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This paper gives a unified mathematical theory for numerical treatment of two-point
boundary value problems of the form —(p(z)u') + f(z,u,u') =0, a < z < b, agu(a) —
aiu'(a) = a, Bou(b) + B1u/(b) = B, @, a1,B0,81 > 0, ap + a1 > 0, fo + 1 > 0,
ap + Bo > 0. Firstly, a unique existence of solution is shown with the use of the Schauder
fixed point theorem, which improves Keller’s result [6]. Next, a new discrete boundary
value problem with arbitrary nodes is proposed. The unique existence of solution for the
problem is also proved by using the Brouwer theorem, which extends some results in Keller
[6] and Ortega-Rheinboldt [10]. Furthermore, it is shown that, under some assumptions
on p and f, the solution for the discrete problem has the second order accuracy O(h?),
where h denotes the maximum mesh size. Finally, observations are given.
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1. Introduction

Two-point boundary value problems of the form

—% (p(x)%) —i—f(:v,u, %) =0,a<z<b (1.1)
Bi(u) = agu(a) — aqu/(a) = a, (1.2)
Ba(u) = fou(b) + fru(b) = B, (1.3)

where «;, §;, i = 1,2, a and [ are constants, arise in many areas of applied science.
They are solved numerically on computers by discretizing (1.1)—(1.3) at some nodes

{zi}:

a=x9g<x1 <+ <Tp < Tpy1 =D (1.4)
Throughout this paper, we assume p(z) > 0 in [a, b],
ap >0, a1 >0, ag+a1 >0, (15)

ﬂO 2 07 61 Z 0) ﬂo +51 > 07 (16)
ag + By > 0 (1.7)
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and put

2 = {u € C?a,b] | By(u) = Ba(u) =0} . (1.8)

hi:.’ﬂifl'i_l, i:1,2,...,n+1, h:maxhl
9

Our main concerns are the following three subjects.

1. To guarantee existence and uniqueness of solution for (1.1)—(1.3).

2. To guarantee existence and uniqueness of solution for the discretized problem
F(U) = 0, where U = (Up, Uy, ...,U, 1)t and each U; denotes an approxi-
mation for the exact value u; = u(x;).

3. To estimate the errors for |u; — U;|, i =0,1,2,...,n+ 1.

Concerning the first subject, let p(z) € C'[a,b], and f(z,u,v) be continuous
on Z = [a,b] x R x R and satisfy there a uniform Lipschitz condition in u and v.
Furthermore, let f have continuous derivatives on % which satisfy

of

2 >0, (1.9)
and

of

< .

‘81} <M (1.10)

for some positive constant M. Under these assumptions, Keller ([6], Theorem 1.2.2)
proved that the problem (1.1)—(1.3) has a unique solution u € C?[a,b]. If p = 1,
f = f(z,u) and the conditions (1.2) and (1.3) are of Dirichlet’s type (ag = Go =
1, ay = 1 = 0), then it is also known that (1.1)—(1.3) has a unique solution if

of

0< =<K
— au — b
for some positive constant K (Henrici [5]) or, if [a,b] =[0,1], « = =0 and

[a,ilf]liR % > % (Lees [8]).
However, in the case f = f(z,u,v), there is no existence and uniqueness result of
solution for (1.1)—(1.3) under the condition f, > 0.

Concerning the second subject, some results for the case f = f(x,u) can
be found in Ortega-Rheinboldt [10]. For example, if A is an M-matrix and & :
R"2 — R"*2 is a continuous, diagonal and isotone mapping, then the system of
n + 2 equations

AU 4+ &(U) =0, (1.11)

has a unique solution. Furthermore, in the case f = f(z,u,v), Keller ([6], The-
orem 3.2.2) proved that, if p(x) = 1 and the conditions (1.2) and (1.3) are of
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Dirichlet’s type, then the system of the standard finite difference approximations
with uniform nodes (h = h; Vi) applied to (1.1)

Uit1 — Ui
2h

UO = qQ, Un+1 :ﬂ

=0,1<i<n

3

1
n2 (=Uiz1+2U; —Ujpq1) + f <$z‘, U;

has a unique solution for sufficently small h, provided that f(x,u,v) has continuous
derivatives on % which satisfy (1.10) and

O<K*§%§K (1.12)
for some positive constants K and K,. It seems to the authors, however, that no
mention about existence and uniqueness of solution for a discretized system with
nonuniform nodes has also been made under the condition % > 0.

Concerning the third subject, for the case where (1.1) is of the Sturm-Liouville
type, Tikhonov-Samarskii [11] first pointed out that the usual finite difference ap-
proximation applied to (1.1)—(1.3) has the second order accuracy O(h?) with any
nodes (1.4) under the assumption

(2

h,
0<C < ;L“ < Cy Vi, (1.13)

where Cp, Cy are positive constants independent of the nodes. Since the local
truncation error 7; at x; is O(h) if h; # h;41, this indicates that the order of the local
truncation error is not a true measure for the error of numerical solution. Later, in
1985, Hoog-Jackett [4] proved the same result without assuming (1.13), provided
that f is linear and u € C*[a,b]. More general discussion is given in Manteuffel-
White, Jr. [9] and Kreiss-Manteuffel-Swartz-Wendroff-White, Jr. [7]. Among others,
in the latter paper, this phenomenon is called “supra-convergence”.

In this paper, replacing the condition in (1.9) by a weaker one g—i > 0, we
shall treat the above three subjects. First, in §2, with the use of the Schauder fixed
point theorem, we shall show that the problem (1.1)—(1.3) has a unique solution
u € C?a,b] if p € Ca,b], 0 < f, < K and |f,| < M on Z = [a,b] x R x R,
which improves Keller’s result. It should be noted here (cf. Remark 5.1) that,
if f = f(x,u), then the conditions 0 < f, < K can be replaced by f, > 0.
The existence of a constant K is not necessary. Hence our result improves and
generalizes Henrici’s result. Next, in §3, we shall propose an approximate method

with arbitrary nodes (1.4). The method solves a system of n + 2 equations
F(U)= HAU + f(U) =0, (1.14)

where H is a diagonal matrix, A is a tridiagonal matrix whose elements include

T gt
1 <i<n+1 (1.15)
/zf,_l p(t)
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and f(U) is defined in (3.3). As is shown in §3, the matrix A has the distinguished
feature that A=! = (G(z;,;)), where G(z,£) denotes the Green function for the
operator & = —4L (pL[ ]): 9 — Cla,b] and Z is defined by (1.8). If we approx-
imate (1.15) by the midpoint rule and the boundary conditions by the fictitious
node method, then the equation (1.14) reduces to the standard finite difference
equation.

