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Ranking Websites:
A Probabilistic View

Ying Bao, Guang Feng, Tie-Yan Liu, Zhi-Ming Ma, and Ying Wang

Abstract. In this paper we suggest evaluating the importance of a website with the
mean frequency of visiting the website for the Markov chain on the Internet graph de-
scribing random surfing. We show that this mean frequency is equal to the sum of the
PageRanks of all the webpages in that website (hence referred to as PageRankSum),
and we propose a novel algorithm, AggregateRank, based on the theory of stochastic
complement to calculate the rank of a website. The AggregateRank algorithm gives a
good approximation of the PageRankSum accurately, while the corresponding compu-
tational complexity is much lower than PageRankSum. By constructing return-time
Markov chains restricted to each website, we describe also the probabilistic relation
between PageRank and AggregateRank. The complexity of the AggregateRank algo-
rithm, the error bound of the estimation, and the experiments are discussed at the end
of the paper.

[. Introduction

The design of web search engines has become a focus of the research on web search
and mining. One popular approach is to calculate static ranks by exploiting
the hyperlink structure of the web. Researchers have made great progresses on
link-analysis models and algorithms since 1998, such as HITS and PageRank
[Kleinberg 99, Brin et al. 99]. Nowadays, PageRank has emerged as a popular
link-analysis model, mostly due to its query independence, using only the web
graph structure, and Google’s huge business success.

While a webpage, an essential element of the web, is still a focus of the research
on web search and mining, in recent years many researchers have realized that

© A K Peters, Ltd.
1542-7951/06 $0.50 per page 295



296 Internet Mathematics

the website, another element of the web, plays a more and more important
role in web search and mining applications [Despeyroux 04, Davulcu et al. 04,
Lerman et al. 04, Lei et al. 04, Qin et al. 05]. Compared to an individual
webpage, a website can sometimes provide plenty of semantic information in
the following aspects. First, webpages in the same website may be authored
by the same person or organization. Second, there might be high correlations
between webpages in the same website, in terms of content, page layout, and
hyperlinks. Third, from the topological point of view, websites contain a higher
density of internal hyperlinks (about 75% according to [Henzinger et al. 03]) and
a lower density of external links [Girvan and Newman 02]. These properties make
websites semantically important to understanding the whole picture of the web.
Actually, the ranking of websites has been a key technical component in many
commercial search engines. On the one hand, in the service part, it can help
define a more reasonable rank for webpages because those pages from important
websites tend to be important as well. On the other hand, in the crawler part, it
can help crawl webpages from those important websites first, or help determine a
quota (number of webpages) for each website in the index according to its rank.
In this way, with the same size of index in total, search engines can achieve the
best tradeoff between index coverage and index quality.

In the literature of website ranking, researchers used to describe the inter-
connectivity among websites with a so-called hostgraph in which the nodes denote
websites and the edges denote links between websites (there will be an edge
between two websites if and only if there is a hyperlink from a webpage in one
website to a webpage in the other) and then adopt a random-walk model in
the hostgraph to calculate the website ranking [Bharat et al. 01, Dill et al. 01].
However, we want to point out that a random walk over such a graph does not
reasonably reflect the browsing behavior of web surfers. In this paper we shall
propose a reasonable evaluation for ranking the websites. Namely, we suggest
evaluating the importance of a website by the mean frequency of visits to the
site made by a Markov chain on the Internet Graph that models random surfing.
We shall prove (see Theorem 3.3) that this mean frequency is equal to the sum
of the PageRanks of all the webpages in that website (denoted by PageRankSum
for ease of reference).

However, it is clear that using PageRankSum to calculate the ranks of web-
sites is not yet a feasible solution, especially for those applications that only care
about webpages. The reason is that the number of webpages is much larger than
the number of websites. Therefore, it is much more complex to rank webpages
than to rank websites, and it is almost impossible for small research groups or
companies to afford such expensive computations. To tackle these aforemen-
tioned problems, we propose a novel algorithm for calculating the rank of a
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website—based on the theory of stochastic complement [Meyer 89]—that can
approximate the PageRankSum accurately but whose computational complex-
ity is much lower than PageRankSum and only a little higher than previous
HostRank algorithms [Bharat et al. 01, Dill et al. 01]. We name this algorithm
AggregateRank. Experiments demonstrated the effectiveness and efficiency of
this algorithm.

Since PageRank reflects the mean frequency of visits to webpages (see Sec-
tion 2) and AggregateRank reflects the mean frequency of visits to websites,
both algorithms are closely related. By constructing return-time Markov chains
restricted to each website, we may formulate the relation between PageRank and
AggregateRank as follows. Suppose that AggregateRank is £ = (£1,&2, -+ ,&n),
that Ps,(a) denotes the transition matrix of the return-time Markov chain for
website S; (for ¢ = 1,2,---, N), and that the stationary distribution of Ps, ()
is wg, (), i =1,2,--- ,N. Then,

PageRank = (517751 (a)’ 5271—52 (05)7 T 7€N7TSN (Oé)) (11)

The rest of this paper is organized as follows. In Section 2 we briefly review
the probabilistic meaning of PageRank and explain that PageRank reflects the
mean frequency of webpage visits. In Section 3 we explore how to reasonably
rank websites with the mean frequency of visits as well, and we describe our
AggregateRank algorithm. In Section 4 we describe the probabilistic relation
between PageRank and AggregateRank. In Section 5 we discuss the complexity
and the error bound of the AggregateRank algorithm and report on experiments
with some real web-graph data.

