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BOOK REVIEW

Algebraic Models in Geometry, by Yves Félix, John Oprea and Daniel Tanré,

Oxford University Press, Oxford, 2008, xxi + 460pp., ISBN 978-0-19-920652-0.

In his landmark paper [Infinitesimal Computations in Topology, Publ. I. H. E. S.

47 (1977) 269-331], D. Sullivan demonstrated the power of differential forms for

homotopy theory. Sullivan constructed a version of the de Rahm algebra of forms

but with rational coefficients and without any smoothness hypotheses. Remark-

ably, this construction leads to a complete algebraic model for the homotopy type

of a simply connected (or, more generally, a nilpotent) space modulo torsion. Pre-

cisely, given any differential graded (DG) algebra (A, d) there is an associated

minimal DG algebra (∧V, d) (a free algebra with decomposable differential) and

a DG algebra map ϕ : ∧ V → A inducing an isomorphism on cohomology. The

minimal DG algebra is uniquely determined by (A, d) up to isomorphism. Ap-

plying this procedure to Sullivan’s de Rahm algebra yields the Sullivan minimal

model of a space.

The Sullivan minimal model is a faithful invariant of rational homotopy type: two

nilpotent spaces have homotopy equivalent rationalizations if and only if their

minimal models are isomorphic. Consequently, all the rational homotopy invari-

ants of a nilpotent space can, in principle, be recovered from its minimal model.

While Sullivan’s minimal models thus provide an exceptionally powerful tool for

homotopy theory, arguably the most striking applications of the theory were orig-

inally in geometry. The famous paper of Deligne-Griffiths-Morgan-Sullivan ap-

plied Hodge theory and Sullivan’s minimal models to prove that the real homotopy

type of a Kähler manifold is a formal consequence of its real cohomology. (Sulli-

van later improved this result in the above mentioned paper, replacing R with Q.)

In another direction, Sullivan models proved decisive in settling an important case

of the “closed geodesic problem” for Riemannian manifolds. In the late 1960s, D.

Gromoll and W. Meyer proved that a Riemannian manifold M admits infinitely

many distinct, periodic geodesics if the free loop space LM has unbounded Betti

numbers. Using this result and an explicit Sullivan model for the free loop space,
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M. Vigué-Poirrier and Sullivan proved that M admits infinitely many closed geo-

desics provided the algebra H∗(M ; Q) requires at least two generators.

In the thirty years since the appearance of Sullivan’s paper, the promise of mini-

mal models as a tool for geometry has been richly fulfilled. Minimal models and

related techniques have found significant applications in diverse areas including

blow-ups in symplectic geometry, curvature of Riemannian manifolds, configura-

tion spaces, toral actions on manifolds and, most recently, the Chas-Sullivan loop

product. The book under review provides an impressively comprehensive account

of these and many other developments. We discuss the specific contents now.

Chapter 1 gives a nice survey of Lie groups and related objects: classifying spaces,

bundles and homogenous spaces. Two important antecedents of Sullivan models

are discussed in this context. First, given a left G-manifold M, the left invariant

forms ΩL(M) are defined and the inclusion ΩL(M) ↪→ ADR(M) is shown to

induce an isomorphism in cohomology where the latter space is the usual de Rahm

algebra of forms on M . Applied to a compact Lie group G, this result gives

perhaps the simplest example of a Sullivan minimal model. A more significant

predecessor of Sullivan’s theory is the Cartan-Weil model for a homogeneous

space. An explicit version of this model is described providing a prototype for

the constructions to come. Also included here are the classical Hopf Theorem on

H∗(G; Q) and two separate proofs of Borel’s calculation of H∗(BG; Q) for G a

compact Lie group.

Chapter 2 gives a condensed treatment of Sullivan’s rational homotopy theory.