In §4, with the use of the Brouwer fixed point theorem, we shall prove that
(1.14) has a unique solution for sufficiently small h, provided that p € C'[a,b],
fu > 0 and |f,] < M. The result generalizes known results in Keller [6], Ortega-
Rheinboldt [10], etc.

Furthermore, in §5, we shall extend Hoog-Jackett’s argument to the case where
f = f(z,u,u’) is nonlinear and prove

Uy — Ul = O(hQ) Vi,

provided that p € C?*1[a,b] and f satisfies some smoothness conditions in z, u and
u on Z.

Finally, in §6, observations will be given.

2. Existence of Solution for (1.1)—(1.3)

In this section, we shall prove the existence and uniqueness of solution for the
problem (1.1)—(1.3). We first remark that if we take a function v(x) = Az? + px +v
where coefficients A, p, v are determined so that Bi(v) = a and By(v) = 3, then
w = u — v satisfies By(w) = Ba(w) = 0 and w satisfies a differential equation

d dw ~ dw

with f: —% (pd—;) +f (x,w + v, % + %), which is of the form (1.1). Hence, the
unique existence of solution for the equation (1.1) in & implies that for the problem
(1.1)~(1.3) in C?[a, b].

Before proving the existence theorem of solution for (1.1)—(1.3), we state some
elementary lemmas whose proofs will be given for the sake of completeness.

LEMMA 2.1. Let

£
dx?

Lu=—pla) 5 +q@) 5 +r@u
with p € Ca, b, ¢,7 € Cla,b], p>0 and r > 0 in [a,b]. Then, the Green function
exists for (£, D).

Proof. Tt suffices to show that Zu = 0 and v € Z imply v = 0. To show this,
let

@ a(t)

P(z)=e" J&v@ dt, R(z)=P(z)——= and ¥ =
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Then P(z) > 0, R(x) > 0 and Zu = 0 is equivalent to

Lu= —% <P(1:)ZZ) + R(z)u = 0.

Hence

(L) = /ab {—d% (P(@Z—Z) +R(x)u}udx ~0

<p+/ab{P(a:) <%>2+R(x)u2}dx=0 (2.1)

with @ = P(a)u'(a)u(a) — P(b)u' (b)u(b).
If ag > 0, then

or

and

Hence @ > 0 and we have from (2.1)

¢=0 and — =0.

)

We thus obtain that u is a constant on [a,b]. But, u € & then implies
Bi(u) = apu(a) =0

and we must have u(a) = 0, i.e., w = 0. Similarly, if 5y > 0, then we obtain u(b) =0
and u = 0. Consequently, by (1.7), we have u = 0 on [a, b]. Q.E.D.

LEMMA 2.2. Let p(z) € CYa,b], p > 0 in [a,b] and

d du
Lu= o (p(x)a> , UED.

Then the Green function G(x,&) for (£, 2) is given by

m (al + aop(a) /m p(z)> <ﬂl + Bop(b) /: p‘:;) (z <€)

m (Oq + aop(a) /j Pﬁ)) (ﬁl + Bop(b) /: p‘fi)) (x> €)
< G(z,x),

G(‘Lf) =
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where
a bdt B\ | b
0= (5/ O p<b>> o) 7
Proof. Let
¢1(z) = —a1 — aop(a) /T ]%
pa2(x) = B1 — Bop(b) /: Z%

Then Z¢; = 0 and B;(y¢;) = 0, i« = 1,2. Hence, by the elementary theory on
ordinary differential equations, we have

p1(x)2(£)
Gz, &) = —p(a)W (1, 02)(a) (z<¢)
) ¢1(§)p2(z) P
@)W (er, )@

where W (1, ¢2)() denotes the Wronskian determinant on ¢ and 2. Lemma 2.2
follows from this. Q.E.D.

The following Lemmas 2.3 and 2.4 are analogues of the well known results on
M-matrices.

LEMMA 2.3. Assume that p(z) € C'a,b], r(z) € C'a,b], p(z) > 0 and
r(z) > 0. Let

dx dx

and G, (x,€) be the Green function for (4., 9). Then G.(x,&) > 0 for all z,£ €
(a,b).

P <p<x>d—“) (@)

Proof. Let ¢i(x) and @2(x) be the solutions of the following initial value
problems, respectively:

Zrp1 =0, ¢i(a) = a1(=0), ¢i(a)=a(=0)
Zrp2 =0, @a2(b) = f1(=0), ¢5(b) =—Po(<0).
Then B;(¢;) =0, i = 1,2. The Green function G,(z,§) is given by

Wiosm(x)m(s) (z <€)

Wiosm(&)soz(x) (x> €)

Gr(mvg) =

where

Wo = —p(a)W (¢1,¢2)(a).
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Observe that Wy # 0 since the existence of the Green function by Lemma 2.1
implies By (p2) # 0 and Ba(¢1) # 0 and @1, s are linearly independent. We have

xT

P @) =pagi@+ [ rOnwiz [roaon @2

and
T

p(a) 0 () = p(b)h(b) + /b " (Opa(t)dt < /b rOeadt. (23)

It is now easy to see from (2.2) and (2.3) that ¢1(z) > 0, ¢/ (z) > 0, p2(z) > 0 and
©h(x) <0, a < x < b. Hence, by noting Wy # 0, we obtain

Wo = —p(a) (p1(a)ps(a) — p2(a)p)(a)) > 0,
and G,(z,£) > 0 for all z,£ € (a,b). Q.E.D.

LEMMA 2.4. We keep the notation and assumptions of Lemma 2.3. If s(z) €
Cla,b] and r(z) < s(x), a < x < b, then

Gr(z,8) = Gs(2,€)

for all z,£ € [a,b)].
Proof. Let 9, : Cla,b] — 2 be the Green operator defined by
b
Y= [ Gl 00O o€ Clab
If o > 0, then, noting 4,4, = I = £,9,, we have for any x € [a, b]

gr@ - g@@ == 7%74 (oiﬂr - g‘s) g@@
= =% (r(z) — 5(x)) Yop

:—/ab{Gr(xﬁ ) —s(€ /Gin dn]dé
:/ab[ (2, €) (s(6) — (€ /ng dn]df

>0,
where we have used Lemma 2.3 and the assumption s(x) > r(z) in [a, b]. Hence
b
[ 16w - G ole) 2 0

for any nonnegative function ¢ € C[a,b]. This implies G.,.(z,&) — Gs(z,£) > 0 for
all z,€ € [a, b]. Q.E.D.
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We are now in a position to prove the existence and uniqueness of solution for
the problem (1.1)—(1.3).