2. Explaining PageRank with Markov Chain

How to rank webpages has been investigated widely, and one of the most famous
algorithms is called PageRank [Brin et al. 99, Langville and Meyer 04], which
was proposed by Brin and Page in 1998 and is used by the Google search engine.
The probabilistic meaning of PageRank has been explained in the literature (see,
e.g., [Langville and Meyer 04]). For the purpose of our further discussion, we
briefly review the probabilistic meaning of PageRank and provide a more explicit
explanation via the ergodic theorem of Markov chains.

Consider the hyperlink structure of webpages on a network as a directed graph
G = (V(G), E(G)) [Bao and Liu 06]. A vertex i € V(G) of the graph represents
a webpage, and a directed edge ij € E(G) represents a hyperlink from page i
to page j. Let B be the adjacent matrix of G and b; be the sum of the ith row
of B. Let D be the diagonal matrix with diagonal entry b; (If b; = 0, then we
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normalize b; = n, the cardinal number of V(G), and change all entries of the ith
row of B to 1). Now, we construct a stochastic matrix P = D™ B.

When a surfer browses on the Internet, he may choose the next page by ran-
domly clicking on one of the links in the current page. This happens with a
large probability «, which means that he randomly walks on G with transition
probability P. Sometimes, however, he may open a new page randomly—mnot
following the hyperlinks. This occurs with a small probability (1 — «), which
means that he randomly walks on G with transition probability %eeT, where e is
a column vector of all ones. So, the transition matrix that describes the random
surfer behavior is formulated as

Pla)=aP+ (1 — a)%eeT. (2.1)

The random surfer model can be formally described by a Markov chain
{Xk}k>0. The evolution of the Markov chain represents the surfing behavior
of a random surfer from one webpage to another. So, the transition matrix of
{Xk}k>0 is P(«), which is an irreducible stochastic matrix on a finite state space
that has a unique stationary distribution.

PageRank algorithms use the stationary distribution of P(«) (denoted by
m(a), which satisfies m(a)P(a) = 7(«) with w(a)e = 1) to evaluate the impor-
tance of webpages. That is to say, webpages are ranked according to their value
in 7(c).

Now we will explain the probabilistic meaning for PageRank more explic-
itly. We learn from the ergodic theorem on Markov chains (see, e.g., [Qian and
Gong 97]) that

w() = lm -3 ) 22)
k=0
= <an“(n)> , (2.3)

where 7i(a) is the ith entry of m(a), pgf) () is the dith entry of the k-step
transition matrix P*(a), and f;;(n) is the probability of first returning to page
i in n steps after starting from page i. Expression (2.3) is equal to the mean
frequency of visits to page i. The more important a webpage is, the higher the
frequency that it will be visited. So, the ergodic theorem on Markov chains
shows that the stationary distribution 7(a) of P(«) is a very suitable candidate

for ranking webpages.
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3. Probabilistic View of Ranking Websites

PageRank has been proved to be successful in web search. Actually, ranking
is important not only for webpages but also for websites in many applications.
There are two approaches in the literature of website ranking. However, we
will show that the traditional approaches on calculating website ranks are not
reasonable because they lose some transition information of the random surfer
(see Section 3.1). To tackle this problem, we will investigate the real transition
probability between websites in Section 3.2, and then, based on the investigation,
propose a novel algorithm for website ranking in Section 3.3.

3.1. Traditional Approaches to Calculating Website Ranks

In the literature of website ranking, people used to apply those technologies pro-
posed for ranking webpages to the ranking of websites. For example, the famous
PageRank algorithm was used to rank websites in the works [Eiron et al. 04,
Wu and Aberer 04]. In order to apply PageRank to the ranking of websites, a
hostgraph was constructed in these works. In the hostgraph, the nodes denote
websites, and there is an edge between two nodes if there is a hyperlink from a
webpage in one website to a webpage in the other. According to different defini-
tions of the edge weights, there are two categories of hostgraphs are used in the
literature. In the first category, the weight of an edge between two websites is
defined by the number of hyperlinks between the two sets of webpages in these
sites [Bharat et al. 01]. In the second category, the weight of any edge is simply
set to 1 [Dill et al. 01]. For the sake of clarity, we refer to the two categories as
weighted hostgraph and naive hostgraph, respectively. Figures 1 and 2 show how
these two categories of hostgraphs can be constructed.

Figure 1. Illustration of a web graph with several websites.
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@ ®)
Figure 2. Illustrations of the (a) weighted hostgraph and (b) naive hostgraph of
the web graph in Figure 1.

After constructing the hostgraph, a similar random walk was conducted in
both works. That is, a random surfer was supposed to jump between websites
following the edges, with a probability of «, or jump to a random website, with
a probability of 1 — «. In such a way, one can obtain the HostRank, which is
used to describe the importance of the websites.

At first glance, the above random-walk model over the hostgraph seems to be
a natural extension of the PageRank algorithm. However, we want to point out
that it is actually not as reasonable for sites as it is for pages because it is not in
accordance with the browsing behavior of web surfers. As we know, real-world
web surfers usually have two basic ways to access the web. One is to type the
URL in the address bar of the web browser. The other is to click on a hyperlink
in the currently loaded page. These two methods can be described well by the
parameter « used in PageRank. That is, with a probability of 1 — «, the web
users visit a random webpage by inputting its URL (using a favorites folder can
be considered as a shortcut to typing URLSs), and, with a probability of «, they
visit a web page by clicking on a hyperlink.

