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Directed Random Dot Product
Graphs
Stephen J. Young and Edward Scheinerman

Abstract. In this paper we consider three models for random graphs that utilize the
inner product as their fundamental object. We analyze the behavior of these models
with respect to clustering, the small world property, and degree distribution. These
models are motivated by the random dot product graphs developed by Kraetzl, Nickel,
and Scheinerman. We extend their results to fully parameterize the conditions under
which clustering occurs, characterize the diameter of graphs generated by these models,
and describe the behavior of the degree distribution.

1. Introduction

With the ubiquity and importance of the Internet and genetic information in
medicine and biology, the study of complex networks relating to the Internet
and genetics continues to be an important and vital area of study. This is espe-
cially true for networks such as the physical layer of the Internet, the link struc-
ture of the world wide web, and protein–protein and protein–gene interaction
networks.

Because of the size of these networks [Albert and Barabási 02] and the dif-
ficulty of determining complete link information [Achlioptas et al. 05, Lakhina
et al. 03], a significant amount of research has gone into finding models that
match observed properties of these graphs in order to empirically (via simu-
lation) and theoretically understand and predict properties of these complex
networks. There are three models that, together with their variations, are the
core models for these complex networks [Bornholdt and Schuster 03, Durrett 07].
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The configurational model and its variants attempt to generate complex net-
works by specifying the degree sequence and creating edges randomly with re-
spect to that degree sequence. On the other hand, the Barabási–Albert prefer-
ential attachment model attempts to model the process by which the network
grows. Specifically, it posits that vertices with high degree are more likely to
increase in degree when a new vertex is added to the network. In a similar vein,
the copying model [Chung et al. 03, Kumar et al. 00] also attempts to model
the growth process of a complex network. However, the copying model takes the
more distinctly biological viewpoint of replication of existing nodes combined
with mutation.

All three of these types of models have had success in reproducing the hallmark
features of complex networks, namely a power-law degree distribution, a diameter
that grows slowly or is constant with the size of the graph, and one of several
clustering properties; see [Bornholdt and Schuster 03, Durrett 07] for a collection
of such results.

However, there are many other aspects of complex networks that fail to be
captured by these models, for example nonuniform assortativity [Newman 02]
and the existence of directed cycles. Thus there is considerable interest in new
models for complex networks that exhibit a power-law-like degree sequence, small
diameter, and clustering, and are different enough from the three main model
classes to exhibit other properties of complex networks that are not exhibited by
the current models.

One potential method to create new models is to incorporate geometry into
already existing models. Flaxman, Frieze, and Vera [Flaxman et al. 06] used
geometry coupled with the preferential attachment model to create a model that
generates a random power-law graph that has small separators.

Taking this idea one step further, one can add semantic information to an
already existing model. One such model is the random dot product graph model
applied by Caldarelli et al. and Azar et al. [Azar et al. 01, Caldarelli et al.
02] and formalized by Kraetzl, Nickel, Scheinerman, and Tucker [Kraetzl et al.
05a, Kraetzl et al. 05b]. In their work they assign to each vertex a vector in R

d,
and then any edge is present with probability equal to the dot product of the
endpoints. Thus, with the vertices thought of as members of a social network, the
vectors together with the dot product encode semantically the idea of differing
“interests” and varying levels of “talkativeness.”

We discuss the two natural generalizations of the random dot product; specif-
ically, we remove the restrictions on the vectors imposed in earlier work and
develop directed generalization. In Section 2 we review the model and results of
Kraetzl, Nickel, and Scheinerman, and look at the most natural generalization
of their model. Then in Section 3 we examine the directed generalization of the
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model in Section 2. We follow by briefly discussing in Section 4 a model with
less independence than that of Section 3. Finally, we look at some directions for
future research and applications of the generalized models in Section 5.

2. Undirected Graph Model

In their paper, Kraetzl, Nickel, and Scheinerman lay out a general framework for
constructing a class of random graphs that incorporate geometry. Each vertex is
assigned a vector v randomly from some subset S of R

d. Then each edge {i, j} is
present independently with probability f(vi, vj), where f : S × S −→ [0, 1]. The
full generality of this class of models is, however, difficult to analyze, so they
consider a specific instance of this model, namely, each coordinate of a vector
associated with a vertex is Uα[0, 1]/

√
d, where α is a parameter of the model and

d is the dimension of the vector. Then the function f is the inner product of
the two vectors; this has the advantage of being easy to compute and symmetric
in the variables, i.e., f(vi, vj) = f(vj , vi). By considering this restricted model,
Kraetzl et al. were able to show that with d = 1:

1.
(

α+1
2α+1

)2

= P (u ∼ w | u ∼ v ∼ w) > P (u ∼ w) = 1/(α + 1)2.

2. If λ(k) is the random variable indicating the number of vertices of degree
k, then E [λ(k)] ∼ 1

k!α (1 + α)1/αΓ
(

1
α + k

)
n(α−1)/α for k ∈ Z

+ as n → ∞.

3. The giant component has diameter at most 6 as n → ∞.

In order to provide perspective for the rest of this paper, we consider the
following natural generalization and corresponding proofs. Consider some distri-
bution X on a subset of R

d such that XT
i Xj ∈ (0, 1) almost surely, where Xi and

Xj are distributed as X. Then generate a graph in the following manner: each
vertex v has a random variable Xv associated with it distributed as X, and then
each edge {i, j} is present independently with probability XT

i Xj. Let G(X, n)
denote such a graph generated on n vertices. For clarity of presentation, we
will abuse notation and say that a vertex belongs to the region R if the vector
associated with the vertex lies in R. We also denote by (xu)i the ith component
of the random variable Xu, and by xi the distribution of the ith component of
the distribution X.