THEOREM 2.1. Assume that p € Clla,b], and f(z,u,v) is continuous on

X = [a,b] x R? and has continuous derivatives % and % there which satisfy, for

some constants K and M,

< =< .
0< 2 <K (2.4)
and
of
— 1 < . .
50 <M (2.5)

Then the equation (1.1) has a unique solution in 2 so that the boundary value
problem (1.1)—(1.3) has a unique solution u € C*[a,b).

Proof. For the sake of simplicity, we give a proof for the case agayGp31 # 0.
The treatment of the other case is similar.

(i) Existence of Solution. We prove the existence of solution with the use of
the Schauder fixed point theorem. Let X = C'[a,b] and define a norm || - || on X
by

_ ! o /
Jull = oo + ol = max,fu(e)| + max, [o/(2)], € X.

Then (X, || - ||) is a Banach space. For each u € X, we put
Lof /
q(z; ) :/ — (z,0u(z),0u’(x)) do
0 ov
tof /
r(z;u) = /0 Pu (z,0u(x),0u’ () do
fo(z) = f(=,0,0).

Then

and, by Lemma 2.1, the linear boundary value problem

~ i (M0 52 +ales ) 52+ rlaiuw = —fote), a2 <,

weEP

has a unique solution w = w(z;u) € C?[a, b).
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To estimate ||w||, we set

P(ayu) = el 50 R(au) = —r(z;u), g(r;u) = ———"=fo(x),
() () = = (), glasw) = —— 750 ola)
P, = min ef;p(f’t()t_)Mdt, P* = max effp(zfg:?Mdt.
a<lz<b a<zx<b

Then
Tr T u I ryu)w = g(x;u), Tiu , T;u) >
so that

b
wier;u) = / G, €)g(€: u(€)) e,

where G (z, €) denotes the Green function for (=2 (P(z;u) L[]) + R(z;u)[ ], 2),
whose existence is guaranteed by Lemma 2.1.

In the following, for the sake of simplicity, we write P(z;u), R(z;u), g(z;u)
and w(z;u) as P(x), R(x), g(x) and w(x), respectively. Then, by Lemmas 2.2-2.4,
we have

0 < Gr(z,€) < Go(x,€) = G(z,€) < G(z,1), z,€ € [a,b]

and
b o~
()] < / G, €)9(E)] de
< @@c,x)?nfonm(b— a),

where p, = min,<,<p p(x) > 0. Furthermore, we have from Lemma 2.2

~

Gla,z) = W(al +aOP(a)/j ]jl(tt))

xQ%+mHm[f§%)

1 T dt b at
SP*A(OélJFOéO ’ —*)<51+/50P*/I E)

Bt b 0-0)) = 54

*

where

ZA*E—(ﬁo(b—a)+ﬁl)+Oé1ﬁo>0 (26)
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and

v = <Otl +0[0bpa) (ﬂ1+ﬁ0};*(ba))

Hence

0@)| < g1y folllb—@) =80 (say),

On the other hand, it follows from

that

a

and an application of Lemma 2.2 yields

([ / )69 60 - REw©) i

= Gz, 2 - 0) (g(x) —R(x)w(x)) Gz, 2 +0) (9(x) - R(z)w(z))

( / / )% ~ REuw(e)) de

_ / ’ APﬁ(Og;) (a1 + ao / 5 I;‘Z)) (9(€) — R(&)w(€)) d¢

b a0 bodt
+ [ s (514 0P / o) 6O - ROUE) .

where A is defined by (2.6). Since

b
Azﬂo(al —|—ao/ t) aOﬁl
13

>5o(041+040/ t) V¢ € [a, b]

)

Y

!

and

b
P(b)A = g <ﬁ0P(b)/ Pd(t) + ﬁ1> + a1foP(b)

bat

> a0 (P0) | 55

+51) VE € [a, ],
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we obtain

Il
9\
k=l
=
5
N—
o
—~
in
S~—
\

=
—~
i
S~—

g
[aa)
-

QU
2%

1
< 5 lglee + IRllc) (0~ @)
1 (P P
< ([ Z_ i _
< 5 (o lollc + et ) - )
P*
< (ol + K80) (- ) =61 (). @3)

Hence, putting § = §p + §; and
S ={ue X ||u|| <94, Bi(u) = Ba(u) =0},

we have
[l = [wlloo + |w']leo <o +61 =6 Yue.”
A continuous map T : . — C?[a,b]N.¥ C .7 is thus defined by Tu = w for u € ..

7 is a closed convex subset of X and the set .# = T(.¥) is equicontinuous, since

w(t1) — w(tz)] <

t1
/ |w'(t)|dt’ <81 |ty —ta], t1,t2 € [a,b].
to

Hence, by Ascoli-Arzela’s theorem, any infinite sequence {w,}, n =1,2,--- of &#
contains a subsequence {wy,}, n1 < ny < --- which converges uniformly on [a, b]
to a function w € Cfa,b] as j — oo. Then the set .#' = {wj, } is also uniformly
bounded and equicontinuous since [w;, [loc < d1 Vj and

ty
wh (1) =l (t2) = [ (0
to
ty
]' /o !/
= 5 , [—p Wy, + qu,, + Twn, + fo} dt,
ti1,t2 € [a, b]

so that

1
w, (t1) — wy, (t2)| < o {(Ip"lloe + M) 61 + Ko + [ folloo} [t1 — t2.

