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PageRank of Scale-Free
Growing Networks
Konstantin Avrachenkov and Dmitri Lebedev

Abstract. PageRank is one of the principle criteria according to which Google ranks
webpages. PageRank can be interpreted as a frequency of webpage visits by a random
surfer, and thus it reflects the popularity of a webpage. In the present work we find an
analytical expression for the expected PageRank value in a scale-free growing network
model as a function of the age of the growing network and the age of a particular node.
Then, we derive asymptotics that show that PageRank follows closely a power law in
the middle range of its values. The exponent of the theoretical power law matches very
well the value found from measurements of the World Wide Web. Finally, we provide
a mathematical insight for the choice of the damping factor in PageRank definition.

1. Introduction

Surfers on the Internet frequently use search engines to find pages satisfying
their query. However, there are typically hundreds or thousands of relevant
pages available on the web. Thus, listing them in a proper order is a crucial
and nontrivial task. One can use several criteria to sort relevant answers. It
turns out that the link-based criteria which represent well the popularity of
webpages provide rankings that appear to be very satisfactory to Internet users.
Examples of link-based criteria are PageRank [Brin and Page 98] used by search
engine Google, HITS [Kleinberg 99] used by search engines Teoma and Ask, and
SALSA [Lempel and Moran 00]. In the present work we restrict ourselves to the
analysis of the PageRank criterion and use the following definition of PageRank
from [Langville and Meyer 06]. Denote by n the total number of pages on the
web and define the n × n hyperlink matrix P as follows. Suppose that page i
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has k > 0 outgoing links. Then, pij = 1/k if j is one of the outgoing links
and pij = 0 otherwise. If a page does not have outgoing links, the probability
is spread among all pages of the web, namely, pij = 1/n. In order to make
the hyperlink graph connected, it is assumed that a random surfer goes with
some probability to an arbitrary webpage with uniform distribution. Thus, the
PageRank is defined as a stationary distribution of a Markov chain whose state
space is the set of all webpages, and the transition matrix is

P̃ = cP + (1 − c)(1/n)E, (1.1)

where E is a matrix whose entries are all equal to one and c ∈ (0, 1) is the
probability of following a link on the page and not jumping to a random page (it
is chosen by Google to be 0.85). The constant c is often referred to as a damping
factor. The Google matrix P̃ is stochastic, aperiodic, and irreducible, so there
exists a unique row vector π such that

πP̃ = π, π1 = 1, (1.2)

where 1 is a column vector of ones. The row vector π satisfying (1.2) is called
a PageRank vector, or simply PageRank. If a surfer follows a hyperlink with
probability c and jumps to a random page with probability 1− c, then πi can be
interpreted as a stationary probability that the surfer is at page i.

Barabási and Albert [Barabási and Albert 99] proposed a scale-free growing
network model to understand the evolution of the World Wide Web and in
particular to explain the power law for in- and out-degree distributions. Bollobás
et al. [Bollobás et al. 01] refined this model and proved rigorously that in- and
out-degree distributions satisfy power laws. Pandurangan et al. [Pandurangan et
al. 02] applied the “mean-field” heuristics from [Barabási and Albert 99, Barabási
et al. 99, Barabási et al. 00] to show that the PageRank distribution in the scale-
free growing network model satisfies the power law with exponent 2. They also
proposed a model in which new nodes attach with weighted probability that
takes into account the in-degree as well as PageRank. By studying two large
samples of the web, the authors of [Pandurangan et al. 02] found that PageRank
closely follows a power law with exponent 2.1.