We begin by considering the clustering present in the random graph model
G(X, n). Due to the unknown distribution of X in the model, we are unable to
produce an explicit clustering coefficient as with the Kraetzl, Nickel, Scheinerman
model. However, in the following proposition we are able to show that there is
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positive clustering unless G(X, n) is essentially an Erdős–Renyi graph model
[Bollobás 98].

Proposition 2.1. Let G = G(X, n), where X is a distribution on R
d such that for any

two random variables Xi and Xj distributed as X, XT
i Xj ∈ (0, 1) almost surely.

Then for any vertices u, v, w ∈ V (G), we have that P (u ∼ w | u ∼ v, v ∼ w) ≥
P (u ∼ w), with equality if and only if X is almost surely constant.

Proof. Notice that P (u ∼ v) = P (v ∼ w) = P (u ∼ w) and furthermore, since the
vectors Xu and Xv are independent, P (u ∼ v) = E [X]T E [X]. Similarly we have
that P (u ∼ v, v ∼ w) = E [X]T E

[
XXT

]
E [X]. Observe that in order to show

that P (u ∼ w | u ∼ v, v ∼ w) ≥ P (u ∼ w), it suffices to show that

P (u ∼ w, u ∼ v, v ∼ w) − P (u ∼ v, v ∼ w) P (u ∼ w) ≥ 0.

Thus consider

P (u ∼ w, u ∼ v, v ∼ w) − P (u ∼ v, v ∼ w) P (u ∼ w)

= E

[
XT

u E
[
XXT

]2
Xu

]
− E [X]T E

[
XXT

]
E [X] E [X]T E [X]

=
d∑

i,j,k=1

E [(xu)i E [xixj ] E [xjxk] (xu)k] − E [xi] E [xixj ]E [xj ] E [xk]2

=
d∑

i,j,k=1

E [xixj ]
(

E [xjxk]E [xixk] − E [xi] E [xj ] E [xk]2
)

.

Now note that cov(X) = E
[
XXT

]−E [X] E [X]T is a symmetric positive semidef-
inite matrix, and thus there is an orthonormal matrix Q such that Q cov(X)QT

is diagonal. But cov(QX) = E
[
QXXT QT

]−E [QX]E
[
XT QT

]
= Q cov(X)QT

and (QXi)T (QXj) = XT
i QT QXj = XT

i Xj , so we may assume without loss
of generality that cov(X) is diagonal. In particular, if i �= j, then E [xixj ] =
E [xi] E [xj ]. Thus we have that if i �= k and j �= k, then

E [xixk] E [xkxj ] − E [xi] E [xk]2 E [xj ] = 0.

Furthermore if i = k �= j, then

E [xixk] E [xkxj ] − E [xi] E [xk]2 E [xj ] = E [xi] E [xj ] Var(xi) ,

and similarly for j = k �= i. Note as well that if i = j = k, then

E [xixk] E [xkxj ] − E [xi] E [xk]2 E [xj ] = E
[
x2

i

]2 − E [xi]
4
.
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Using these equalities, we have that

P (u ∼ w, u ∼ v, v ∼ w) − P (u ∼ v, v ∼ w) P (u ∼ w)

=
∑
i<j

E [xixj ] E [xi] E [xj ] (Var(xi) + Var(xj)) +
d∑

k=1

E
[
x2

k

] (
E

[
x2

k

]2 − E [xk]4
)

=
∑
i<j

E [xi]
2

E [xj ]
2 (Var(xi) + Var(xj)) +

d∑
k=1

E
[
x2

k

]
Var(xk)

(
E

[
x2

k

]
+ E [xk]2

)

≥ 0.

Hence P (u ∼ w | u ∼ v, v ∼ w) ≥ P (u ∼ w).

Clearly, equality holds if X is almost surely constant, since then Var(xi) = 0
for all i. Now suppose that equality holds. Then for every i,

E
[
x2

i

]
Var(xi)

(
E

[
x2

i

]
+ E [xi]

2
)

= 0,

and so either Var(xi) = 0 or E
[
x2

i

]
= 0. But in both these cases xi is almost

surely constant, and thus equality holds if and only if X is almost surely constant.

Let λ(k) be the number of vertices of degree k in the random graph model. In
[Kraetzl et al. 05a], the asymptotics of E [λ(k)] are shown to be

1
k!α

(1 + α)1/α Γ
(

1
α

+ k

)
n(α−1)/α,

where α is the power of the uniform distribution used in the model. We do not
explicitly consider E [λ(k)] but rather consider P (deg(v) = k). However, we note
that E [λ(k)] = nP (deg(v) = k), and so these measures are equivalent.