Nevertheless, for the random walk in the hostgraph, we can hardly find the
same evident correlation between the random-walk model and real-world user
behaviors. For example, even if there is an edge between two websites A and B
in the hostgraph, when a web surfer visits a page in website A, he may not be able
to jump to website B because the hyperlink to website B may exist on another
page in website A, which may be unreachable from the page that he is currently
visiting. In other words, the hostgraph is only a kind of approximation to the web
graph: it loses much transition information, especially for the naive hostgraph.
As a result, we argue that the rank values derived from the aforementioned
hostgraph are not convincing enough.

3.2. Transition Probability between Websites

Motivated by the probabilistic explanation of PageRank discussed in Section 2,
we propose that a reasonable way to describe the importance of a website should
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be the mean frequency with which users visit it. Actually, the Markov chain
{Xk}r>0 also implies the transition between websites. We should do a little
deduction to expose it.

Suppose that there are N total websites in the web. Each webpage belongs
to some determinate website, so we rearrange the transition matrix P(«) and
partition it into NV x N blocks according to the N websites. Then, it has the
following form:

?1(04) ?2(04) ?N(Oé)
P = | T
PNl(OL) PNQ(Ot) PNN(OL)

where the elements in each diagonal block denote the transition probabilities
between webpages in the same website and the elements of each off-diagonal
block denote the transition probabilities between webpages in different websites.
The diagonal blocks Pj;(«) are square and of order n;, for i = 1,2,--- , N, and
n= vazl n;. The stationary distribution m(«), known as the PageRank vector,
is given by

m(a)P(a) = w(a) with w(a)e = 1. (3.2)

Let m(«) be partitioned conformally with P(a), i.e.,
() = (m(a), ma(a), -, T (a)), (3-3)

where 7;(a) is a row vector of length n;.

Till now, we just get a rearranged PageRank. However, this process is neces-
sary to describe the next part plainly.

We now turn our attention to the mean frequency that a random surfer visits
the website S; (for any fixed j = 1,---,N). Since we are interested in the
situation that the surfing Markov chain {X}}r>0 has run a long time, we may
assume that {Xj}r>o starts from the stationary probability m(«). Then, the
one-step transition probability from the website S; to the website S; is defined
by

Cij(a) = PTW(Q){Xerl S Sj | X, € Sz} (34)
The k-step transition probability from the website S; to the website S; is defined
by

k
(@) = Proo{Xmsx €S | X € S} (3.5)

)
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Recall that || - ||, is the 1-norm of a vector, i.e., the sum of all entries of a
vector.

Theorem 3.1.  From a website S; to another website S;, the one-step transition
bability is cij(c) =9 P
probability is c;j(a) EAOIRL (a)e.

Proof. By the properties of conditional probability, we have

Cij(a) = Prﬂ'(a){Xm+1 € Sj | X, € Sz}
Prw(a){Xm—o—l € Sj,Xm € Sl}
PTw(a){Xm S Sz}
Ztesj Yes; Pro{Xmi1 =, X =1}
Zlesi Prﬂ(a){Xm = l}
> tes; 2oies; Pra@{Xm = BPraa{Xmsr =t | Xon =1}
Zlesi Prﬂ(a){Xm - l}
Ztesj Elesi 7 (a)pie ()
ZZGSi ﬂ—l(a)
mi() Py (a)e
| mi(a) [l
m(a)

= T e

where 7!(a) is the Ith entry of (), pi:(c) is the ltth entry of P(a), and e is a
column vector of all ones of which the dimension depends on the corresponding
context. U

Theorem 3.2. For two websites S; and S;, the k-step transition probability is

B () = D plby 4,

where Pi(jk)(a) is the ijth block of the k-step transition matriz P*(a).

Proof. By the properties of conditional probability, we have

Cz(‘;'c)(a) = Pro@{Xm+r €55 | Xon € Si}
Prooy{Xmsr € 85, X € Si}
Pro){Xm € Si}
Yores, 2es, Pro@{Xmir = t, Xm =1}
Zlesi PTW(oc){Xm =1}
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Ztesj Zzesi Prﬁ(a){Xm = Z}Prﬂ(a){Xerk =t| X, =1}
Yies, Prate)(Xm =1}
Sies; Lies, ™ (@)py, (@)
Elesi ()

mi(@) P (a)e
T7i(e) T
(o k

nm&ﬂfé“

a)e,

where pl(tk)(a) is the Itth entry of P*(a). d

We have assumed that 7(«) is the initial distribution of the webpage-
surfing Markov chain {X}}r>0. We assume that a surfer is browsing on some
website S; at time m, and we will calculate the number of visits to the website
S; after time m. Let N;(n) denote the number of {X}}x>¢ visits to the website
S; during the n times {m + 1,m + 2,--- ,m + n}. Then, we get the following
conclusion.