In the present work we find an analytical expression for the expected PageRank
value in a scale-free growing network model as a function of the age of the growing
network and the age of a particular node. We prove that the average PageRank
value does not depend on the number of outgoing links. This fact helps us
significantly, since we can deal with tree graphs instead of directed acyclic graphs.
Then, we derive asymptotics that show that PageRank follows closely a power
law with exponent 2.08 in the middle range of its values. Finally, our expressions
give a mathematical insight for the choice of the damping factor c.
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The structure of the paper is as follows: In Section 2 we describe the scale-free
growing network model, which is used in the present work, and its relation to
the other scale-free growing network models. In Section 3 we derive an explicit
formula for the PageRank of directed acyclic graphs and tree graphs. In Section 4
we prove that in our model the average PageRank does not depend on the number
of outgoing links. Sections 5 and 6 provide auxiliary results on the moment-
generating function of the nodes’ heights in subtrees and on the subtree size
distribution, which lead to the final results and asymptotics given in Section 7.
The paper is concluded by Section 8, where we discuss the results and compare
them with the related results from the literature. Some techniques that we use
in the present work are explained in more detail in the appendices (Sections 9
and 10).

2. Scale-Free Network Models

Inspired by the power-law in- and out-degree distributions of the World Wide
Web, Barabási and Albert [Barabási and Albert 99] proposed a growing network
model with a preferential attachment mechanism. In their model a new node is
attached to some old nodes with probability proportional to the in-degree of the
old nodes. Barabási, Albert, and Jeong developed the “mean-field” heuristics,
which allowed them to derive approximations to the power-law degree distribu-
tions [Barabási and Albert 99, Barabási et al. 99, Barabási et al. 00]. Then, Bol-
lobás et al. [Bollobás et al. 01] added some missing parts to the Barabási-Albert
model and showed rigorously that the degree distributions of the scale-free grow-
ing network model indeed satisfy power laws. The model in that paper allows
self-loops and multiple links.

It turns out that there is an explicit analytic expression (it is given in the next
section) for the PageRank of directed acyclic graphs. Furthermore, when Google
computes the PageRank, it disregards the hyperlinks within the same webpage.
Taking into account these two reasons, we have decided to work with the follow-
ing scale-free growing network model: The time is discrete. The network grows
at the speed of one node per time step. We fix a parameter m, the number of
outgoing links from each node. At each time step a new node creates m links to
the existing nodes. Let us denote the growing network at arbitrary time step n
by Gm

n . At this point we need to define the way the links of a new node connect
to the existing nodes. We denote by dv(n) the in-degree of node v at time step n.

• At time step 0, the initial node 0 is created and it has no links. The initial
node has weight m by definition.
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• Then, at the next time step 1, a new node has no other choice but to
connect its m links to the initial node. Node 1 receives the weight m and
the weight of node 0 becomes 2m.

• A new node that appears after time step 1 connects each of its m edges
independently with probability proportional to the existing nodes’ weights
equal to the in-degrees plus m. Namely, the probability that node n con-
nects to node v, v < n, is given by

IP[n→ v|Gm
n−1] =

dv(n− 1) +m∑n−1
k=0(dk(n− 1) +m)

=
dv(n− 1) +m

2m(n− 1) +m
. (2.1)

For instance, node 2 connects with probability 2/3 to the initial node 0
and with probability 1/3 to node 1.

It is easy to see that, in the case of m = 1, the growing network G1
n is a tree.

This fact will be used extensively later in the paper. We would like to note that
the scale-free growing network model of Dorogovtsev at al. [Dorogovtsev et al. 00]
is the closest model to ours. An interested reader can find a detailed overview of
growing network models in the surveys [Bollobás and Riordan 02, Dorogovtsev
and Mendes 02, Newman 03].

3. PageRank of Growing Networks

Let us study the PageRank for growing networks with fixed out-degree m. We
would like to emphasize that in this section we do not assume any preferential
attachment of new nodes. It is only assumed that at each time step a new node
is added to the network and makes m links to previously created nodes. Thus, if
the initial node does not have any outgoing links, a growing network realization
is a directed acyclic graph (DAG) at each time step. To calculate the PageRank
one needs to attribute some outgoing links to the initial node. There are two
natural options: either to make a self-loop in the initial node or to connect the
initial node to all nodes in the network. The difference between these two cases
is a value of the common factor for all nodes v ≥ 1 [Langville and Meyer 05].
Since it turns out that this factor is much simpler in the case of the initial node
with a self-loop, we choose the first option in the present work.

