

Proof. Since p ≥ p∗ = mina≤x≤b p(x) > 0, u ∈ [−δ0, δ0], u′ ∈ [−δ1, δ1] and

u′′(x) =
1

p(x)
[f(x, u(x), u′(x)) − p′(x)u′(x)] , (5.1)

we have u ∈ C2,1[a, b] if p ∈ C1,1[a, b] and if f satisfies Lipschitz condition on
R̃. Observe that the right-hand side of (5.1) is differentiable with respect to x.
Therefore, differentiating both sides of (5.1) with respect to x, we obtain

u′′′(x) =
1

p(x)
[
fx (x, u(x), u′(x)) + fu (x, u(x), u′(x))u′(x)

+ fu′ (x, u(x), u′(x))u′′(x) − p′′(x)u′(x) − p′(x)u′′(x)
]

− p′(x)
p(x)2

[f (x, u(x), u′(x)) − p′(x)u′(x)] . (5.2)

Hence, if p ∈ C2,1[a, b] and f , fx, fu, fu′ satisfy Lipschitz conditions on R̃ =
[a, b] × [−δ0, δ0] × [−δ1, δ1], then the right-hand side of (5.2) satisfies a Lipschitz
condition in x on [a, b] so that we have u ∈ C3,1[a, b]. Q.E.D.

We denote by τi the local truncation error at xi for (3.4) and put pi+ 1
2

=
p(xi+ 1

2
) = p(xi + 1

2hi+1), i ≥ 0. Then, under the assumption u ∈ C3,1[a, b], we
have

τ0 =
1
ω0

[(a0 + a1)u0 − a1u1] + f

(
x0, u0,

α0u0 − α

α1

)
− 2
h1

α

α1
p0

=
1
ω0

[(a0 + a1)u0 − a1u1] + f(x0, u0, u
′
0) −

2
h1

α

α1
p0

=
1
ω0

[(a0 + a1)u0 − a1u1] + [(pu′)′]0 −
2
h1

α

α1
p0

=
2
h1

[(
α0

α1
p0 +

1∫ x1

x0

dt
p(t)

)
u0 − 1∫ x1

x0

dt
p(t)

u1

]
+ p0u

′′
0 + p′0u

′
0 −

2
h1

α

α1
p0

=
2
h1

[
p0u

′
0 −

u1 − u0∫ x1

x0

dt
p(t)

]
+ p0u

′′
0 + p′0u

′
0

=
2
h1

⎡⎣p0u
′
0 −

h1u
′
0 + h2

1
2 u

′′
0 +O(h3

1)
h1
p 1

2

+O(h3
1)

⎤⎦+ p0u
′′
0 + p′0u

′
0
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=
2
h1

[
p0u

′
0 −
(
p 1

2
+O(h2

1)
)(

u′0 +
h1

2
u′′0 +O(h2

1)
)]

+ p0u
′′
0 + p′0u

′
0

=
2
h1

[
p0u

′
0 −
(
p0 +

h1

2
p′0 +O(h2

1)
)(

u′0 +
h1

2
u′′0 +O(h2

1)
)]

+ p0u
′′
0 + p′0u

′
0

=
2
h1

[
−h1

2
p′0u

′
0 −

h1

2
p0u

′′
0 +O(h2

1)
]

+ p0u
′′
0 + p′0u

′
0

= O(h1). (5.3)

Similarly, we obtain

τn+1 =
1

ωn+1
[−an+1un + (an+1 + an+2)un+1]

+ f

(
xn+1, un+1,

β − β0un+1

β1

)
− 2
hn+1

β

β1
pn+1

= O(hn+1). (5.4)

In order to estimate τi, 1 ≤ i ≤ n, we prove the following three lemmas.

Lemma 5.2. Let

γi = pi+ 1
2

ui+1 − ui

hi+1
+ pi− 1

2

ui−1 − ui

hi
.

If p ∈ C2,1[a, b] and u ∈ C3,1[a, b], then

2
hi+1 + hi

γi = piu
′′
i + p′iu

′
i + (hi+1 − hi)κi +O(h2),

where

κ(x) =
1
12

{3p′′(x)u′(x) + 6p′(x)u′′(x) + 4p(x)u′′′(x)}

and

κi = κ(xi).