Therefore, we can again employ the Ascoli-Arzela theorem to extract a uniformly
convergent subsequence {w;jk } of #'. Then it is easy to see that the limit function
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w of {wy, } is differentiable and w’ is the limit function of {w;hk} : w;m — ' as
k — oo with respect to the norm || - ||s. Hence

~ / ~/
Wp; — W[  F W, —w —0
k ) Tk

oo

as k — oo, which implies that the set .Z is relatively compact in the Banach space
(X,]l-]). Consequently we can apply the Schauder fixed point theorem to conclude
that T has a fixed point u in .. Since Tu € C?[a,b] by definition of T, we obtain
u(=Tu) € C?[a,b] and u is a solution of (1.1) in 2, which proves the existence of
a solution for (1.1) in 2. Hence the problem (1.1)—(1.3) has a solution in C?[a, b].

(ii) Uniqueness. Let u and v be two solutions for (1.1)—(1.3), which belong
to C?[a,b], and put w = u — v. Then

f(@,u,u) = f(z,0,0") = r(@)w + q(z)w’
with
1
r(z) = r(v;u,v) = / fu (0 + 0w, v + Ow') db
0

1
o) = aaiuv) = [ fur(oow b + 00 o,
0

which leads to the equation

—(pu') +qu' +rw=0, a<z<b we . (2.9)
We again put
@ p'(H)—a(t) r(z)
P(z) = ele 50 dt7 R(x) = P(x)—=
(x) (@) = Pla) 523

and rewrite (2.9) as

d dw
T (P(x)dx> +R(x)w=0, weg.

Multiplying both sides by w(z) and integrating from a to b, we have
b b 2
dw dw
—P(z)— P — 2 =0.
[ (m)dxw]a—i—/a { ($><dx> + R(x)w }da? 0
As in the proof of Lemma 2.1, we can show
dw 1°
—P(x)— >0
g 2

and w = 0 since ag + [Bp > 0 by (1.7). This proves the uniqueness of solution for
(1.1)—(1.3), which completes the proof of Theorem 2.1. Q.E.D.



Nonlinear T'wo-Point Boundary Value Problems 43

REMARK 2.1. If f = f(x,u), then the conditions (2.4) in Theorem 2.1 can

be replaced by weaker condition % > 0. In fact, for such a function f, the above

proof shows that we can replace the constant K in (2.8) and the set .7 by

sup  fu(z,u)
[a,b] X [=60,60]

and
S ={ue X ||lul| <6, ||ullos <, Bi(u) = Ba(u) =0},

respectively, and the similar argument can be applied to prove the existence of a
solution of (1.1) in 2. This improves and generalizes Henrici’s result mentioned in

§1.

3. A Discretization for (1.1)—(1.3)

To discretize (1.1)—(1.3) under the assumptions of Theorem 2.1, we consider
the case aga1 8951 # 0 for the sake of simplicity. The treatment of other cases is
similar. We take any nodes {z;} as in (1.4) and set

1
Tip1 = 5(%‘ + Tit1)

1
1
w; = §(hz +hit1) (1<i<n)
1 ,
§hn+1 (’L =n-+ 1)
1 1 1
Hdiag(,,..., )
wo w1 Wn41
Qo .
-0 =0
o @ =0
e SR s
zi—1 p(t)
By 1=n+2)
B
an + a1 —al
—ay a1 + ao —a9
A= (3.1)

—Qnp (07 + Ap+1 —Ap41
—Qp+1 Ap+1 + Ap+2
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Uy —
s (xo’ 0. M)
aq
Uy — Uy
7U )
f(l‘l 1 h1+h2)
f(U) = : )
Un+1 - Unfl
nyUny —————
f (SU hn + hn+1 )
— BoU,
f (anrla Un+1; m)
B
2 «
Iy a1p0
0
fU)=fU) - :
0
2 f

—Pn+1
Bia BT

Then a discretized system which we propose here is

HAU + f(U) = 0.

The matrix A in (3.4) has the following property.

LEMMA 3.1 ([16]).

G(z,€) be the Green function for (£,92). Then A~ = (G(x;, x;)).

(3.4)

Let £ be the operator defined as in Lemma 2.2 and

Proof. Let A™! = (a;). Then by an inversion formula for tridiagonal matri-

ces [14], we have

where

Therefore

Zn42 —

1 . .
2i (Zny2 — 2j) (1 <)
Zn+4-2
1 . .
2j (Zny2 — 2zi) (i >7),
Zn+2
(€3] .
1=0
aop(a) ( )
(5] T dt .
+/ — 1<i<n+1
aor@ TSy b ( )

b
dt
o b +/— (i=n+2).
a

p(t)

n+2

o 1 _ 5
& k_zj;l ar Bop(b)

(3.5)

(3.7)
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Comparing (3.5)—(3.7) with the expression of G(z,§) in Lemma 2.2, we see a;; =
G(xi,xj). QED

4. Existence of Solution for (3.4)

Since the discretized system (3.4) is nonlinear if f is nonlinear, it is interesting
to know whether (3.4) has a unique solution or not. In this section we shall show
that, under weaker assumptions than those of Theorem 2.1 (that is, (2.4) is replaced
by f. > 0), (3.4) has a unique solution if h = max; h; is sufficiently small. This is
done along the similar line as in §2.

Let
1 —
do :/ . (3;079[]07%) o,
0 aq
1
Uiy1 — Ui )
;= ,0U;, 0 L 1<i<
d /Ofu (mz,eUl,e T )de 1<i<n).
1
—03yU,
dn+1 :/ Ju ($n+1,9Un+1,w> g,
0 B
! —a+6
oo = "0 / 'y <x0,9U0,a+0«>Uo> a9,
g 0 (o751
1! Uis1 — Ui ‘
i= o fur (20, 0U,07 T g (1< <),
7 2/0f (x v hi+1+hi> (1<i<n)
1
- 08yU,
Ont1 = _@wnﬂ/ fur ($n+179Un+law> dp,
B 0 B
D:diag(do,dl,...,dn+1)
and

Then (3.4) can be written
H(A+E+H™'D)U = —f(0),

since
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where
« 2 «
f <x0707_a_1> - h_la_lp
f(mla(),())
£(0) = :
f(,,0,0)
5 2 g
f <$n+1707 E) - n—+151pn+1

Furthermore, Z = A + E + H~!'D is an irreducibly diagonally dominant L-
matrix so that Z is nonsingular and, given U € R"*2, the linear system

HZW = —f(0) (4.1)
has a unique solution W = —Z~1H~1f(0). In order to estimate |[W||s0, we take

a diagonal matrix @ = diag(1, p1,...,pn+1) with p; > 0 such that B = Q(A+ E)
is symmetric. We then have

ao + a1 —a1
—pr(ar +o01) pi(ar+a2) —pi(az —o1)
B— : : . (4.2)
—pnlan +0n) pn(an +ant1)  —pnl(ans1 —on)

—Pn+10n+1  Prt10n+1 + Prt+10nt2
where

Qg = ag + o9 = ag + O(hl),

a71,+2 = Ap+2 + On41 = Ap42 + O(h71,+1)-

LEMMA 4.1. If h is sufficiently so small that fol p(t <1 Vi, then
3M fTL dt Mf”z dt .
e ) < p;<e? ), 1 <1< n+1.