We denote by πv(n) the PageRank of node v after the nth step of the growing
network’s evolution. Of course, n ≥ v. We note that at time step n the PageRank
value of a newly created node n is minimal and is given by πn(n) = 1−c

n+1 .
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Let us denote by Pv(n) the set of all paths from nodes v+ 1, ..., n to v and by
l(p) the length of a path p. Then, the PageRank vector of a growing network
realization can be calculated by the explicit formula given in the following lemma.

Lemma 3.1. The PageRank of a growing network realization of node v, v > 0, at
time step n is given by

πv(n) =
1 − c

n+ 1

⎛
⎝1 +

∑
p∈Pv(n)

( c
m

)l(p)

⎞
⎠ , (3.1)

and the PageRank of the initial node v = 0 is given by

π0(n) =
1

n+ 1

⎛
⎝1 +

∑
p∈P0(n)

( c
m

)l(p)

⎞
⎠ . (3.2)

Proof. The PageRank vector of any network can be expressed by the formula
[Moler 04, Bianchini et al. 05, Langville and Meyer 05]

π =
1 − c

n+ 1
1T [I − cP ]−1, (3.3)

where 1T is the row vector of ones and P is the hyperlink matrix as in (1.1). We
can rewrite the inverse matrix as a power series:

[I − cP ]−1 = I + cP + c2P 2 + ... .

Next, we note that the (i, j) element of matrix [I − cP ]−1 corresponds to the
sum of the terms (c/m)l(p) over all possible paths from node i to node j. The
premultiplication of [I − cP ]−1 by vector 1T gives the sum of all paths to node
j. We note that all paths to node v originate from nodes which appeared after
node v. In the case v > 0, there are no loops and hence we obtain formula (3.1).
In the case v = 0, each path to the initial node ends with a self-loop. Because
of this self-loop, each term (c/m)l(p) is multiplied by the series 1 + c + c2 + ....
The sum of the latter series is equal to 1/(1 − c), which cancels the factor 1 − c

in (3.3) and results in the particular expression (3.2) for the PageRank of the
initial node.

Next, we note that if m = 1 every realization of the growing network becomes
a tree. This simplifies further Equations (3.1) and (3.2). In the case m = 1, let
us denote by Tv(n) the subtree of the growing network with the root in node
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v at time step n, n > v. We denote by Yv(n) the number of nodes in Tv(n),
not counting the root node v. Let us fix v and denote by {τs} the sequence of
nodes that are attached to the subtree Tv(n). In particular, τ0 = v, τ1 is the
first node that attaches to the subtree Tv(n) (inevitably, it attaches to node v),
τ2 is the second node that attaches to the subtree Tv(n), and so on. Thus, the
subscript index s can be considered as the local time for subtree Tv(n). Next, we
denote by X(v, s) the distance between node v and the node attached to Tv(n)
at time step τs. We shall also call this distance the height of node τs in Tv(n). In
particular, we have X(v, 0) = 0 and X(v, 1) = 1. The following corollary follows
from Lemma 3.1.

Corollary 3.2. If all the distances between the root node v and all nodes in Tv(n) are
known, then πv(n), the PageRank of node v, v > 0, can be expressed explicitly
as follows:

πv(n) =
1 − c

n+ 1

⎛
⎝1 +

∑
α∈Tv(n)

cl(v,α)

⎞
⎠ , (3.4)

where l(v, α) is the distance between nodes v and α, or in its alternative local
time form with respect to the subtree Tv(n),

πv(n) =
1 − c

n+ 1

⎛
⎝1 +

Yv(n)∑
s=1

cX(v,s)

⎞
⎠ . (3.5)

The PageRank of the initial node 0 is given by

π0(n) =
1

n+ 1

(
1 +

n∑
s=1

cX(0,s)

)
. (3.6)