Proposition 2.2. Let X be a random variable and let G = G(X, n). Then the
probability that a vertex has degree k in G is

∫ (
n − 1

k

) (
E [X]T X

)k (
1 − E [X]T X

)n−1−k

dX.
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Proof. Let v ∈ V (G) be such that v has vector Xv. Then

P (deg(v) = k | Xv) =
∫

P
(
deg(v) = k | XV (G)

)
(dX)n−1

=
∫ ∑

S⊆V (G)−{s}
|S|=k

∏
i∈S

XT
i Xv

∏
i/∈S∪{v}

(1 − XT
i Xv) (dX)n−1

=
∑

S⊆V (G)−{s}
|S|=k

∫ ∏
i∈S

XT
i Xv

∏
i/∈S∪{v}

(1 − XT
i Xv) (dX)n−1

=
∑

S⊆V (G)−{s}
|S|=k

∏
i∈S

E [X]T Xv

∏
i/∈S∪{v}

(1 − E [X]T Xv)

=
(

n − 1
k

) (
E [X]T Xv

)k (
1 − E [X]T Xv

)n−1−k

.

Now integrating to remove the conditioning on Xv, we get
∫

P (deg(v) = k | Xv) dX =
∫ (

n − 1
k

) (
E [X]T X

)k (
1 − E [X]T X

)n−1−k

dX.

Corollary 2.3. Let X be distributed like Uα[0, 1]. Then if v is a vertex in G = G(X, n),
then P (deg(v) = k) asymptotically is

(
1+α

n

)1/α Γ(k+1+ 1
α )

k! .

Proof. First note that E [X ] = 1/(1 + α). Thus we have that

P (deg(v) = k) =
∫ (

n − 1
k

) (
E [X]T X

)k (
1 − E [X]T X

)n−1−k

dX

=
(

n − 1
k

) ∫ 1

0

(
x

1 + α

)k (
1 − x

1 + α

)n−1−k 1
α

x
1
α−1dx

=
(

n − 1
k

) n−1−k∑
j=0

(
n − 1 − k

j

)
(−1)j

α(1 + α)k+j

∫ 1

0

xk+j+ 1
α−1dx

=
n−1−k∑

j=0

(
n − 1

k, j, n − 1 − k − j

)
(−1)j

(αk + αj + 1)(1 + α)k+j

=
(

n − 1
k

)2F1

(
k + 1

α , k + 1 − n
k + 1 + 1

α

; 1
1+α

)

(αk + 1)(1 + α)k
,
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where 2F1 ( a,b
c ; z) is Gauss’s hypergeometric function. We note that

2F1

(
a, b
c

; z
)

= (1 − z)−a
2F1

(
a, c − b

c
;

z

z − 1

)

and that

2F1

(
a, b
c

; z
)

= eaπi Γ(c)Γ(b − c + 1)
Γ(a + b − c + 1)Γ(c − a)

z−a
2F1

(
a, a − c + 1

a + b − c + 1;
z − 1

z

)

+
Γ(c)Γ(b − c + 1)
Γ(a)Γ(b − a + 1)

za−c(1 − z)c−a−b
2F1

(
1 − a, c − a
b − a + 1 ;

1
z

)

[Abramowitz and Stegun 64, Temme 03]. Then using these relations, we obtain

2F1

(
k + 1

α , k + 1 − n
k + 1 + 1

α

;
1

1 + α

)

=
(

1 + α

α

)k+ 1
α

2F1

(
k + 1

α , 1
α + n

k + 1 + 1
α

;
−1
α

)

= (1 + α)k+ 1
α

Γ(k + 1 + 1
α )Γ(n − k)

Γ(n + 1
α ) 2F1

(
k + 1

α , 0
1
α + n

; 1 + α

)

− αk + 1
α2(n − k)

(
1 + α

α

)1−n+k

2F1

(
1 − k − 1

α , 1
n − k + 1 ;−α

)
.

But 2F1

(
k+ 1

α ,0
1
α +n

; 1 + α
)

= 1 by definition. Thus we have that

P (deg(v) = k) =
(1 + α)

1
α Γ(k + 1 + 1

α )Γ(n)
k!Γ(n + 1

α )

−
(

n − 1
k

)αn−1
2F1

(
1 − k − 1

α , 1
n − k + 1 ;−α

)

αk−2(1 + α)n−1(n − k)
.

Now using an integral definition of the hypergeometric function [Temme 03], we
have that

1 ≤ 2F1

(
1 − k − 1

α , 1
n − k + 1 ;−α

)

= (n − k)
∫ ∞

0

(1 + α − αe−t)k−1+1/α

e(n−k)t
dt ≤ (1 + α)k−1+1/α.

Thus as n → ∞, the second term goes to zero in an exponential manner, and
hence we have that asymptotically,

P (deg(v) = k) ∼ (1 + α)1/αΓ(k + 1 + 1
α )Γ(n)

k!Γ(n + 1
α )

.
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However, using Stirling’s approximation, we have

Γ(n)
Γ(n + 1

α )
∼

√
2π
n

(
n
e

)n

√
2π

n+ 1
α

(
n+ 1

α

e

)n+1/α
=

√
1 + 1/αn

(
1 +

1
αn

)−n

e1/α

(
n +

1
α

)−1/α

,

which behaves asymptotically like n−1/α as n approaches infinity. Thus the
asymptotic behavior of P (deg(v) = k) is

(
1+α

n

)1/α Γ(k+1+ 1
α )

k! . Furthermore, as k

gets large this approaches (k(1+α)
n )1/α.

We now move on to consider the asymptotic behavior of the diameter of
G(X, n). If X is constant, G(X, n) reduces to an Erdős–Renyi random graph
with parameter XTX. Thus it is clear that the asymptotic diameter of G(X, n)
depends on the variability of X. Specifically, it is the variability of X that re-
sults in a diameter greater than 2 in the asymptotic limit. Thus, it is apparent
that the nature of the probability distribution X should drive the diameter of
G(X, n) and hence drive any statement on the diameter of G(X, n). Thus we
will appeal to the geometry of the distribution of X in order to show that the
diameter of an arbitrarily large fraction of G(X, n) is almost surely at most 5.
First, however, we need the following preliminary lemma.