Theorem 33. The 1-norm of the initial distribution of the Markov chain surfing

website S; is
. Ni(n
Ita) 1= 5 (tim 22

n— 00 n

Proof. By definition, we know that E(limn_wo ergn)

visits to the website S;. Hence, by the dominated convergence theorem (e.g.,
[Kallenberg 97]) and the ergodic theorem on Markov chains, we get

B ( lim NJ(”)> B ( iy k=1 {Xwes]})
n—oo n

) is the mean frequency of

n—o0 n
— h.m E (ZZ—l 1{X1n+kesj}>
n—oo n

. 1 *
= nh_)n;()ﬁ;cij ()



304 Internet Mathematics

= T~ (emila)e

I
3
—~
Q
~— N
=

where
1, when X, 41 € S5;

l{XmM-GSj} = { 0, otherwise.
O

From the deduction above, we know that || 7;(c) ||1 is the mean frequency of
visits to S;. Hence, the probability vector

(@) I, [ wa(@) -l (@) )

is a suitable candidate for ranking the importance of websites.

As aforementioned, ¢;;(a) represents the transition probability between web-
sites. By virtue of Theorem 3.1, we see that the N x N matrix C(«) = (¢;;())
is equal to the coupling matrix specified in Theorem 4.1 of [Meyer 89]. It
follows that C'(«) is an irreducible stochastic matrix; thus, it possesses a unique
stationary probability vector, denoted by &(«), i.e.,

(a)C(a) = &(ar) with {(a)e = 1. (3.6)
One can easily verify that if we define

§(a) = ([l m(e) llrs [ ma(@) fl1s- -+ wv(a) (1), (3.7)

then £(«) is a solution of (3.6).

One may have realized that the above computation can also be regarded as
being carried out with a certain hostgraph. However, the edge weight of this new
hostgraph is not decided heuristically as in previous works [Bharat et al. 01, Dill
et al. 01] but is determined by the sophisticated formulation in Theorem 3.1.
Besides, the transition probability from S; to S; actually summarizes all the
cases in which the random surfer jumps from any webpage in .S; to any webpage
in S; within one-step transition. Therefore, the transition in this new hostgraph
is in accordance with the real behavior of web surfers. In this regard, the so-
calculated rank from the coupling matrix C'(«) will be more reasonable than the
one in those previous works.

Based on the above discussions, the direct approach to computing the Aggre-
gateRank () is to accumulate PageRank values (denoted by PageRankSum).
However, this approach is unfeasible because the computation of PageRank is
not a trivial task when the number of webpages is as large as several billions.
Therefore, efficient computation becomes a significant problem. In the next sub-
section, we will propose an approximate algorithm for this purpose, which can
be much more efficient than PageRankSum with very little accuracy loss.
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3.3. The AggregateRank Algorithm

As aforementioned, the coupling matrix C'(«), with

ij(a __mle) i(a)e
) = o) I

represents the transition probability from one website to another in terms of a
random surfer model; its stationary distribution £(«), which is equal to PageR-
ankSum, is regarded as a reasonable rank of websites. It is clear that the con-
struction of the coupling matrix asks for the calculation of PageRank over the
whole web graph. To avoid this time-consuming step, it is necessary to invent
a new method for constructing the coupling matrix C'(«). Fortunately, the the-
ory of stochastic complement [Meyer 89] gives a good solution to form C(«)
without PageRank values. Intuitively, the stochastic complement of a diagonal
block P;;(«) in (3.1) represents the transition matrix for the return-time Markov
chain (see Section 4) restricted to the webpages of the ith website. To illustrate
this, we take a simple web graph as an example. Suppose that the web graph
contains only two websites; the transition probability matrix of this web graph
(rearranged according to website information) can be denoted by

_( Pul@) Pia(a)
P~ (R e ) @)

and its stationary distribution is m(«) = (1 («), m2(a)). For each diagonal block
in P(«), we can calculate its stochastic complement. For example, the stochastic
complement of Pj1(«) is calculated as follows (see also (4.15) below):

511(0[) = Pu(a) + Plg(a)(.[ — ng(a))_ngl(a). (39)

The stochastic complement is also a stochastic matrix, each row of which sums up
to 1. It can be proved that 1 («)/|| 71 () ||1 is the unique stationary probability
vector for the stochastic complement Sy1(«), i.e.,

71 ()

T 5@ = (@) i @) (3.10)

R EACKH BN
Generally, m;(«)/|| m; () ||1 is the unique stationary distribution for the stochas-

tic complement S;; () | i.e.

) 5ia)

[ mi(e) [n ™"

Apparently, the computation of the stationary distribution of each Sy; () will
be cheaper than that of the PageRanks directly because the dimension of each

- mla) gy, ml@)
TGN th T 6= (3.11)
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Sii(a) is very small and equal to the number of pages in the site. (We will
discuss this in more detail in Section 4.) However, it is time-consuming to
compute the exact stochastic complement since we should compute an inverse
matrix for I — P;;(«). As we know, the computation for inverse matrix is very
expensive—sometimes even more expensive than PageRank. Thus, we prefer
an approximate approach to get the stationary distribution of each stochastic
complement instead. According to Cho and Meyer, we can find an efficient
approximate method [Cho and Meyer 06]. It does not use (3.9) to aggregate the
stochastic complement directly. Instead, it only modifies each diagonal block
P;;(«) by a little to get a new matrix with the same dimension as S;;(«). The
details are given as follows.