The homotopy theory of DG algebras, minimal models, the construction of Sulli-

van’s rational polynomial forms, relative minimal models (the Sullivan model of

a map), the celebrated elliptic-hyperbolic dichotomy theorem and semi-free mod-

ules are all discussed with many examples but limited proofs. Readers without

background in this area may wish to consult an alternate source, e.g., the text by

Félix-Halperin-Thomas, for a more leisurely exposition of these topics. Included

here as well is a discussion of formal spaces which figure prominently in the se-

quel.

A basic theme of this text is to understand how the particular geometric structures

of a space are reflected in its algebraic model. The first examples in this connec-

tion are given in Chapter 3. Compact manifolds satisfy Poincaré duality and so

it is natural to look for a version of this structure at the level of models. Results

of Sullivan, J. Barge, J. Stasheff and, most recently, P. Lambrechts on Poincaré

duality models are described. While compact Lie groups, their classifying spaces

and many homogenous spaces are formal spaces, the generic manifold is not. A

theorem of T. Miller proves that highly-connected manifolds are formal while a



Book Review 95

theorem of Stasheff gives a useful criterion for determining formality of Poincaré

duality spaces. The minimal models of nilmanifolds, biquotients and Riemannian

manifolds are also presented here. In the last case, the Hodge decomposition of

harmonic forms allows for an explicit description.

Chapter 4 continues the theme of geometric structure reflected in algebraic models

with a thorough and technical study of complex manifolds. The de Rahm algebra

of a complex manifold M admits a natural bigrading stemming from the complex

structure on its tangent spaces. This leads to a decomposition of the de Rahm

differential d = ∂ + ∂ into parts of bidegree (1, 0) and (0, 1), respectively. Using

the differential ∂ gives the bigraded Dolbeault complex of the manifold. When

M is a compact Kähler manifold, the ∂∂-lemma explains the interaction between

these two differentials and is the key to the proof that compact Kähler manifolds

are formal. Two extensions of this important result are given. First, it is shown that

compact Kähler manifolds are actually “strictly formal” which means that their

Dolbeault complex, de Rahm complex and Dolbeault cohomology are all linked

by maps inducing cohomology isomorphisms. Second, compact Kähler manifolds

are shown to have no non-vanishing negative degree derivations of their rational

cohomology and thus satisfy the conclusion of a famous conjecture concerning

certain formal spaces in rational homotopy theory due to S. Halperin.

Computing the Dolbeault cohomology for general complex manifolds is a chal-

lenging problem. Using the Borel spectral sequence, this calculations is made for

the space S1×S2n+1. The Frölicher spectral sequence, arising from the filtration

of the Dolbeault complex by the first degree, converges from the Dolbeault coho-

mology to the de Rahm cohomology of M . For compact Kähler manifolds, the

Frölicher spectral sequence collapses at the E1-term while examples due to H. Pit-

tie and the third author show the spectral sequence need not collapse for even di-

mensional Lie groups. Chapter 4 concludes with a discussion of symplectic man-

ifolds. In contrast to the Kähler case, these are not generally formal. Some condi-

tions which do ensure formality for (cohomologically)-symplectic manifolds are

given.

Chapter 5 takes up the study of geodesics on Riemannian manifolds. Following

Vigué-Poirrier and Sullivan, a model for the free loop space LX for any sim-

ply connected space X is constructed. It is then a purely algebraic exercise to

show LX has unbounded Betti numbers when H∗(X; Q) requires at least two

generators. By the result of Gromoll-Meyer mentioned above, this implies the ex-

istence of infinitely many closed geodesics when X = M is a closed Riemannian

manifold. This basic result is generalized to the context of A-invariant geodesics

where A is a given isometry of M . Extending the Gromoll-Meyer Theorem, a
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result of M. Tanaka implies M admits infinitely many A-invariant geodesics pro-

vided the Betti numbers of M I
A are unbounded where M I

A denotes the space of

paths c : I → M with c(1) = A(c(0)). A Sullivan model for M I
A is constructed

and this construction, in turn, yields a theorem of K. Grove and Halperin giving

the existence of infinitely many A-invariant geodesics for simply connected com-

pact Riemannian manifolds with unbounded rational homotopy groups. A third

question considered in this area concerns the asymptotic behavior, with respect to

a length T, of the number nT of distinct geodesics of length ≤ T. By a result of

Gromov, this problem is again linked to the rational cohomology of the free loop

space. Gromov’s conjecture suggests that nT grows exponentially in the generic

case.