Proof. Since B is symmetric, we have

aj a; — 0;—1 . Ap41 — Onp
p1 = s pi=————pic1 (2<i<n), ppp1 = ——py.
a1 + 01 a; + 0o Qnp+1

We remark here that the assumptions M f;il % <1 Vi imply p; > 0,
1 <i<n+1. In fact, we have

loi| <

—_— < ] <
1 n
2 9 — —
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so that
M .
ai+0i2ﬂ—?>07 1§Z<7’L
xi—1 p(t)
and
1 M .
;=012 =z — 5 >0, 2<i<n+
zi—1 p(t)

In the following, we use elementary inequalities
1

1.

a7

1
1-6> >e 2 and ¥ >_— >¢f
— 1420 —1-0
ifo0<o< % Then, we have
1 hY 3M
0<p1<7M <ear < e?a
L= 5a;
and, by induction on i (2 <i <mn)
1 M ©
S, M. M 3M (Ti-1 dt_ 3M o dt
0<p < —=tpimg <ei-en-ez )0 w0 <e2 Ja o
1_ 2(11-
Furthermore, we have
o M
O<pn+1:<1_an1>pn§(l+2a 1>pn
n—+ n—+
sl 3M frn _dt 8M Tntl dt
<L e+l .e 2 Ja () L e 2 Jo p(t) |
Similarly, we have
N o
12— = > e a p(t
PETYE =T ’
ay
1- 2]\(14 e_‘% _3M [Ti-1 dt_ _3M fo; i .
PiZ T P12 cem 2 e v =em 2 e (2 <4 <)
T”’i e2ai

and

M _3M [(xn _dt

)pn > eian,+1 -e 2 a p(t) > e

> 11—
Pn+1 Z ( Qani1

Q.E.D.
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LEMMA 4.2. Let B be the symmetric matriz defined as in (4.2). If h is suf-
ficiently small, then

b _dt

371 §€7M o D) .Afl.

Proof. Let B~! = (;;). Then, as in the proof of Lemma 3.1, we have

1 . .
zi (znt2 — z5) (i <J)
Zn+42
Bij = 1
2 (Znye — 2)  (12>7),
Zn4-2
where
1
=~ =0
" (i =0)
F— (1<i<n)
Zi_ <i<n
L Y pilai + oy)
v 1
Zii+———  (i=n+1)
pn+lan+1
1
i+ ——  (i=n+2).
Pn4+10n4+2

We repeat the same argument as in the proof of Lemma 4.1 to obtain

1 1 SM b _dt .
< | =+ +—=Je2dar®, 0<i<n+1.
Qg a;

In fact, we have for sufficiently small h

1 1 1 1 Mny 1 sm b _de
20 =—= T < - < —e?P@ < —e 2 Jap®,
ap  ap + 0o _ Mh agp ao
ao (1 2p<a>)
1 1 1 bei
1=zt —<|—+—]e? Jer®
ay ago ai

By induction on i (2 <14 < n)

]. ]_ 3M [x; _dt M [®i _dt_
Gi=ziih <z —-e? JiH0 e Jei 3
pi (a; + 03) a;
1 1 s oo a1 smope e
g — 4+ e 2 Japlt) + —e 2 Ja p()
ao ai—1 a;
1 1 M (b _dt
<|[—=—+---4+=)ez Jarw,
ap a;

Furthermore, we have

1 1 1 M (b _dt_ 1 sm b ae
Zn—&-l:Zn‘FiS — 4o+ — e 2 Jap®) H e 2 Ja p(®)
Pn4+10n+1 Qg Gnp

(1 1 ) 5M (b _dt_
<=4+ .+ ez Jap®
ag An 41
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On the other hand,

49

n
1 1 .
> + — (0<j<n-1)
w5y Pelak +0k)  prti@uar Pa@ng
— 1 1
2T T + = (G =mn)
Pn4+10n+1 Pn+10n42
1
—— (j=n+1)
Pn4+10n+2

Hence, if 0 < j < n —1, then

n
1 3M dt T _dt_ 1 3M [Tn+l
Znta — 25 < E — R M T
a a
k=j+1 k n+1
3M [*n+1 d Tn4+1 d
+ e ST St L M T 5t
Ap+2
2
s 1 5M (b _dt_
< g — le 2 Ja p(),
a
k=jt1 Ok
Similarly, we have
1 1 1 1 SM b _di
Zn+2 T Zp = - < + e 2 Japlt
Pn+1Gn+1 Pn+10n42 Ap41 A 42
1 sy b _ar
Zn42 — Zn+1 < e 2 Jar®
Ap 42
and
1 1 _op [P dt
Zn+2 > (+ +— e e p®),
ap Ap+2
since
1 1 3M o _dt _M (x;  _dt_ 1 @; _dt
S - o) e 2 el > _e—QMfa B,
pi(a; + o;) a; a;

Consequently, we obtain

5M b _dt

<L+...+%).e2 a p(t) .

p(t)

1 <i<n, etc.

Bij < (

Q.E.D.
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We are now in a position to prove the following theorem:

THEOREM 4.1. Let p € Cta,b] and f(z,u,v) be continuous on # = [a,b] X
R x R and have continuous derivatives f,, f, there which satisfy

fu=0 and |f,] <M,

where M is a constant. If h is sufficiently small, then the equation (3.4) has a
unique solution. (Note that the conditions (2.4) in Theorem 2.1 are relaxed to

fuz0.)

Proof. (i) Uniqueness. Let
U= (Uy,...,Up1)" and V = (Vy,..., V1)t
be two solutions of (3.4) and put W =U -V = (W, ..., W,41)". Then
HAW + f(U) - f(V) =0. (4.3)

We obtain from (4.3)
(HA+J)W =0,

where

1, v
J:/O f(V+0(U7V))d0:/O £V 40U — V) do.