For the first step, we modify the original diagonal block P;;(«) to be a tran-
sition probability matrix. It is clear that the sum of each row in the original
diagonal block P;;(«) is always less than 1. To make it a transition probability
matrix, we simply adjust the diagonal elements of P;;(«) (add or subtract by a
small value) to make the sum of each row equal to 1. Letting P;5(«) denote the
matrix after adjustment, we can calculate its stationary distribution u;(«) as

u; () P (o) = u;(a) with u,(a)e = 1. (3.12)
According to [Cho and Meyer|, we can prove that (see also (5.5) below)
mi(a)
——— ~ (). (3.13)
| mi(@) [l

From the description above, Pj(«) is very easy to get from P;;(«). Moreover,
it can even be stored sparsely like the original P(«). Thus, the formulation in
(3.13) means that we can get each m(«)/|| m1 () ||1 very efficiently.
Utilizing the result of (3.13), we can obtain an approximate coupling matrix
C*(a):
(C(@))ij = ui(a) Pij(a)e. (3.14)
Consequently, the stationary distribution £*(a) of the approximate coupling
matrix can be regarded as a good approximation to £(«). We name the aforemen-
tioned algorithm the AggregateRank algorithm, whose detailed algorithm flow is

shown as follows:

1. Divide the n x n matrix P(«) into N x N blocks according to the N sites.

2. Construct the stochastic matrix P} («) for P;;(«) by changing the diagonal
elements of Py («) so that each row sums up to 1.

3. Determine u; () from

u; () P (a) = u; (o) with u;(a)e = 1. (3.15)

(23
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4. Form an approximation C*(«) to the coupling matrix C'(«) by evaluating

(C*(a))” = ui(oz)Pij(oz)e. (316)

5. Determine the stationary distribution of C*(«), and denote it as £*(a),
ie.,

£*(a)C*(a) = £*(a) with £*(a)e = 1. (3.17)

To sum up, the proposed algorithm improves the efficiency in the following
ways. First, it uses an easy-to-construct sparse matrix to replace the stochastic
complement for approximating m;(«)/|| 7;(«) |1 instead of the whole transition
probability matrix. Second, this algorithm is much easier to implement in parallel
than PageRankSum. The reason is that, for PageRank, if we want to implement
it in parallel, we must take care of the information exchange between different
servers since there are hyperlinks whose sources and destinations are not in the
same server. For our method, we do not need the exchange of information if we
put a website at most in one sever; then, the computations over P};(«a) are done
for each particular website and are independent of the rest of the web graph.

4. Probabilistic Relation between PageRank and AggregateRank

As is known, PageRank is carried out with a web graph, where each vertex
represents a webpage, while AggregateRank is done with a hostgraph, where
each vertex represents a website. If we can discover how the Markov chain
{Xk}x>0 evolves when restricted to webpages of only one website, we can reveal
the probability relation between PageRank and AggregateRank.

We shall introduce return times to construct a new Markov chain that describes
the random surfing behavior on the pages of some fixed website A. Assume a
starting state in website A, i.e., Xy € A. The variable

T4 :=min{n > 1; X,, € A} (4.1)

is called the first return time on A. In order to distinguish different return times,
we write 74 (k) for the time of the kth visit to A; these are defined inductively
by

TA(l) :=7Ta, (4.2)
TA(k) ;== min{n > 74(k — 1); X,, € A}. (4.3)

It is clear that the variables 74 (k) are stopping times for X.
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We construct a new stochastic process {¢y}r>0 as follows:

¢0 = )(07 (44)
k= Xo 1)

Then, we can prove that {¢x } x>0 is a time-homogeneous Markov chain, further-
more, an ergodic chain (see [Meyer 89]).

We now turn our attention to the transition probability matrix of {¢}r>0.
Assume that the transition probability matrix P(«) is permuted and reparti-
tioned so that .

A A
P(a) _ A < Pll(a) Plg(a) )7 (46)

121 ]521(&) 1522(0()

where Pll(a) denotes the transition probabilities between webpages of website
A. Let the stationary distribution 7(«) be partitioned conformally with P(«),
ie.,

m(a) = (mi(a), m(a)). (4.7)

Assume that website A is composed of webpages {aj,as, -+ ,a;,}. For the
new Markov chain {¢y}r>0, the one-step transition probability of moving from
ay, to a; is the probability in the original chain {X}}x>0 of moving directly from
ay to a; plus the probability of moving directly from aj to some state in A,
eventually moving back to A, and hitting a; first upon return [Meyer 89]. The
probability of moving directly from aj to a; in the original chain {Xp}i>0 is

i = [Pri(@)]x;, (4.8)
and the probability of moving directly from ax to a, € Ais
Gen = [Pra ()] k- (4.9)

The probability of moving from @ to A such that a; is the first state entered
upon return to A is

qnj = Z [1522(04)m1521(06)]hj (4.10)
m>0
= [(I = Pa(a)) "' Poy(a)]n;- (4.11)

where []522(04)”‘]521(@)} nj is the probability that the original chain starts from
the state a, € A, runs exactly m times within A, and moves from a state
in A to the state a; € A at the (m + 1)th run. Probability g,; can also be
obtained by considering the states in A to be absorbing states and applying the
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theory of absorbing chains; see [Kemeny and Snell 76]. Consequently, the one-
step transition probability of moving from aj to a; in the new Markov chain