4. The Case m > 1 Reduced to the Case m = 1

It follows from Corollary 3.2 that the calculation of PageRank is much simpler in
the case of tree graphs than in the case of directed acyclic graphs. In particular,
in the case of tree graphs, there is a one-to-one correspondence between the paths
and the nodes. Fortunately, as Theorem 4.1 demonstrates, the expected values
of PageRank in the cases m > 1 and m = 1 are equal for the corresponding
nodes of the same age. Denote by IEπm

v (n) the expected value of the PageRank
of node v at time step n for our growing network model Gm

n .
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Theorem 4.1. In the present scale-free growing network model Gm
n , the average

PageRank of node v does not depend on m. Namely, we have

IEπm
v (n) = IEπ1

v(n), v < n. (4.1)

Proof. The proof is done by induction on the node age. Thus, we fix v and consider
time steps n = v + 1, v + 2, ... .

As the induction base, consider node v at time step v+1. There is a new node
v + 1 that is being added to the network and this new node has m links, with j
links to node v, 0 ≤ j ≤ m, and m− j links to the rest of the nodes. Let us find
the expected value of PageRank for node v:

IEπm
v (v + 1) =

m∑
j=0

jc

m

1 − c

v + 2
IP [v + 1 has j links to v] +

1 − c

v + 2
. (4.2)

This is equal to

IEπm
v (v + 1) =

c

m

1 − c

v + 2

m∑
j=0

jIP [v + 1 has j links to v] +
1 − c

v + 2
. (4.3)

The probability that a link will be created from node v+ 1 to node v is equal to

m

2mv +m
=

1
2v + 1

.

Therefore, the sum in (4.3) is the average number of the links from node v + 1
to node v or, in other words, the average number of the successes in m Bernoulli
trials with the probability of success equal to 1

2v+1 . Therefore, we can write

IEπm
v (v + 1) =

c

m

1 − c

v + 2
m

2v + 1
+

1 − c

v + 2
=

c(1 − c)
(v + 2)(2v + 1)

+
1 − c

v + 2
. (4.4)

Thus, IEπm
v (v + 1) does not depend on m, and the induction base is proven.

Next, we consider node v at its age of t, or equivalently at time step n = v+ t,
and we suppose that all the average PageRanks IEπm

k (v + t) of the nodes k,
v < k ≤ v + t, do not depend on m. The nodes k, v < k ≤ v + t, are the nodes
that are “younger” than node v. We shall prove that IEπm

v (v + t), the expected
value of the PageRank of node v at time step v + t, also does not depend on m.

Let us denote a realization of the network Gm
n at time step v + t− 1 as λ. At

time step v + t a new node v + t is born that connects itself with m links to
the older nodes according to the preferential attachment rule. The PageRank of
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node v at time step v + t, knowing that the configuration at time step v + t− 1
was λ, is given by

λπm
v (v + t) =

v+t∑
k=v+1

c

m
λπm

k (v + t)M{k → v, λ} +
1 − c

v + t+ 1
, (4.5)

where M{k → v, λ} is the number of edges from node k to node v. In particular,
we note that the PageRank of an arbitrary node depends only on those nodes
that appear later in time. Now we consider the expectation of (4.5) over all
possible realizations λ:

IEπm
v (v + t) =

v+t∑
k=v+1

c

m
IE
(
λπm

k (v + t)M{k → v, λ})+
1 − c

v + t+ 1
. (4.6)

We claim that λπm
k and M{k → v, λ} are independent.

In fact, as mentioned above, the PageRank λπm
k of node k depends on the nodes

that appear later than time step k, whereas the number of the links between k and
v depends only on the nodes that appeared before node k due to the preferential
attachment rule.