As is easily seen, HA 4 J is an irreducibly diagonally dominant L-matrix so that
HA + J is nonsingular, which implies W = 0.

(ii) Existence. We apply the Brouwer fixed point theorem to derive the ex-
istence of solution for (3.4). Given U € R"*2, consider the linear system (4.1).
Then

W= |-z HF0)| <27 1 |F(0)|

<(A+B)HFO)| =B e F0)], (4.4)

where we put

W= (Wol,....[Wasal),
o 2 «
(o) -
_ ‘f($17070)|
| £(0)] = :
| f (21, 0,0)]
B 2 p
’f <$n+1,0> E) - et El)nﬂ
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and used the well known fact that
0<Z'<(A+E)'=B1'Q

since Z as well as A + F is an irreducibly diagonally dominant L-matrix, hence an
M-matrix whose inverse is a positive matrix (cf. [12]).
It now follows from (4.4) and Lemmas 4.1 and 4.2 that

(W < ™ 1256 A1 QHY|F(0)]

b _dt 3M b _dt
<e™MIism A~ %2 La P00 H leo

17M (b _dt

—e 2 Jarwe ATTHT!

where ¢oo = ||£(0)]|s0. Hence

17M (b dt
[Wi| < cooe 2 a2

n+1
j{:(?(xi,xj)wj]
§=0

n+1

17M b db_
<cpe 2 Ja P<t>G(xi,xi)ij

j=0
b

= coe 2 S50 G@i ) (b~ a)

and

([W]|eo < cme% < 30 < mabe(x,m)) (b—a)=0 (say).

a<lzx<
Let
B ={U = (Uo,.....Up1)' € B[ |U]lx <3}

and, define amap T : B — B by TU = W for U € &, where W is the unique
solution of (4.1). Then T is a continuous map of the compact convex subset & into
itself. Therefore, by the Brouwer theorem, T" has a fixed point U in 4, which is a
solution of (3.4). This proves Theorem 4.1. Q.E.D.

5. Error Estimates

Let U = (Uy,...,Unyt1)" be the solution for (3.4) and put w = (ug, . .., un+1)?,
where u; = u(x;) and u(z) is the solution for (1.1)—(1.3). In this section, we shall
prove

u; — Uy = O(h?) Vi,
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under some assumptions on p and f which are stronger than those of Theorem 2.1.
We first state the following lemma.

LEMMA 5.1. Let p € C%a,b] and f(x,u,v) satisfy the assumptions of The-
orem 2.1. Furthermore, let f, exist on Z = [a,b] x [0, 80] X [—01,61] and f, fa,
fu and f, satisfy there Lipschitz conditions in x, u and v, where dy and d; are
constants defined in (2.7) and (2.8). Then u € C31[a,b].

Proof. Since p > p. = ming<,<pp(z) > 0, u € [—dy, Jol, v’ € [—I1,01] and
" ]‘ i / /
u'(z) = < [f(z,u(x), v (x) — p'(x)u'(z)], (5.1)
p(x)
we have u € C?1a,b] if p € CYYa,b] and if f satisfies Lipschitz condition on

Z. Observe that the right-hand side of (5.1) is differentiable with respect to x.
Therefore, differentiating both sides of (5.1) with respect to x, we obtain

Mgy = L z,u(z), v (x z,u(z), v () v (x
u (x)—p(x>[fx(, (2),u'(z)) + fu (z,u(x), v (2)) u'(z)
+ fur (2, u(x), o () u" (x) = p" ()’ (x) — p' (2)u" (z)]

=P 4 ) () — o (@)l () (5.2)

Hence, if p € C*'a,b] and f, fu, fu, fu satisfy Lipschitz conditions on R =
[a,b] X [=d0,d0] X [—01,01], then the right-hand side of (5.2) satisfies a Lipschitz
condition in x on [a,b] so that we have u € C®1[a,b). Q.E.D.

We denote by 7; the local truncation error at x; for (3.4) and put p,, 1=
p(xi+%) = p(z; + Shi+1), i > 0. Then, under the assumption u € C3[a,b], we
have

1 QU — & 2 «
70 = — [(ao + a1)ug — aru1] + f(xo,uo, L)

wo a; T hia?
2 «
= —[(ao + - + f(wo, uo, up) — 7——
o [(ag + a1)up — arui] + f(zo, uo, up) I o ”
1 2 «
= —[(ao + - + [(pu') ]y — 7 —
o [(a0 + ar)uo — arus] + [(pu')'], B
'GO+ 1) 1 o 20
= || =Pot Tz g | %0~ Tmr g W Doy + Poly — 7~ —Do
o\ L 5 Jeo 30 fen
2 | / Uy — Uo " /ol
= h_ Polgy — W +p0u0 +p0u0
L] xzo p(t)
2 [ g+ Mg+ omd) R
= — Uy — Uu, U,
h Poug ﬂ+0(h£{’) PolUg T Polg
i Py
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[ h
= 2 [ = (g + 00)) (w6 + i+ 00 )| + o + s
2 T h h
= 2 [ = (o Gt 4 00 ) (w4 i + 008 )| + o + i

2y
h | 5 Potlo = 5

= O(hy). (5.3)

poug + O(h%)} + poug + Poug

Similarly, we obtain

1
Tn+1 = [_an+1un + (an+1 + an+2)un+l}
Wn+1
B— ﬁounH) 2 B
+ Tn+41, Un+1, - - Pn
f( +1 +1 5 P ﬁ1p +1
= O(hns1)- (5.4)

In order to estimate 7;, 1 < i < n, we prove the following three lemmas.
LEMMA 5.2. Let

Ui41 — Uy Uj—1 — Uyg
Vi :Pi+%Tﬂ B
7

If p € C*a,b] and u € C*[a,b], then

2

U pitt] + plul + (hipa — hi)ki + O(h?),

where
k() = % {3p" () () + 6p'(2)u” () + 4p(2)u”" ()}
and
ki = K(x;).