{Pr}r>0 is

P{bnt1 = ajlén = ar} = qij + Z qkhGh; (4.12)
ahEA

= [Pr1(@) + Pro(@)(I = Pao(c)) "' Por(@)]gy. (4.13)
So, the transition matrix of {¢y}r>0, denoted by Pa(«), is formulated as
Pa(a) = Pyy(a) 4+ Pia(a)(I — Pag(a)) 1Py (). (4.14)

In the theory of Markov chains, P4 («) is called the stochastic complementation of
Py (a) [Meyer 89, Stewart 94]. It is known that P4 () is an irreducible stochastic
matrix and has unique stationary distribution. The stationary distribution of
Py(a) is

m(a)

IR (4.15)

ma()

With the above procedure we can construct a return-time Markov chain for
each site. We have supposed that there are N sites and n pages in the web
graph. The transition matrix P(«) is partitioned into N x N blocks according
to the N sites and has the following form:

11211(04) ?2(04) ?N(Oé)
ORI (16
PNl(Oé) PNQ(a) e PNN(Oé)

The stationary distribution m(«) is partitioned conformally with P(«), i.e.,
7T(Oé) = (71'1(0[),7‘(’2(0[),”- 77TN(OZ)). (417)

Let Ps,(a) denote the transition matrix of the return-time Markov chain for site
S; (for i =1,2,--- ,N). From the deduction above, it is clear that the unique
stationary distribution of Pg,(«) is

s, (a) = | @) g i—1.2. N (4.18)

| mi(e) |y
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We may conclude that the relation between PageRank and AggregateRank can
be formulated as follows. Suppose that AggregateRank is & = (&1,&2,- - ,&nN)
and the stationary distribution of Pg,(«) is 7g,(a), i = 1,2,--- , N. Then,

Pa‘geRank = (517{-51 (Oé)7 627752 (a)7 Ty §N7TSN (Oé)) (419)

In other words, the mean frequency of visiting a webpage i belonging to a website
S; can be decomposed into two factors: one is the mean frequency of visiting
website S, the other is the mean frequency of visiting webpage ¢ when restricted
to website S;.

Remark 4.I. The above discussions are partly motivated by the stochastic com-
plementation theory and can be regarded as an interesting application of that
theory. We refer the reader to [Meyer 89] for a detailed review of stochastic
complementation theory.

5. Algorithm Analysis and Experiments

In this section, we will discuss the convergence speed and the error bound of
the AggregateRank algorithm. Then, some experiments with real web graphs
are shown. The engineering aspects of the results of this section were reported
in more detail at the 29th Annual International Conference on Research and
Development on Information Retrieval [Feng et al. 06].

5.1 Complexity Analysis

As can be seen in the previous sections, in our proposed AggregateRank algo-
rithm, we divide the web graph into websites and conduct power-method itera-
tions within each website. After that, we apply the power method once again to
the coupling matrix C*(«). It is easy to understand that, in this way, we can
save some memory and the corresponding algorithm is easier to implement in
parallel. When we deal with a web graph with billions of pages, this advantage
will become very meaningful.

However, for the computational complexity, it is not obvious whether the
proposed method can be more efficient. The reason is that PageRank has a
complexity of O(r). (Suppose that there are N sites, n pages, and r hyperlinks
in total, with » &~ 10n.) Considering that 75% of hyperlinks connect pages in
the same website [Henzinger et al. 03], dividing a web graph into websites can
save only 25% of propagations along hyperlinks; thus, the complexity is still
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around O(r). Furthermore, for the computation in Step 5 of the AggregateRank
algorithm, it is not obvious whether C*(«a) is also a sparse matrix, thus its
computational complexity might be as high as O(N?) in the worse case. All of
this can be a big issue.

In this section, we will discuss the aforementioned problems in detail. Specifi-
cally, we will prove in Section 5.1.1 that although the complexity of one iteration
of the power method applied to Pj(«) (i = 1,---,N) is also O(r), its conver-
gence speed can be significantly faster than that of PageRank over the whole web
graph. Then, we will prove in Section 5.1.2 that C*(«) is also a sparse matrix
and that there are only about O(NN) nonzero elements in this matrix. Therefore,
the computation of calculating the stationary distribution for this matrix will
also be faster than that for the matrix.

5.1.1. Convergence speed analysis for the power method applied to P;;(c). In order to under-
stand the convergence speed of the power method applied to Pf(«a), we need to
review the following lemma. As we know, the convergence speed of the power
method is determined by the magnitude of the subdominant eigenvalue of the
transition probability matrix [Stewart 94]. Lemma 5.1 just tells us the relation-
ship between matrix P(«) and its eigenvalues [Langville and Meyer 04].

Lemma 5.1. [Langville and Meyer 04] Given the spectrum of the stochastic matriz
P as {1,X3, A3, , \n}, the spectrum of the primitive stochastic matriz

P(a) = aP + (1 — a)ev”

T

is {1,a)a, )3, - ,a),}, where v! is a probability vector.

In order to use Lemma 5.1 to analyze the convergence speed of the power
method applied to P};(«), we transform Pj5(«) into the following form:

_ el
Pi(a) = ab+ (1 - aje—, (5.1)
Uz

where P*

* is a stochastic matrix and e /n; is a probability vector.