Lemma 2.4. Let X be a distribution on R
d such that for random variables Xu and

Xv distributed as X, XT
u Xv ∈ (0, 1) almost surely. Then ‖X‖ ≤ 1 almost surely.

Proof. Suppose not; then P (‖X‖ > 1) �= 0. We can then partition the support
of X by the shells Ai =

{
x ∈ R

d | i < ‖x‖ ≤ i + 1
}

for i ∈ Z
+. Since there

are countably many such shells and P (X ∈ ∪iAi) = P (‖X‖ > 1) �= 0, there
exists some i such that P (X ∈ Ai) �= 0. But then this shell can be partitioned
into finitely many angular regions such that any pair of points in a region have
angular distance at most arccos

(
1/i2

)
. Furthermore, there is at least one such

angular region, call it R, such that X lies in R with positive probability. Now
note that for any two vectors x, y ∈ R, xT y > i2 cos

(
arccos

(
1/i2

))
> 1. Then

if Xu and Xv are distributed as X, we have that P (Xu, Xv ∈ R) �= 0 and hence
P

(
XT

u Xv /∈ (0, 1)
)

> 0, a contradiction. Thus ‖X‖ is almost surely at most 1.

We note that in a similar fashion, ‖X‖ > 0 almost surely; specifically, X is
almost surely not 0.

Remark 2.5. We denote by B (c; r) (respectively B (c; r)) the open (respectively
closed) ball of radius r centered at c.
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This result allows us to generalize naturally in many ways the proof of a
bounded-diameter giant component that appears in [Kraetzl et al. 05a]. In par-
ticular, in the following theorem we are able to use the compactness of X to break
G(X, n) into smaller Erdős–Renyi-like subgraphs, which have known asymptotic
diameter.

Theorem 2.6. Let X be a random variable over R
d and let G = G(X, n). Then an

arbitrarily large fraction of G almost surely is connected of diameter at most 5.

Proof. By Lemma 2.4, ‖X‖ is almost surely at most 1. Thus we may assume
without loss of generality that X ∈ B (0; 1). Let 0 < δ < 1

4 and choose ε > 0 such
that P (X ∈ B (0; ε)) < δ. Then let A be the closed annulus B (0; 1) − B (0; ε).
For all α ∈ A, choose

rα ∈
{

r > 0 | ∀x, y ∈ B (α; r) , xT y >
ε2

4

}
,

which is nonempty by the continuity of the inner product. Then ∪α∈AB (α; rα)
is an open cover of A, and since A is compact, there exists a finite cover, say
{B (αi; rαi)}.

Fix i such that P (X ∈ B (αi; rαi)) �= 0. Then as n → ∞, there are al-
most surely infinitely many vertices that lie in B (αi; rαi). It then follows
from a result of Erdős and Renyi, since the probability of every edge is at
least ε2/4 and for fixed {Xv} each edge is present independently, that the
graph induced by B (αi; rαi) is almost surely of diameter at most 2. Clearly,
if P (X ∈ B (αi; rαi)) = 0, then there are almost surely no vertices in that re-
gion, and moreover, those regions do not affect the diameter of G(X, n).

Now consider two regions Ri = B (αi; rαi) and Rj = B
(
αj ; rαj

)
occurring

with positive probability. There is a naturally defined probability measure on
Ri ×Rj . Furthermore, since P

(
XT

i Xj = 0
)

= 0, there exist ε̂, δ̂ > 0 such that

P

(
XT

i Xj > δ̂ | Xi ∈ Ri, Xj ∈ Rj

)
> ε̂. But since δ̂ and ε̂ are independent of

n, and Ri and Rj almost surely contain an infinite number of vertices, there is
almost surely an edge eij between the regions.

Now given vertices u ∈ Ri and v ∈ Rj , there is almost surely a path of length
2 from u to the endpoint of eij in Ri and similarly for v. Thus combining these
two paths of length 2 with the edge eij , there is almost surely a path of length 5
from u to v. Hence, for any pair of vertices in A, there is almost surely a path of
length at most 5 between them. Now since δ can be arbitrarily small, A contains
an arbitrarily large fraction of the graph, and hence an arbitrarily large fraction
of the graph is connected with diameter 5.
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Thus we have that G(X, n) exhibits clustering at the local level, has asymptot-
ically constant diameter, and the degree distribution can be controlled explicitly
with the variation of X. Furthermore, as Kraetzl, Nickel, and Scheinerman have
shown, for well-chosen distributions of X, the degree distribution of G(X, n) can
resemble a power-law degree distribution. Hence, their model not only results
in a model for power-law graphs, but is one of a large class of random graph
models that yield power-law-type graphs.

3. Directed Inner Product Graph

We now consider a directed generalization of the model above. Specifically, let
X and Y be distributions on a real inner product space Ω such that if X and Y

are random variables, distributed as X and Y respectively, then almost surely
we have that 〈X, Y 〉 ∈ (0, 1). Assign to each vertex v a pair (Xv, Yv) such that
Xv and Yv are independent and (Xv, Yv) is distributed as (X,Y). Then each arc
u → v is present independently with probability 〈Xu, Yv〉. Denote such a random
graph on n vertices by

−→
G(X,Y, n). In this section we proceed to show that the

results regarding G(X, n) generalize in spirit to the directed model G(X,Y, n),
beginning first with the result on local clustering, and then proceeding to show
that the degree distribution can be controlled in a similar manner as in G(X, n),
and finally that asymptotically, an arbitrarily large fraction of G(X,Y, n) is
strongly connected with constant diameter.