Proof. We have

h; 1/ hit\2
%Z{pﬂr ;1p§+§( 2“) p2’+0(h§’+1)}

1 1 -
x {u + i+ Ghiu 4 O(h;m}

hi / 1 hi 2 7" 3
+ {Pz— Epi—i_i (5) p; +O(hy)

1 1
x {—u; + §hiu;’ — —h2ull’ + O(hf)}

627,
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hii1 + h; 1 1
= % Hp; + Z(hiJrl - hi)Pgl} u; + {Pi + §(hi+1 - hi)p;} uy

1
+ 5 (hi — hi)Piuéﬁ] +O(hi1) + O(h}).
Hence
2 / "
i = DUyt pity
i _i_hi’}’ b p
hz‘+1 —hi ", .1 ’o 0 i 2
+ 1 (3p;j i + 6pju; + dpyui’) + O(h%).
This proves Lemma 5.2. Q.E.D.

LEMMA 5.3. Lety € C*[—h,h]. Then
h 1
/ y(t)dt = 2y (0) + 24" (O)° + O(Y).
—h

Proof. Let

Then

Y7(h) =y'(h) =y (=h),
Y///(h) — y//(h) + y//(_h)
so that Y/(0) =Y’(0) =Y"(0) =0, Y"(0) = 2y (0) and

Y (h) = %Y”’(O)h3 + % (Y (0h) — Y (0)) h®

= %y”(oyf + O(h%).
Q.E.D.

LEMMA 5.4. Let a; be defined as in (3.1) and set

p'+l p;_1
E; = ( e ai-‘rl) (ul_i'_l - uz) + ( ZhA2 - ai) (ui—l - ul) .
(3

hiy1

Then we have
e = (siryh?in = siyh?) w4+ O(h2,) + O(RD),

provided that u € C3[a, b], where

(@) = = (]ﬁ)"mx)?
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Proof. By Lemma 5.3, we have

Diyi
( 4 _ai+1) (ui+1_ui)

hit1
Pyl 1
hi+1 B it + 1 (1 " h3 +0 hi
Py 20\p) i (his1)

1
X (u;hHl + 5“2/h12+1 + O(h?Jrl))

Dyl 1

hi+1 hi 1 (1 " 2 3
pi:; L+ (5>i+_ hipapivs + O(hiy,)

1
2

1
« (udhens + gl + 00, )

Pi+l  Piyl 1 (1>” 2 3
{ hivi  higa ( 24\p/ita +1Pit g (i)

1
X (’u;hi+1 + —ug’hfﬂ + O(hfﬂ))

2

1 1 "
2 12 3
=—1|- Py 1hiu+ O(h;y 1)
24 (P>z‘+; ?

and, similarly,

Pi—31 L/, 3
G (Ui—1—ui)=—ﬂ ). 1pi_%hiui+0(hi)'

2

Hence we obtain
_ 2 2\ s 3 3 .
€ = (SH»%hiJrl - Sz?%hi) u; + O(hiy1) +O(h7), 1<i<n
. 1 (1) 2
with s(z) = 53 (5> .
By Lemmas 5.2-5.4, we have for 1 <i<n

2
o e (i —w) — e - w)]

Uj41 — Uj—1
+ Tiy Wiy ———————
/ ( hit1 + Ry )

T =

1 /1" 1 .
= {24 <p) i p?+%hi+1u; + O(h12+1)} <U;:hi+1 + Eug'hfﬂ + O(h§+1)>

Q.ED.

55
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2 i — U;—
= 4[5i_’7i]+f<mi7ui77ufl “ '1>

h7+1 + hl h1+1 + h,
2
= s il Pl (hi = b+ O(R%))
i+
Uip1 — Uj—1
+ iy Ujy ———————
/ (JC hiv1+ h; )
2
R ( sivyhin —siyhi ) uj 4+ O(h?) = (hig1 — hi)k; + O(R?)
it1 + R
Uil — Ui—1
+ iy Uiy iy Uiy Uy
/ (JS hiv1+ h; = f (@i, uiyug)
2
- m ( Z+5h’+1 Si—2h )“ — (hit1 — hi)ki + O(R?)

1
+{2(h¢+1 yu! +O(h?) ¢ qi,

1
3f / Uj41 — Uj—1 /
i = — iy Wiy U; +0 | ——————— —u; do.
q /0 o (:v Uy U; + < hi+1 T U

Let 7 = (10,...,Tnp1)f and W =u — U = (W, ..., Wp41)t. Then

where

HAu + f(u) =
and
HAW + f(u) — f(U) = 7.

Furthermore, we write

f(u)— f(U)= (D+HE)W
with a diagonal matrix D= (CTO, Jh ceey c?n+1) and a tridiagonal matrix
do 0
—o1 0 oy
_&n 0 &n
0 5n+1

whose elements d: and o; are defined as follows:

1

- OWa) —

dg = / %f (zo, Up + 0W7, 2o(Uo ) a> do,
o Ou o

1
~ 0 1
d; = / i <I7,U1 =+ QVVN P — (Ui+1 —U;_1+ Q(Wi_;,_l — Wz—l))) do
0

ou hiv1 + h;

1<i<n,
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B — Bo(Uns1 + 9Wn+1)> a0

1
of
dpt1 :/0 9 ($n+17 Unt1+ Wi,

B

1 J—

T (wo,Uo + 1w, 2ollo t01o) O‘) a8,
a1 Jo Ou/ oy
_ 1 [tor 1
1<e<n,
1
- 0 — Bo(Upy1 + 0W,
On+41 = 7(4)”_._1@/ 7f/ <xn+l, Un+1 + 0Wn+1, ﬂ 50( +1 +1)> do.
PrJo Ou fr
Hence we have from (5.7)
HA+E+H 'D)W =1 (5.8)

and

W= (A+E+H D) '"H s
~|(A+E)" —(A+E+ D) "H'D(A+E) | H '

— A'H 't —(A+H'D) '"H'DA'H 'r (5.9)

where we put A=A+E. _

~ Next, we shall estimate A7V = (a45). Asin §4, we choose a diagonal matrix
Q = diag(po, p1,- -, Pnr1) with pp = 1 so that B = QA is symmetric. We then
have

ap + a1 —ai

—pi(a1 +01) pi(ar +a2) —pi(az —o1)

_ﬁn(an + ’&n) ﬁn(an + an+1) _5n(an+1 - ’&n)

—Pn+10n+1 ﬁn+1(an+1 + Unt2)
where
ag = ap + 0o, Ap4+2 = Ap4-2 + On41-

Hence, an application of the inversion formula [14] to B yields that B-1= (Ew)

is given by

1 - . .
~—Zi(Zny2 — %) (1<)
Zn+2

1 o~ . .
= (Znt2 —z1)%; (1 >)
Zn+4-2

Bij = (5.10)



58 T. YAMAMOTO and S. OISHI

where

1
— =0
= (i =0)
Zi-1+ ! (1<i<n)
Zi—1 ~7  ~ STsn

_ pi(a; + ;)
Gt —— (i=n+1)

Pn+10n+1
~ 1 .
Zn+1+# (Z:n+2)
Pn+10n+2

LEMMA 5.5. If h is sufficiently small, then

dt 3M b _dt

_Qﬁifb__; b .
e 2 Ja p(t) < pi<:€ 2 ap@)’ OZSZ S n_+1

and
Bl oM [t 41
Proof. The same proof as in Lemma 4.1 works.