Given the eigenvalues of P} as {1, Aoy Ag, e e ,;\n}, by Lemma 5.1, the eigen-
values of P%(a) are {1,aa, )3, -+, )\, }. Since the convergence speed of the
power method is determined by the magnitude of the subdominant eigenvalue of
P (), we can conclude that the convergence rate of the power method applied

to P (a) is approximately the rate at which (aXy)*¥ — 0.
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The convergence speed of PageRank is approximately the rate at which o —
0. So, whether we can be more efficient than PageRank is determined by how
small Ay could be. We will show in the following discussions that Ay < 1.

As we know, the web graph has a natural block structure: the majority of
hyperlinks are intra-site links [Kamvar et al. 03]. Therefore, a random walk on
the web with the transition matrix P(a) can be viewed as a nearly completely
decomposable Markov chain. According to [Meyer 89], when the states in a
nearly completely decomposable Markov chain are naturally ordered, and when
the transition matrix is partitioned into N closely coupled subclasses in the
natural way, the underlying transition matrix of the Markov chain has exactly
N — 1 non-unit eigenvalues clustered near A = 1. (There are pathological cases,
but they are rare in practical work [Meyer 89].) Thus, P(«) has exactly N — 1
non-unit eigenvalues clustered near A = 1.

Since Pj(«) is an irreducible stochastic matrix, the Perron-Frobenius
theorem [Gantmacher 59] guarantees that the unit eigenvalue of each Pj(«) is
simple. Because Pi(a) ~ P;;(«), by the continuity of the eigenvalues, the non-
unit eigenvalues of P;5(«) must be rather far from the unit eigenvalue of P} («).
Otherwise, the spectrum of P(«) would contain a cluster of at least N non-
unit eigenvalues positioned near A = 1. As a result, we can come to the con-
clusion that 045\2 < 1 for any « close to 1; thus, ;\2 < 1. That is, the conver-
gence speed of the power method applied to P;i(«) is much faster than that of
PageRank.

5.1.2. Complexity of the power method applied to C*(cx). As mentioned at the beginning
of Section 5, the sparseness of the matrix C*(«) is a critical factor that influences
the computational complexity of our proposed AggregateRank algorithm. To
understand this, we conduct the following discussions. First of all, we transform
P(a) into the following form:
— eT
Pla) = aP+(1- a)e;

a(P + aleT) +(1- oz)e{
n n

o7
= aP+ (aa+(1 —a)e);, (5.2)

where P is the transition matrix whose element p;; is the probability of moving
from webpage i to webpage j in one step following the hyperlink structure of
the web graph, a is a vector whose element a; = 1 if row ¢ of P corresponds to
a dangling node and equals 0 otherwise, « is damping factor, and e is a column
vector of all ones. Then, we investigate the construction process of C*(«a) as
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follows:
C*(a) = U(ae)P(a)V
1
= U(a)(aP + (aa+ (1 —a)e)—e")V
n
= aU()PV + (aU(a)a+ (1 — a)e)v”, (5.3)
where
uy(a)
uz(cv)
Ula) = :
uN(a) Nxn
e
e
V= ,
€ nxN
and 0T = (fr,m2 ... N s a probability vector.

According to this decomposition, in Step 4 of the AggregateRank algorithm,
we only need to compute A =: U(a)PV. The corresponding count of multipli-
cations is O(r). Note that we do not need any iteration here, so the complexity
of Step 4 is actually much lower than that of PageRank, which will take tens or
even hundreds of iterations to converge.

In Step 5, for any starting vector £*(9) (),

&®) = ¢&* V()0 (o)
= &) U(a)P(a)V
= et D(@U(@)(a(P +areT) + (1 a) eIV
= a&** VA4 (e *D(a)U(a)a + (1 — a))o?. (5.4)

Then, it is clear that the computational complexity of each iteration in Step 5
depends on the number of nonzeroes in A. Because a;; is equal to the linear
combination of the elements in block P;;, we have a;; = 0 when every element in
P;; is 0. Suppose that the average number of sites to which a particular website
links is 1; then, A has p nonzeroes in each row, and the number of nonzeroes in A
is pIN. Considering that, for the World Wide Web, p is almost a constant which
is ten or so [Bharat et al. 01], we come to the conclusion that the computational
complex of one iteration in Step 5 is O(N) < O(r).
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5.2. Error Analysis

As one can see, the proposed AggregateRank algorithm is an approximation
to PageRankSum. In this subsection, we will discuss the error bound of this
approximation.

According to the theory of stochastic complement, the approximation shown in
(3.13) requires the matrix to be nearly completely decomposable. This condition
is well satisfied in real web applications, because about 75% of the hyperlinks
connect pages in the same website [Henzinger et al. 03], and it is reasonable to
treat the transition probability matrix P(«) as a nearly completely decomposable
matrix.

According to the discussions in Section 5.1.1, P(«) has exactly N — 1 non-unit
eigenvalues that are very close to the unit eigenvalue. Thus, the approxima-
tion in (3.13) has an upper error bound according to [Cho and Meyer|, which
is determined by the number of pages n, the number of sites N, the size of
each site n;, and the condition number of the coupling matrix x(C(«)), which
is the deviation from the complete reducibility § and the eigen structure of
the probability transition matrix P(«). We state it explicitly in the following
theorem.