Therefore,

IE
(
λπm

k (v + t)M{k → v, λ}) = IE
(
λπm

k (v + t)
)
IE (M{k → v, λ}) ,

and we can write

IEπm
v (v + t) =

v+t∑
k=v+1

c

m
IEπm

k (v + t)IEM{k → v} +
1 − c

v + t+ 1
(4.7)

=
v+t−1∑
k=v+1

c

m
IEπm

k (v + t)IEM{k → v}

+
c

m
IEM{v + t→ v} 1 − c

v + t+ 1
+

1 − c

v + t+ 1
.

Since each outgoing link from node k is created independently, we have

IEM{k → v} = mIP[one link from k to v].

Due to the preferential attachment rule (see (2.1)), the probability IP[one link
from k to v] does not depend onm if the expected weight of node v is proportional
to m. Let us show this:

IE(dk(n) +m|dk(n− 1)) = dk(n− 1) +m+m
m+ dk(n− 1)
2m(n− 1) +m

, (4.8)
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and taking the average over all possible network realizations, we get

IE(dk(n) +m) = IE(dk(n− 1) +m) +
IE(dk(n− 1) +m)

2n− 1
. (4.9)

Knowing that IE(dk(k) + m) = m, we conclude, even without calculating the
final expression for IEdk(n), that it is proportional to m.

Since IP[one link from k to v] does not depend on m and IEπm
k (v + t) for k =

v + 1, ..., v + t − 1 also does not depend on m by the induction hypothesis, the
induction step is proven.

Theorem 4.1 allows us to concentrate on the case m = 1, when each realization
of the growing network is a tree, in our study of the PageRank of the growing
network model Gm

n .
Let us clarify the claim that the case m = 1 is much simpler than the case

m > 1, thus outlining the steps of the ensuing analysis presented in the next
sections. It follows from Corollary 3.2 that the PageRank of a given node v
depends on the number of nodes in the subtree Tv(n) and on the distances from
these nodes to node v. Both these values can be described using the Markov-type
random processes:

• The size of the tree Tv(n) is a random variable, and it is easy to see that,
in a growing network model with a preferential attachment mechanism,
the evolution of the size of Tv(n) is a Markov chain: at every step n the
size Yv(n) of the tree Tv(n) depends only on the size of the tree at the
previous step n − 1. Inside the tree Tv(n) all nodes (except node v) are
only connected to nodes from Tv(n); therefore, the overall attractiveness of
the tree Tv(n) can be calculated directly, and it is equal to 2Yv(n)+1. The
term “+1” is explained by the fact that we consider the node v to be inside
the tree Tv(n), but its “participation” in the attractiveness of Tv(n) is just
its out-degree 1. Further details on the evolution of the subtree Tv(n) are
given in Section 5.

• Let us consider the tree Tv(·) at the moment when it has k nodes. By the
above arguments about the tree formation, we can limit our consideration
only to the nodes that belong to the tree and ignore the rest of the net-
work. In particular, node v becomes the initial node, and the moments of
attachment of new nodes to the tree can be considered as the local time
of Tv(·). When a new node is connected to some already existing node in
the tree Tv(·), its distance to the root (or its height) depends only on the
height of that node. Therefore, in the model with the preferential attach-
ment mechanism, the probability of a new node being at some height h
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depends on the number of existing nodes with the height h − 1 and their
popularity (the number of the nodes at height h). Actually, we can express
this probability as the number of nodes of heights h− 1 and h divided by
the number of the nodes k. It does not depend on other details, for ex-
ample, how the nodes are exactly connected inside the tree. Using this
fact, we calculate the moment-generating function of the nodes’ heights in
Section 6.

In (3.5) we have a sum of a random number of random variables. We calculate
this sum in Section 7 by combining the expressions for the distribution of subtree
sizes and the moment-generating function of the nodes’ heights.

5. Distribution of Subtree Sizes

We start with a lemma that gives an explicit expression for the distribution of
the subtree size.

Lemma 5.1. The probability that at time step n the subtree rooted in node v has k
nodes is given by

IP[Yv(n) = k] =
Γ(n− v + 1)Γ(k + 1/2)Γ(n− k)Γ(v + 1/2)

Γ(n− v − k + 1)Γ(k + 1)Γ(1/2)Γ(v)Γ(n+ 1/2)
. (5.1)

Proof. We show that the evolution of the subtree size can be described by the
Pólya-Eggenberger urn model (see Section 9).