Proof. We have

γi =

{
pi +

hi+1

2
p′i +

1
2

(
hi+1

2

)2

p′′i +O(h3
i+1)

}

×
{
u′i +

1
2
hi+1u

′′
i +

1
6
h2

i+1u
′′′
i +O(h3

i+1)
}

+

{
pi − hi

2
p′i +

1
2

(
hi

2

)2

p′′i +O(h3
i )

}

×
{
−u′i +

1
2
hiu

′′
i − 1

6
h2

iu
′′′
i +O(h3

i )
}
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=
hi+1 + hi

2

[{
p′i +

1
4
(hi+1 − hi)p′′i

}
u′i +

{
pi +

1
2
(hi+1 − hi)p′i

}
u′′i

+
1
3
(hi+1 − hi)piu

′′′
i

]
+O(h3

i+1) +O(h3
i ).

Hence

2
hi+1 + hi

γi = p′iu
′
i + piu

′′
i

+
hi+1 − hi

12
(3p′′i u

′
i + 6p′iu

′′
i + 4piu

′′′
i ) +O(h2).

This proves Lemma 5.2. Q.E.D.

Lemma 5.3. Let y ∈ C2,1[−h, h]. Then∫ h

−h

y(t)dt = 2hy(0) +
1
3
y′′(0)h3 +O(h4).

Proof. Let

Y (h) =
∫ h

−h

y(t)dt− 2hy(0).

Then

Y ′(h) = y(h) + y(−h) − 2y(0),

Y ′′(h) = y′(h) − y′(−h),
Y ′′′(h) = y′′(h) + y′′(−h)

so that Y (0) = Y ′(0) = Y ′′(0) = 0, Y ′′′(0) = 2y′′(0) and

Y (h) =
1
3!
Y ′′′(0)h3 +

1
3!

(Y ′′′(θh) − Y ′′′(0))h3

=
1
3
y′′(0)h3 +O(h4).

Q.E.D.

Lemma 5.4. Let ai be defined as in (3.1) and set

εi =
(
pi+ 1

2

hi+1
− ai+1

)
(ui+1 − ui) +

(
pi− 1

2

hi
− ai

)
(ui−1 − ui) .

Then we have

εi =
(
si+ 1

2
h2

i+1 − si− 1
2
h2

i

)
u′i +O(h3

i+1) +O(h3
i ),

provided that u ∈ C3,1[a, b], where

s(x) =
1
24

(
1

p(x)

)′′
p(x)2.
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Proof. By Lemma 5.3, we have(
pi+ 1

2

hi+1
− ai+1

)
(ui+1 − ui)

=

⎧⎪⎪⎨⎪⎪⎩
pi+ 1

2

hi+1
− 1

hi+1
p

i+ 1
2

+ 1
24

(
1
p

)′′
i+ 1

2

h3
i+1 +O(h4

i+1)

⎫⎪⎪⎬⎪⎪⎭
×
(
u′ihi+1 +

1
2
u′′i h

2
i+1 +O(h3

i+1)
)

=

⎧⎪⎪⎨⎪⎪⎩
pi+ 1

2

hi+1
− 1

hi+1
p

i+ 1
2

(
1 + 1

24

(
1
p

)′′
i+ 1

2

h2
i+1pi+ 1

2
+O(h3

i+1)
)
⎫⎪⎪⎬⎪⎪⎭

×
(
u′ihi+1 +

1
2
u′′i h

2
i+1 +O(h3

i+1)
)

=

{
pi+ 1

2

hi+1
−
pi+ 1

2

hi+1

(
1 − 1

24

(
1
p

)′′

i+ 1
2

h2
i+1pi+ 1

2
+O(h3

i+1)

)}

×
(
u′ihi+1 +

1
2
u′′i h

2
i+1 +O(h3

i+1)
)

=

{
1
24

(
1
p

)′′

i+ 1
2

p2
i+ 1

2
hi+1u

′
i +O(h2

i+1)

}(
u′ihi+1 +

1
2
u′′i h

2
i+1 +O(h3

i+1)
)

=
1
24

(
1
p

)′′

i+ 1
2

p2
i+ 1

2
h2

i+1u
′
i +O(h3

i+1)

and, similarly,(
pi− 1

2

hi
− ai

)
(ui−1 − ui) = − 1

24

(
1
p

)′′

i− 1
2

p2
i− 1

2
h2

iu
′
i +O(h3

i ).

Hence we obtain

εi =
(
si+ 1

2
h2

i+1 − si− 1
2
h2

i

)
u′i +O(h3

i+1) +O(h3
i ), 1 ≤ i ≤ n

with s(x) = 1
24

(
1
p

)′′
p2. Q.E.D.