Theorem 5.2. If P(a) has exactly N — 1 non-unit eigenvalues close to the unit
eigenvalue, then there are the following error bounds:

|| Hf((j)) ~ ui(0) < mingd(n; — 1,1}, (5.5)
| C(a) — C*() ||oo< min{62(miaxni —1),1}, (5.6)
| €(e) = €°(@) 1< min{82(C(a)) (maxn, - 1),1}. (5.7)

From Theorem 5.2, we can see that the upper error bound of the Aggregate-
Rank algorithm principally depends on the scale of the largest website. Evi-
dently, the number of pages in the largest website is much smaller than the size
of the web. In this regard, we can say that the corresponding error bound is well
controlled.

5.3.  Experiments

In our experiments, the data corpus is the benchmark data for the web track
of TREC 2003 and 2004, which was crawled from the .gov domain in the year
2002. It contains 1,247,753 webpages in total.
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Figure 3. The distribution of the sizes of .gov websites.

Before testing our proposed method, we needed to partition the web graph into
websites. For this purpose, we followed the rules as below. Because the URLs in
the .gov domain are very regular, we can easily determine the website to which a
webpage belongs. After removing the http:// or https:// from the URL, the part
before the first slash can be considered as the website name. However, because
there may be some subsites, we only use the word preceding .gov as the identifier
for the site. For example, http://aaa.bbb.gov/xxxx belongs to the website bbb.

After this preprocess, we had 731 sites in the .gov dataset. The largest website
contained 137,103 webpages while the smallest one contained only one page. The
distribution of the sizes of all the websites is shown in Figure 3. It nearly follows
a power law and is consistent with previous research on the sizes of websites
[Albert and Barabasi 02].

In our experiment, we validated whether the proposed AggregateRank algo-
rithm can well approximate PageRankSum. For comparison, we also investigated
two other HostRank algorithms, which work on the weighted hostgraph and naive
hostgraph respectively [Bharat et al. 01, Dill et al. 01]. The differences between
PageRankSum and the algorithms under investigation are shown in Table 1, in
terms of the Euclidean distance between the rank vectors.

From Table 1, we can see that the AggregateRank algorithm has the best
performance: its Euclidean distance from PageRankSum is only 0.0057, while
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Ranking Euclidean | Max distance in | Min distance in
algorthms distance single dimension | single dimension
PageRankSum 0.0 0.0 0.0
AggregateRank 0.0057 0.0029 0.000000
weighted HostRank 0.1125 0.0805 0.000020
naive HostRank 0.1601 0.1098 0.000007

Table I. Performance evaluation of algorithms based on Euclidean distance.

the ranking results produced by the other two algorithms are farther from Page-
RankSum, with Euclidean distances of 0.1125 and 0.1601, respectively.

In addition to the Euclidean distance, we also used another similarity measure
based on the Kendall’s 7 distance [Kendall and Gibbons 90] to evaluate the
performance of the ranking results. This measure ignores the absolute values
of the ranking scores and only counts the partial-order preferences. Therefore,
it can better reflect the true ranking performance in real applications. This
similarity between two ranking lists s and ¢ is defined as follows:

K(s,t)

Sim(s,t) =1— o

(5.8)

where K (s,t) is the Kendall’s 7 distance, which counts the number of pair-wise
disagreements between s and ¢, defined as

K(s,t) =| (i, 5)li < j,s() <s(5), () > t(5) | - (5.9)

According to the definition, the larger Sim(s,t) is, the more similar two lists
are. If the two ranking lists are consistent with each other, their Sim measure
is equal to 1.

We list the performance evaluation of the aforementioned algorithms based
on the Kendall’s 7 distance in Table 2. From this table, once again we can see
that the AggregateRank algorithm is the best approximation to PageRankSum.
Furthermore, the advantage of the AggregateRank algorithm over the reference
algorithms becomes even more obvious if we look at the top-k ranking results.

Ranking algorithms Sim
PageRankSum 1
AggregateRank 0.9826

weighted HostRank 0.8428
naive HostRank 0.8889

Table 2. Performance evaluation of ranking algorithms based on Kendall’s 7
distance.
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Figure 4. Similarity between PageRankSum and the three other ranking results.

Actually, we took the top k websites in terms of their PageRankSum and ob-
tained their order O,. Then, we calculated their relative orders according to the
other ranking algorithms discussed, i.e. O, O,,, and O,, which correspond to
the AggregateRank algorithm, the weighted HostRank algorithm, and the naive
HostRank algorithm, respectively. We plot the similarity based on the Kendall’s
7 distance between these top-k ranking results in Figure 4.

After the comparison on similarity, we compared these ranking algorithms
based on complexity as well. As discussed in Section 3, the AggregateRank
algorithm can converge faster than PageRank. To verify this, we use the Li-norm
of the difference between the current ranking list and the last one to measure
whether the power method converges. When this difference is less than 1073, we
regard the computation as converged, and the computation process is terminated.
The running time of each algorithm is shown in Table 3.

Ranking algorithms | Running time(s)
PageRankSum 116.23
AggregateRank 29.83

Weighted HostRank 0.22
naive HostRank 0.10

Table 3. Comparison of the running times of the four algorithms.



318 Internet Mathematics

From Table 3, we can see that the proposed AggregateRank method is faster
than PageRankSum, while a little more complex than the HostRank methods.
This is consistent with the theoretical analysis in the previous section. The fast
speed of AggregateRank mainly comes from the fast convergence speed. And
the fast speed of HostRank comes from the low dimension of the hostgraph.

In summary, by taking effectiveness and efficiency into consideration at the
same time, we consider the proposed AggregateRank algorithm to be a better
solution to website ranking.
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