In order to show the clustering results we need the following convexity result.

Lemma 3.1. Let Ω be a real inner product space and let a, b ∈ Ω. Let D ⊆ Ω
be a region such that for all x ∈ D, 〈a, x〉 ∈ (0, 1) and 〈b, x〉 ∈ (0, 1). Then
u : D −→ R defined by x �−→ 〈a, x〉 〈b, x〉 is a convex function of x.

Proof. Let F : (0, 1) × (0, 1) −→ R be defined by (x, y) �−→ xy. Then ∇2F =
( 0 1

1 0 ). This matrix, although not positive semidefinite, is positive semidefinite
over [0, 1] × [0, 1], and hence F (x, y) is convex over its domain [Ben-Tal and
Nemirovski 01]. Since 〈a, x〉 is a real inner product, for any λ ∈ [0, 1] and x, y ∈
D, 〈a, λx + (1 − λ)y〉 = λ 〈a, x〉+ (1 − λ) 〈a, y〉. Thus 〈a, x〉 is a convex function
in x and similarly for 〈b, x〉. Thus u(x) = F (〈a, x〉 , 〈b, x〉) is the composition of
convex functions and is thus convex.

Theorem 3.2. Let Ω be a real inner product space and let Xu, Xv, Xw, Yu, Yv, Yw

be independent random variables, not necessarily identically distributed, over Ω
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such that 〈Xi, Yj〉 ∈ (0, 1) for all i, j. Now consider the random directed graph in
which each arc i → j is present, independently, with probability 〈Xi, Yj〉. Then
we have that

P (u → w | u → v, v → w) ≥ P (u → w) ,

P (u → w | u → v, w → v) ≥ P (u → w) ,

P (u → w | v → u, v → w) ≥ P (u → w) ,

P (u → w | w → v, v → u) = P (u → w) .

Proof. First note that by the linearity of the expectation and the inner product,
P (u → w) = 〈E [Xu] , E [Yw]〉. Now consider

P (u → w | u → v, v → w) =
E [〈Xu, Yw〉 〈Xu, Yv〉 〈Xv, Yw〉]

E [〈Xu, Yv〉 〈Xv, Yw〉]

=

∫ 〈E [Xv] , Yw〉
(∫ 〈Xu, Yw〉 〈Xu, E [Yv]〉 dXu

)
dYw

〈E [Xu] , E [Yv]〉 〈E [Xv] , E [Yv]〉

≥
∫ 〈E [Xv] , Yw〉 〈E [Xu] , Yw〉 〈E [Xu] , E [Yv]〉 dYw

〈E [Xu] , E [Yv]〉 〈E [Xv] , E [Yv]〉

=
∫ 〈E [Xv] , Yw〉 〈E [Xu] , Yw〉 dYw

〈E [Xv] , E [Yv]〉

≥ 〈E [Xv] , E [Yw]〉 〈E [Xu] , E [Yw]〉
〈E [Xv] , E [Yv]〉

= 〈E [Xu] , E [Yw]〉 ,

where the inequalities come from the convexity of u(x) = 〈a, x〉 〈b, x〉 and Jensen’s
inequality [Grimmett and Stirzaker 01]. In a similar fashion we have that

P (u → w | u → v, w → v) =
E [〈Xu, Yw〉 〈Xu, Yv〉 〈Xw, Yv〉]

E [〈Xu, Yv〉 〈Xw, Yv〉]

≥ 〈E [Xu] , E [Yw]〉E [〈E [Xu] , Yv〉 〈E [Xw] , Yv〉]
E [〈E [Xu] , Yv〉 〈E [Xw] , Yv〉]

= 〈E [Xu] , E [Yw]〉 ,
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P (u → w | v → u, v → w) =
E [〈Xu, Yw〉 〈Xv, Yu〉 〈Xv, Yw〉]

E [〈Xv, Yu〉 〈Xv, Yw〉]

≥ 〈E [Xu] , E [Yw]〉E [〈Xv, E [Yu]〉 〈Xv, E [Yw]〉]
E [〈Xv, E [Yu]〉 〈Xv, E [Yw]〉]

= 〈E [Xu] , E [Yw]〉 ,

P (u → w | v → u, w → v) =
E [〈Xu, Yw〉 〈Xv, Yu〉 〈Xw, Yv〉]

E [〈Xv, Yu〉 〈Xw, Yv〉]

=
〈E [Xu] , E [Yw]〉E [〈Xv, Yu〉 〈Xw, Yv〉]

E [〈Xv, Yu〉 〈Xw, Yv〉]
= 〈E [Xu] , E [Yw]〉 ,

which completes the proof.

Note that as an immediate corollary, by letting Xu, Xv, Xw (respectively Yu,
Yv, Yw) be independent identically distributed as X (respectively Y), we have
that for u, v, w ∈ V (

−→
G(X,Y, n)),

P (u → w | u → v, v → w) ≥ P (u → w) ,

P (u → w | u → v, w → v) ≥ P (u → w) ,

P (u → w | v → u, v → w) ≥ P (u → w) ,

P (u → w | w → v, v → u) = P (u → w) .