By Lemmas 5.2–5.4, we have for 1 ≤ i ≤ n

τi ≡ 2
hi+1 + hi

[−ai+1(ui+1 − ui) − ai(ui−1 − ui)]

+ f

(
xi, ui,

ui+1 − ui−1

hi+1 + hi

)
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=
2

hi+1 + hi
[εi − γi] + f

(
xi, ui,

ui+1 − ui−1

hi+1 + hi

)
=

2
hi+1 + hi

εi −
{
piu

′′
i + p′iu

′
i + (hi+1 − hi)κi +O(h2)

}
+ f

(
xi, ui,

ui+1 − ui−1

hi+1 + hi

)
=

2
hi+1 + hi

(
si+ 1

2
h2

i+1 − si− 1
2
h2

i

)
u′i +O(h2) − (hi+1 − hi)κi +O(h2)

+ f

(
xi, ui,

ui+1 − ui−1

hi+1 + hi

)
− f(xi, ui, u

′
i)

=
2

hi+1 + hi

(
si+ 1

2
h2

i+1 − si− 1
2
h2

i

)
u′i − (hi+1 − hi)κi +O(h2)

+
{

1
2
(hi+1 − hi)u′′i +O(h2)

}
qi, (5.5)

where

qi =
∫ 1

0

∂f

∂u′

(
xi, ui, u

′
i + θ

(
ui+1 − ui−1

hi+1 + hi
− u′i

))
dθ. (5.6)

Let τ = (τ0, . . . , τn+1)t and W = u − U = (W0, . . . ,Wn+1)t. Then

HAu + f̃(u) = τ

and

HAW + f̃(u) − f̃(U) = τ . (5.7)

Furthermore, we write

f̃(u) − f̃(U) =
(
D̃ +HẼ

)
W

with a diagonal matrix D̃ = (d̃0, d̃1, . . . , d̃n+1) and a tridiagonal matrix

Ẽ =

⎛⎜⎜⎜⎜⎜⎝
σ̃0 0
−σ̃1 0 σ̃1

. . . . . . . . .
−σ̃n 0 σ̃n

0 σ̃n+1

⎞⎟⎟⎟⎟⎟⎠ ,

whose elements d̃i and σ̃i are defined as follows:

d̃0 =
∫ 1

0

∂f

∂u

(
x0, U0 + θW1,

α0(U0 + θW0) − α

α1

)
dθ,

d̃i =
∫ 1

0

∂f

∂u

(
xi, Ui + θWi,

1
hi+1 + hi

(Ui+1 − Ui−1 + θ(Wi+1 −Wi−1))
)
dθ

1 ≤ i ≤ n,
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d̃n+1 =
∫ 1

0

∂f

∂u

(
xn+1, Un+1 + θWn+1,

β − β0(Un+1 + θWn+1)
β1

)
dθ,

σ̃0 = ω0
α0

α1

∫ 1

0

∂f

∂u′

(
x0, U0 + θW0,

α0(U0 + θW0) − α

α1

)
dθ,

σ̃i =
1
2

∫ 1

0

∂f

∂u′

(
xi, Ui + θWi,

1
hi+1 + hi

(Ui+1 − Ui−1 + θ(Wi+1 −Wi−1))
)
dθ

1 ≤ i ≤ n,

σ̃n+1 = −ωn+1
β0

β1

∫ 1

0

∂f

∂u′

(
xn+1, Un+1 + θWn+1,

β − β0(Un+1 + θWn+1)
β1

)
dθ.

Hence we have from (5.7)

H
(
A+ Ẽ +H−1D̃

)
W = τ (5.8)

and

W =
(
A+ Ẽ +H−1D̃

)−1
H−1τ

=
[(
A+ Ẽ

)−1 − (A+ Ẽ +H−1D̃
)−1

H−1D̃
(
A+ Ẽ

)−1
]
H−1τ

= Ã−1H−1τ − (Ã+H−1D̃
)−1

H−1D̃Ã−1H−1τ (5.9)

where we put Ã = A+ Ẽ.
Next, we shall estimate Ã−1 = (α̃ij). As in §4, we choose a diagonal matrix

Q̃ = diag(ρ̃0, ρ̃1, . . . , ρ̃n+1) with ρ̃0 = 1 so that B̃ = Q̃Ã is symmetric. We then
have

B̃ =

⎛⎜⎜⎜⎜⎜⎜⎝

�a0 + a1 −a1

−�ρ1(a1 + �σ1) �ρ1(a1 + a2) −�ρ1(a2 − �σ1)

. . .
. . .