We are now in a position to prove the following result.

Q.ED.

THEOREM 5.1. In addition to the assumptions of Lemma 5.1, assume that
fu(x,u,v) satisfies a Lipschitz condition in x, u, v on % = [a,b] X [—do, do] X [-(1+
€)d1, (14¢€)d1], where € is a positive number which may be chosen arbitrarily small.

Then
u —U;=0(h?), 0<i<n+1.

(5.11)

Proof. We first remark that v € C®'[a,b] by Lemma 5.1. We have from

(5.3)-(5.5)

(Zilelr)i = (571@[{717%

n+1~
=D Biibjw;
=0
~ h ~ ~  hy,
= Bio 710(}11) + Bi n+1Pn+1 T+1O(hn+l)

n
+ Zﬂijﬁj {(5j+%h?+l - Sj—%h]z) uj
j=1

1 1
) (R340 — 1) (’ij - 5”}’%‘) + O(h3)]

I

(@i j41h30 — ¥ijh3) + O(h?)
1

J

I
NE

<
||
N

(0ij = Yij) 5 + @i nahi oy — Pinh? + O(h?),
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= (pij — ¢ij)h3 + O(h?) (5.12)
j=2
where
~ _ 1 1
i = Bi j-1Pi— [%é“ﬁl 3 <’€j1 - 5“}'1%1)]
~ 1 1
Yij = Bijp; [sj;u} - 5( j 5%%)} .
We then have from (5.10)
Bij = Bi -1 = O(h) Vi, j.

In fact, if ¢ < j — 1, for example, then

1 11 1 1
Zj—2j1=ﬁ<—'7'71\4:0<—> = O(hy)
pilaj +a5) ~a; pj 1—g-

since ;%_ = O(1) by Lemma 5.5, and

1
n+2
<|Zj—1 = %[ = O(hy) for j>1

Zi (Zj—1 — %)

Bis = Bi | =

We also have p; — p;—1 = O(h) for 2 < j < n. In fact, we have

~ aq
P1 a1+ 61 (1)
~ ~ 0,270’1,\, ~ O'1+52~ 1
— = — ————=p1 =0 (— | =0(hsy), etc.
P2 —pP1= 4+ 0 Pl pP1 = s +0201 <a2) (h2), etc

Since p € C*[a,b] and u € C*1a, b], we have

pgk 1) p;k 11) o(n), ugﬁ) _ ugk_)1 =0(h), k=1,2,3,
and K; —Kj_1 = O(h).
Furthermore,
q5; — qj—-1 = O(h),

since, in (5.6),

u; € [—81,61] and % —u; =0(h) Vi
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so that, given ¢ > 0,

ul+ 0 (% - u) € [~(1+e)dy, (L +e)d] Vi
1+ 7

for sufficiently small h. Therefore, we have
pij — Yiz = O(h).

Consequently, we obtain

and, from (5.12),
(A'H 7)), = O(h?). (5.13)

On the other hand, it follows from (5.9) that
W < ‘/T*lelr‘ +(A+H D) 'H'D ‘2*11{*17‘
< ‘ﬁ’lH’lT‘ + A 'HD ‘A’lH’lr’. (5.14)

Furthermore, by Lemma 5.5
A’*l — E*lé < 6% f;) %A71 = e% f;} % (G(LE“,’,E])) (515)
and
D<KI (5.16)

where K is the constant defined in (2.4). We thus conclude
Wi =u; —U; = O(h?) Vi

from (5.13)—(5.16). Q.ED.

REMARK 5.1. If f = f(z,u), then Remark 2.1 applies to Theorem 5.1, too.

6. Observations

In (3.4), if we approximate [*" -9t by the midpoint rule, then the ith equation

xzi_1 p(t)
reduces to the well known formula '

Uip1-U; U;i—U;_1
hit1 pi—% hi
hiy1+h;
2

Ditl

+f (xU Yirr ~ Uiny UH) =0

hiy1 + Ry
1<i<n. (6.1)
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Furthermore, if the boundary conditions (1.2) and (1.3) are approximated by the

fictitious node method (cf. Allen-Isaacson [2], pp. 407-408), then

2
. {(@Po — 0 iy + p_o) Uo — p—0U1}

hl (651 20&1 hl hl
Uy — 2
L f (meO,M) Lo <p6 _ _p0> ~0
a1 (05] hl
and
2 Pn+1 <pn+1 60 ﬁO / ) }
R+t { hnt1 hnt1 1p i 251p +1lntl i
B - ﬂoUn+1> g < / 2 )
+ Tn aUn ) - 5 n + — n =0.
f( e b1 b1 Prt1 hn+1p i

Hence, we can write (6.1)—(6.3) in the form

HAU + f(U) =0,

where
Go+ar  —a
~ —a1 ay+az —a
A =
*an—i-l an—i—l + Zin-‘,—Q
with
ao = Qo -+ O(hl), 61 = aj + O(].),
a=a;+0(h7), 1<i<n+1,
Zl\nJrl =anp+1 + O<1); an+2 = Gpy2 + O(hn+1)
and

T o a 6 ! '
fU)=fU)+ (mpO,O,...,O,ﬁlpn+1> .

(6.2)

(6.3)

(6.4)

It is interesting to compare (3.4) with (6.4) and observe that, in spite of this differ-
ence between A and E, the accuracy of the solution of (6.4) is of the second order,
too. The proof will be done along the same line as in the proof of Theorem 5.1.
Finally we note that on the basis of an approach developed in [16], numerical
methods with fourth order accuracy for solving (1.1)—(1.3) in the case f = f(x,u)

are given in Aguchi-Yamamoto [1].
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