We observe that since the clustering is a local behavior, we can avoid the
restriction that each vertex is identically distributed. However, for the rest of this
section, we restrict our attention to the case in which every vertex is independent
and identically distributed in order to adequately address the global properties
of degree distribution and diameter.

Proposition 3.3. Let G =
−→
G(X,Y, n), where X and Y are distributions over a real

inner product space such that if Xi and Yj are independent random variables
distributed as X and Y, then 〈Xi, Yj〉 ∈ (0, 1) almost surely. Then for a vertex v,

deg−(v) =
∫ (

n − 1
k

)
〈E [Y] , X〉k (1 − 〈E [Y] , X〉)n−1−k

dX,

deg+(v) =
∫ (

n − 1
k

)
〈E [X] , Y 〉k (1 − 〈E [X] , Y 〉)n−1−k

dY.
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Proof. Similarly to proposition 3.3, we have that

P
(
deg−(v) = k

)
=

∫
P

(
deg−(v) = k | Xv

)
dX

=
∫∫

P
(
deg−(v) = k | Xv, YV (G)−{v}

)
dX (dY)n−1

=
∫∫ ∑

S⊆V (D)−{v}
|S|=k

∏
i∈S

〈Xv, Yi〉
∏

i/∈S∪{v}
(1 − 〈Xv, Yi〉)dX (dY)n−1

=
∫ ∑

S⊆V (G)−{v}
|S|=k

∏
i∈S

∫
〈Xv, Yi〉 dY

∏
i/∈S∪{v}

∫
(1 − 〈Xv, Yi〉)dYdX

=
∫ ∑

S⊆V (D)−{v}
|S|=k

∏
i∈S

〈Xv, E [Y]〉
∏

i/∈S∪{v}

∫
(1 − 〈Xv, E [Y]〉)dX

=
∫ (

n − 1
k

)
〈X, E [Y]〉k (1 − 〈X, E [Y]〉)n−1−k

dX.

A symmetric argument applies for the in-degree of v.

This leads to an immediate result on the density of edges in
−→
G (X,Y, n).

Corollary 3.4. Let X and Y be distributions over a real inner product space such
that if Xi and Yj are independent random variables distributed as X and Y,
then 〈Xi, Yj〉 ∈ (0, 1) almost surely, and let G =

−→
G (X,Y, n). Then E [|E(G)|] =

n(n − 1) 〈E [X] , E [Y]〉.

Proof.

E [|E(G)|] = n

n−1∑
k=0

kP
(
deg−(v) = k

)

= n

n−1∑
k=0

k

∫ (
n − 1

k

)
〈X, E [Y]〉k (1 − 〈X, E [Y]〉)n−1−k

dX

= n

∫ n−1∑
k=1

k

(
n − 1

k

)
〈X, E [Y]〉k (1 − 〈X, E [Y]〉)n−1−k

dX
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= n(n − 1)
∫ n−1∑

k=1

(
n − 2
k − 1

)
〈X, E [Y]〉k (1 − 〈X, E [Y]〉)n−1−k

dX

= n(n − 1)
∫

〈E [Y] , X〉 (〈E [Y] , X〉 + 1 − 〈E [Y] , X〉)n−2dX

= n(n − 1) 〈E [Y] , E [X]〉 .

This implies that the edge density is Θ
(
n2

)
, contrary to conventional wisdom

regarding complex networks. However, we feel that this tradeoff in practice is
acceptable for two reasons, the first being that 〈E [X] , E [Y]〉 is typically small.
Furthermore, although the results regarding the diameter of the graph would
not hold, one could consider X and Y as functions of n and introduce sparsity
in that manner. We also note that particularly for the world wide web, gene–
protein networks, and the Internet, it is widely accepted that empirical studies
are not capturing all the edges present. Combine this fact with recent work
showing that the incompleteness can severely skew some statistics of the data
[Achlioptas et al. 05, Lakhina et al. 03], and it is plausible that one or more
of these networks is not truly sparse. In addition, the recent work of Leskovec,
Kleinberg, and Faloutsos [Leskovec et al. 07] has shown that for many social
networks the number of edges is becoming superlinear in the number of vertices
as these networks evolve.

We now turn to the asymptotic connectivity of
−→
G(X,Y, n). The result and

proof echo the earlier proof for G(X, n) in Theorem 2.6. However, before we
move on to the asymptotic diameter, we require the following generalization of
a standard result about Erdős–Renyi random graphs.

Lemma 3.5. Let D be a directed random graph on n vertices such that each directed
edge is present independently with probability at least p. Then D is almost surely
strongly connected with directed diameter 2.

Proof. Consider any pair of vertices, say u and v. The probability that there is not
a directed path of length at most 2 from u to v is at most (1−p2)n−2(1−p). Thus
the probability that u and v are not strongly connected by paths of length at most
2 is at most 1−(1−(1−p2)n−2(1−p))2 = 2(1−p2)n−2(1−p)−(1−p2)2n−4(1−p)2.
But then, the expected number of such pairs that are not strongly connected by
paths of length at most 2 is at most

n(n − 1)(2(1 − p2)n−2(1 − p) − (1 − p2)2n−4(1 − p)2),

which approaches 0 as n → ∞. Thus D is almost surely strongly connected with
directed diameter at most 2 [Bollobás 98].
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Theorem 3.6. Let Ω be a real inner product space and let X and Y be distributions
over Ω such that for independent random variables X and Y , distributed as X and
Y respectively, 〈X, Y 〉 ∈ (0, 1) almost surely, and such that there is some compact
set K such that P (X ∈ K) = 1 = P (Y ∈ K). Now consider G =

−→
G(X,Y, n).