. . .

−�ρn(an + �σn) �ρn(an + an+1) −�ρn(an+1 − �σn)

−�ρn+1an+1 �ρn+1(an+1 + �an+2)

⎞⎟⎟⎟⎟⎟⎟⎠
where

ã0 = a0 + σ̃0, ãn+2 = an+2 + σ̃n+1.

Hence, an application of the inversion formula [14] to B̃ yields that B̃−1 =
(
β̃ij

)
is given by

β̃ij =

⎧⎪⎪⎨⎪⎪⎩
1

z̃n+2
z̃i(z̃n+2 − z̃j) (i ≤ j)

1
z̃n+2

(z̃n+2 − z̃i)z̃j (i ≥ j)
(5.10)
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where

z̃i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ã0

(i = 0)

z̃i−1 +
1

ρ̃i(ai + σ̃i)
(1 ≤ i ≤ n)

z̃n +
1

ρ̃n+1an+1
(i = n+ 1)

z̃n+1 +
1

ρ̃n+1ãn+2
(i = n+ 2).

Lemma 5.5. If h is sufficiently small, then

e−
3M
2

� b
a

dt
p(t) < ρ̃i < e

3M
2

� b
a

dt
p(t) , 0 ≤ i ≤ n+ 1

and

B̃−1 < e7M
� b

a
dt

p(t) ·A−1

Proof. The same proof as in Lemma 4.1 works. Q.E.D.

We are now in a position to prove the following result.

Theorem 5.1. In addition to the assumptions of Lemma 5.1, assume that
fv(x, u, v) satisfies a Lipschitz condition in x, u, v on R̂ = [a, b]× [−δ0, δ0]× [−(1+
ε)δ1, (1+ ε)δ1], where ε is a positive number which may be chosen arbitrarily small.
Then

ui − Ui = O(h2), 0 ≤ i ≤ n+ 1. (5.11)

Proof. We first remark that u ∈ C3,1[a, b] by Lemma 5.1. We have from
(5.3)–(5.5)(

Ã−1H−1τ
)
i
=
(
B̃−1Q̃H−1τ

)
i

=
n+1∑
j=0

β̃ij ρ̃jωjτj

= β̃i0
h1

2
O(h1) + β̃i n+1ρ̃n+1

hn+1

2
O(hn+1)

+
n∑

j=1

β̃ij ρ̃j

[(
sj+ 1

2
h2

j+1 − sj− 1
2
h2

j

)
u′j

− 1
2
(
h2

j+1 − h2
j

)(
κj − 1

2
u′′j qj

)
+O(h3)

]
=

n∑
j=1

(
ϕi j+1h

2
j+1 − ψijh

2
j

)
+O(h2)

=
n∑

j=2

(ϕij − ψij)h2
j + ϕi n+1h

2
n+1 − ψi1h

2
1 +O(h2),
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=
n∑

j=2

(ϕij − ψij)h2
j +O(h2) (5.12)

where

ϕij = β̃i j−1ρ̃j−1

[
sj− 1

2
u′j−1 −

1
2

(
κj−1 − 1

2
u′′j−1qj−1

)]
ψij = β̃ij ρ̃j

[
sj− 1

2
u′j −

1
2

(
κj − 1

2
u′′j qj

)]
.

We then have from (5.10)

β̃ij − β̃i j−1 = O(h) ∀i, j.

In fact, if i ≤ j − 1, for example, then

zj − zj−1 =
1

ρ̃j(aj + σ̃j)
<

1
aj

· 1
ρ̃j

· 1
1 − M

2aj

= O

(
1
aj

)
= O(hj)

since 1
�ρj

= O(1) by Lemma 5.5, and

∣∣∣β̃ij − β̃i j−1

∣∣∣ = ∣∣∣∣ 1
z̃n+2

z̃i (z̃j−1 − z̃j)
∣∣∣∣

< |z̃j−1 − z̃j | = O(hj) for j ≥ 1

We also have ρ̃j − ρ̃j−1 = O(h) for 2 ≤ j ≤ n. In fact, we have

ρ̃1 =
a1

a1 + σ̃1
= O(1)

ρ̃2 − ρ̃1 =
a2 − σ̃1

a2 + σ̃2
ρ̃1 − ρ̃1 = − σ̃1 + σ̃2

a2 + σ̃2
ρ̃1 = O

(
1
a2

)
= O(h2), etc.