Chapter 6 describes some recent results where algebraic models apply to prob-

lems related to curvature in differential geometry. Grove conjectured that the

Riemannian n-manifolds admitting a metric with sectional curvature in a given

range and diameter bounded by a fixed bound should represent only finitely many

rational homotopy types. Counterexamples to this conjecture are described due to

F. Fang and X. Rong and, independently, B. Totaro. Another problem in this area

is the question of whether the total space E of a real vector bundle E →M admits

a metric with non-negative sectional curvature when M does. Negative examples

are given due to M. Özaydin and G. Walschap. A result of I. Belegradek and V.

Kapovitch giving necessary conditions for the existence of such a metric in certain

cases is framed in terms of the vanishing of derivations of rational cohomology.

This result then establishes a surprising link between the question of the exis-

tence of metrics of non-negative sectional curvature and Halperin’s conjecture,

mentioned above.

Historically, one of the first examples of the applicability of rational homotopy

theory to problems in geometry concerned toral actions on manifolds. These de-

velopments are described in Chapter 7. Given any space X , the rational toral

rank of X , rk0(X), is defined to be the maximal r such that an r-dimensional

torus acts almost freely on some finite complex Y with the same rational ho-

motopy type asX . The toral rank conjecture suggests an inequality of the form

dimH∗(M ; Q) ≥ 2rk0(M) for all nilpotent, compact manifolds M. Basic rational

homotopy theory techniques are applied to calculate the rational toral rank in spe-

cial cases. A characterization in terms of relative Sullivan models of the inequality

rk0(M) ≥ r is due to C. Allday and Halperin with further confirmed cases of the

toral rank conjecture as consequences. A related problem is to describe the ratio-

nal homotopy of the fixed point set corresponding to a smooth action of a torus

on a manifold. Results of Allday and V. Puppe allow for an explicit description of
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the rational homotopy Lie algebra of a component of this space provided M has

vanishing odd rational homotopy.

Chapters 8 describes some areas of current research. The work of P. Lambrechts

and D. Stanley gives a Sullivan model for the complement of a submanifold

N ⊆M . Sullivan models for complex and symplectic blow-ups are used to prove

the existence of non-formal, simply connected, symplectic manifolds following I.

Babenko and I. Taimanov. Given N , a closed, oriented manifold, M. Chas and

Sullivan recently defined a product, called the loop product, on the desuspension

of the homology of the free loop space LN with field coefficients. A rational

model for the loop product is presented when N is 2-connected. The rational loop

algebra is identified with the rational Hochschild cohomology algebra following

work of R. Cohen and J.D.S. Jones.

Chapter 9 surveys a variety of algebraic models for geometric constructions. Mod-

els for configuration spaces, hyperplane arrangements, algebraic varieties, func-

tion and section spaces are all presented with a number of examples and applica-

tions. K. Chen’s theory of iterated integrals offers an alternate approach to rational

homotopy theory and has proved useful in applications. The book concludes with

a number of conjectures and open questions. A text of this scope has a large num-

ber of prerequisites. The authors address some of these background requirements

with three appendices covering differential forms, spectral sequences and basic

homotopy theory.

In summary, the book under review is an invaluable addition to the literature,

surveying decades of vital research and taking the reader to the frontiers with

countless open questions and paths into unexplored terrain. The book serves as

an excellent companion volume to the recent text on rational homotopy theory by

Félix-Halperin-Thomas.
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