Then an arbitrarily large fraction of G is almost surely strongly connected of
diameter at most 5.

Proof. Let 0 < δ < 1
4 and choose some ε > 0 such that P (X ∈ B (0; ε)) <

1−√
1 − δ and P (Y ∈ B (0; ε)) < 1−√

1 − δ. Such an ε exists, since 〈X,Y〉 > 0
almost surely, and hence ‖X‖ 	= 0 and ‖Y‖ 	= 0. Now let AX = K − B (0; ε)
and AY = K −B (0; ε). Then for a vertex v, the probability that the associated
pair (Xv, Yv) is not in A = AX × AY is at most 1 − (

√
1 − δ)2 = δ. Thus,

asymptotically, the fraction of vertices in A is almost surely at least 1 − δ.
Note that since A is a product of compact sets, A is compact. Now for each

pair (αx, αy) ∈ A, choose

r(αx,αy) ∈
{

r > 0 | ∀(x, y) ∈ B (αx; r) × B (αy; r) , 〈x, y〉 >
〈αx, αy〉

4

}
,

which is nonempty by the continuity of the inner product. Then
⋃

(αx,αy)∈A

B
(
αx; r(αx,αy)

) × B
(
αy; r(αx,αy)

)

is an open cover of A and hence has some finite subcover, say
{

B
(
αxi; r(αxi,αyi)

)
× B

(
αyi; r(αxi,αyi)

)}
.

Denote B
(
αxi; r(αxi,αyi

)

)
×B

(
αyi; r(αxi,αyi

)

)
by Ri. Now, as above, Ri almost

surely contains either infinitely many vertices or none. If none, then Ri is irrel-
evant to the graph. However, if Ri contains infinitely many vertices, then since
the probability of an arc between any two vertices in Ri is bounded away from
zero, the graph induced by Ri is almost surely strongly connected with diameter
at most 2.

Now consider any two regions Ri and Rj occurring with positive probability.
Again, note that there is a natural probability measure on

B
(
αxi; r(αxi,αyi)

)
× B

(
αyi; r(αxj ,αyj)

)
.

Then since 〈X,Y〉 > 0, there exist some δ′ and ε′ such that

P

(
〈X,Y〉 > δ′ | (X,Y) ∈ B

(
αxi; r(αxi,αyi

)

)
× B

(
αyi; r(αxj ,αyj

)

))
> ε′.
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But then there is almost surely an arc from Ri to Rj and similarly for an arc
from Rj to Ri. Furthermore, since i and j were arbitrary, this implies that the
graph induced by A is strongly connected with diameter at most 5. Finally, since
δ is arbitrary, A represents an arbitrarily large fraction of the graph.

Thus we have that
−→
G(X,Y, n), for appropriate choices of X and Y, can pro-

duce directed power-law-like graphs. Indeed, we believe it is likely from com-
putational experimentation that there exist choices of X and Y such that the
in-degree sequence of

−→
G(X,Y, n) differs from the out-degree sequence qualita-

tively as well as quantitatively. Specifically, we believe that there exist X and
Y such that the in-degree sequence is qualitatively Poisson distributed and the
out-degree sequence is distributed in a near-power-law fashion.

Although we believe that
−→
G (X,Y, n) is a promising model for many real-world

problems, there are classes of real-world phenomena for which there is empirical
evidence for a directed power-law-type graph, but for which the independence
of X and Y makes little sense. For instance, consider the world wide web,
or the community of bloggers, or even an acquaintance or friendship network.
Intuitively, we believe that there is something inherent about the person or
web page that governs what it links to (communicates with) and what links to
(communicates with) it, and hence those relationships should be coupled in some
strong manner. Thus we consider a final model generalizing both G(X, n) and−→
G(X,Y, n) that yields a graph with the in-degree and the out-degree of a vertex
explicitly coupled.

4. Spherical Inner Product Graphs

We now consider the following model as a generalization of
−→
G(X,Y, n) in which

X and Y are not independent. Each vertex v is assigned a pair (µvSv, ρvSv),
where Sv is chosen uniformly from the surface of the positive orthant of the
d-dimensional unit sphere, µv is chosen according to Uα(0, 1), and ρv is chosen
according to Uβ(0, 1). Then every arc (u, v) is present independently with prob-
ability µvρuSu

T Sv. Denote such a graph by
−→
S

d(α, β, n). We note that many of
the results of the previous sections generalize immediately.

Corollary 4.1. Let µu, µv, µw be independent random variables distributed as Uα(0, 1)
and let ρu, ρv, ρw be independent uniform random variables distributed as Uβ(0, 1).
Let Su, Sv, Sw be independent random variables on the surface of the positive or-
thant of the d-dimensional unit sphere. Now consider the random directed graph
in which each arc i → j is present, independently, with probability µiρjS

T
i Sj.
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Then we have that

P (u → w | u → v, v → w) > P (u → w) ,

P (u → w | u → v, w → v) > P (u → w) ,

P (u → w | v → u, v → w) > P (u → w) ,

P (u → w | w → v, v → u) = P (u → w) .