Since p ∈ C2,1[a, b] and u ∈ C3,1[a, b], we have

p
(k−1)
j − p

(k−1)
j−1 = O(h), u(k)

j − u
(k)
j−1 = O(h), k = 1, 2, 3,

and κj − κj−1 = O(h).

Furthermore,

qj − qj−1 = O(h),

since, in (5.6),

u′i ∈ [−δ1, δ1] and
ui+1 − ui−1

hi+1 + hi
− u′i = O(h) ∀i
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so that, given ε > 0,

u′i + θ

(
ui+1 − ui−1

hi+1 + hi
− u′i

)
∈ [−(1 + ε)δ1, (1 + ε)δ1] ∀i

for sufficiently small h. Therefore, we have

ϕij − ψij = O(h).

Consequently, we obtain

n∑
j=2

(ϕij − ψij)h2
j = O(h2),

and, from (5.12), (
Ã−1H−1τ

)
i
= O(h2). (5.13)

On the other hand, it follows from (5.9) that

|W | ≤
∣∣∣Ã−1H−1τ

∣∣∣+ (Ã+H−1D̃
)−1

H−1D̃
∣∣∣Ã−1H−1τ

∣∣∣
≤
∣∣∣Ã−1H−1τ

∣∣∣+ Ã−1H−1D̃
∣∣∣Ã−1H−1τ

∣∣∣ . (5.14)

Furthermore, by Lemma 5.5

Ã−1 = B̃−1Q̃ < e
17M

2

� b
a

dt
p(t)A−1 = e

17M
2

� b
a

dt
p(t) (G(xi, xj)) (5.15)

and

D̃ ≤ KI, (5.16)

where K is the constant defined in (2.4). We thus conclude

Wi = ui − Ui = O(h2) ∀i

from (5.13)–(5.16). Q.E.D.

Remark 5.1. If f = f(x, u), then Remark 2.1 applies to Theorem 5.1, too.

6. Observations

In (3.4), if we approximate
∫ xi

xi−1

dt
p(t) by the midpoint rule, then the ith equation

reduces to the well known formula

−
[
pi+ 1

2

Ui+1−Ui

hi+1
− pi− 1

2

Ui−Ui−1
hi

hi+1+hi

2

]
+ f

(
xi, Ui,

Ui+1 − Ui−1

hi+1 + hi

)
= 0

1 ≤ i ≤ n. (6.1)
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Furthermore, if the boundary conditions (1.2) and (1.3) are approximated by the
fictitious node method (cf. Allen-Isaacson [2], pp. 407–408), then

2
h1

{(
α0

α1
p0 − α0

2α1
p′0h1 +

p0

h1

)
U0 − p0

h1
U1

}
+ f

(
x0, U0,

α0U0 − α

α1

)
+

α

α1

(
p′0 −

2
h1
p0

)
= 0 (6.2)

and

2
hn+1

{
− pn+1

hn+1
Un +

(
pn+1

hn+1
+
β0

β1
pn+1 +

β0

2β1
p′n+1hn+1

)
Un+1

}
+ f

(
xn+1, Un+1,

β − β0Un+1

β1

)
− β

β1

(
p′n+1 +

2
hn+1

pn+1

)
= 0. (6.3)

Hence, we can write (6.1)–(6.3) in the form

HÂU + f̂(U) = 0, (6.4)

where

Â =

⎛⎜⎜⎜⎝
â0 + â1 −â1

−a1 a1 + a2 −a2

. . . . . . . . .
−ân+1 ân+1 + ân+2

⎞⎟⎟⎟⎠
with

â0 = a0 +O(h1), â1 = a1 +O(1),

ai = ai +O(h2
i ), 1 ≤ i ≤ n+ 1,

ân+1 = an+1 +O(1), ân+2 = an+2 +O(hn+1)

and

f̂(U) = f̃(U) +
(
α

α1
p′0, 0, . . . , 0,−

β

β1
p′n+1

)t

.

It is interesting to compare (3.4) with (6.4) and observe that, in spite of this differ-
ence between A and Â, the accuracy of the solution of (6.4) is of the second order,
too. The proof will be done along the same line as in the proof of Theorem 5.1.

Finally we note that on the basis of an approach developed in [16], numerical
methods with fourth order accuracy for solving (1.1)–(1.3) in the case f = f(x, u)
are given in Aguchi-Yamamoto [1].

Acknowledgements. The authors are grateful to the referees for helpful com-
ments, especially for pointing out the defect of the original proof of Theorem 2.1.
Theorem 5.1 has also been improved.
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