Proof. Note that

P (u → w | u → v, v → w) =
E

[
µuρwST

u SwµuρvS
T
u SvµvρwST

v Sw

]
E [µuρvST

u SvµvρwST
v Sw]

=
E

[
µ2

uρ2
wµuµwST

u SwST
u SvST

v Sw

]
E [µuρvµvρwST

u SvST
v Sw]

=
E

[
µ2

u

]
E [µu]

E
[
ρ2

w

]
E [ρw]

E
[
ST

u SwST
u SvS

T
v Sw

]
E [ST

u SvST
v Sw]

.

Now since Var(µu) > 0, we have E
[
µ2

u

]
> E [µu]2, and hence E

[
µ2

u

]
/E [µu] >

E [µu]. Similarly, E
[
ρ2

w

]
/E [ρw] > E [ρw]. Furthermore, by the result for the

undirected case (Theorem 2.1), we have

E
[
ST

u SwST
u SvS

T
v Sw

]
E [ST

u SvST
v Sw]

> E
[
ST

u Sw

]
.

Thus we have that

P (u → w | u → v, v → w) =
E

[
µ2

u

]
E [µu]

E
[
ρ2

w

]
E [ρw]

E
[
ST

u SwST
U SvST

v Sw

]
E [ST

u SvST
v Sw]

> E [µu] E [ρw] E
[
ST

u Sw

]

= P (u → w) .

A similar reduction to the undirected case holds for the remaining three cases.

Specifically, we note that this implies that
−→
S

d(α, β, n) exhibits clustering in
the same manner as

−→
G (X,Y, n). Furthermore, we note that in fact, the re-

strictions on the distributions of the µ and ρ variables can be relaxed to any
distribution on (0, 1), and the resulting graph will exhibit clustering in the man-
ner of

−→
G(X,Y, n).
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Corollary 4.2. Let G =
−→
S

d(α, β, n). Then an arbitrarily large fraction of G is almost
surely strongly connected with diameter at most 5 as n → ∞.

Proof. This result follows immediately from Theorem 2.6, by noting that the proof
of the theorem relies entirely on the geometry of random variables, and not on
any specific properties of the probability distribution on that geometry. Thus
the dependence or independence between X and Y does not affect the diameter
of the graph, yielding the desired result.

Thus, combining these results with computational experiments, we have that−→
S

d(α, β, n) exhibits power-law-like behavior. In fact, we observe that excepting
the clustering results, the independence or dependence of X and Y does not
affect the behavior of

−→
G(X,Y, n). Specifically, neither the degree sequence nor

the diameter of
−→
G(X,Y, n) depends on the independence of X and Y at a given

vertex. Thus with further work, the model of Kraetzl, Nickel, and Scheinerman
can be extended to a large class of models with prescribed degree sequences,
asymptotically constant diameter, and under appropriate conditions, local clus-
tering.

5. Future Work

Although there is limited computational evidence for a variety of power-law-like
degree distributions and an explicit representation of the degree sequence given
the parameters of the model, there are obvious practical limitations to the model
G(X, n) and its directed generalizations

−→
G(X,Y, n) and

−→
S

d(α, β, n). Specifi-
cally, further work is needed in finding the reverse mapping that would take
degree distributions, or pairs thereof, and provide distributions, or pairs thereof,
on R

d that yield those degree distributions or something near those degree dis-
tributions. There is some indication that such a reverse procedure exists, in that
P (deg(v) = n − 1 | v ∈ G(X, n)) is the (n − 1)th moment of E [X]T X and we
can write P (deg(v) = n − 2 | v ∈ G(X, n)) as a linear function of the (n − 1)th
and (n − 2)th moments of E [X]T X , and similarly down the line.

Thus, for fixed n and degree probability distributions, it is possible to use back-
substitution to find the first through (n−1)th moments of E [X]T X , which leaves
open the question of how those moments can be transformed into statements
about X and furthermore, whether there a more general algorithm that can
sidestep the tedious back-substitution.

There is also significant room for improvement in the rapid generation of
both G(X, n) and

−→
G(X,Y, n). The naive method of generating

−→
G(X,Y, n), for
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instance, involves generating n copies of both X and Y to form two matrices
in R

d×n and then taking the matrix product of those matrices, resulting in a
matrix in (0, 1)n×n that represents the probability of each arc being present.
This results in an algorithm that is approximately O (

n2d
)

for generating the
graph using O (

n2
)

space. For large n, these space and time requirements begin
to pose a problem, especially the space requirement. Specifically, despite the
fact that there are only E [X]T E [Y] n2 edges, the calculation process by naive
methods requires space of order 2n2. Although both space requirements are the
same asymptotically, in practice 2/(E [X]T E [Y]) is a prohibitively large factor
of overuse of space.

We feel that one of the major directions for future work with the directed model−→
G(X,Y, n) is the revisiting of algorithmic and structural properties of complex
networks. Specifically, in papers such as [Achlioptas et al. 05, Eubank et al.
04, Gkantsidis et al. 05, Kleinberg 99, Lakhina et al. 03, Mihail et al. 06, Mihail et
al. 05], undirected or specially directed models for complex networks are used to
analyze structural and algorithmic properties of the network. However, since the
model

−→
G (X,Y, n) incorporates the direction in a nonspecific manner, it provides

an opportunity to revisit these results and confirm that the behavior shown is
not a function of being undirected or the specific nature of the directions. We
feel that a robust directed model for complex networks is important in bringing
the theory of complex networks closer to practical questions about real-world
networks that inspired the initial research.
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