There are balls of two colors, black and white, in one urn. Initially the urn
contains b = 1 black balls and w = 2v white ones. At every step one ball is
drawn at random from the urn, then it is returned together with s = 2 balls of
the same color.

The balls correspond to the in- and out-degrees of the nodes. The number of
balls is the sum of the degrees. The black balls correspond to the nodes from
the subtree Tv(n). The white balls, therefore, correspond to the nodes outside
the subtree. Every existing edge (k, l) in G1

n corresponds to two balls in the urn
model. Namely, one ball corresponds to the out-degree of node k, and the other
ball corresponds to the in-degree of node l. Therefore, the Pólya-Eggenberger
distribution can be used to estimate the number of black (or white) balls in the
urn at time step n.

The choice of a black ball from the urn corresponds to the event that a new
(n + 1)th node connects itself to the subtree of v. Otherwise, the new node
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Figure 1. Illustration of the urn model: (a) Growing network after three steps.
We choose to follow the subtree T3. (b) Node 4 is not linked to T3. (c) Node 4 is
linked to T3.

connects itself to some node outside of the subtree Tv(·), and, therefore, neither
this node nor its subtree nodes will ever connect themselves to v with a path
lying in the subtree of v.

We specify the expression for the Pólya-Eggenberger distribution (see Sec-
tion 9) for our problem. The probability that after n − v steps a black ball is
drawn from the urn k times is

IP[Yv(n) = k] =
(
n− v

k

)
1(1 + 2) . . . (2k − 1)

× 2v(2v + 2) . . . (2(n− k − 1))
(1 + 2v)(1 + 2v + 2) . . . (2n− 1))

, (5.2)

or, equivalently, in its Gamma function form it gives the expression (5.1).

Let us illustrate the application of the urn model to the growing network forma-
tion by a simple example (see Figure 1). The upper row of the balls corresponds
to the out-degrees of the nodes marked with their own numbers, and the second
row corresponds to the in-degrees of the nodes. At time step 3 we have an urn
with seven balls: six white and one black. Node 0 has in-degree d0 = 2; there-
fore, there are three balls bearing the mark 0. If we draw from the urn a white
ball, as in Figure 1(b), no matter which number it has (here it is 2), we fall out
of T3. Therefore, two white balls are added. In contrast, if we choose a black
ball, then the new node falls inside the tree T3, and, therefore, we add two black
balls. Now it is easy to see that if we erase the number marks from the balls
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but leaving the ball colors, then we will not change anything in the formation of
the number of balls of each color. Thus, the evolution of Y3(n) does not depend
on the topology of T3, but it depends only on the number of nodes inside and
outside the subtree T3.

6. Moment Generating Function of the Nodes’ Heights in Subtrees

In this section we obtain the moment generating function of the nodes’ heights
inside the subtree Tv(n). Namely, we have the following result.

Lemma 6.1. If X(v, s) is the height of the sth node inside the subtree Tv(n), then

IE[cX(v,s)|Yv(n) ≥ s] =
Γ(s+ c

2 )
√
π

Γ(s+ 1
2 )Γ( c

2 )
, (6.1)

where Yv(n) is the number of nodes inside the subtree Tv(n) not counting the
root node v.

Proof. Let us fix v and define Xs = X(v, s) for the sake of short notation. The
evolution of Xs can be described without reference to any particular network
realization or any particular tree structure. If the sth node of subtree Tv(n) has
height k in Tv(n), it means that it is connected to a node with the height k − 1
in Tv(n). The conditional probability of such an event is the number of nodes
located at height k−1 plus the number of nodes located at height k, normalized
by 2s− 1; that is,

IP[Xs = k|Xs−1, . . . , X0;Yv(n) ≥ s] =∑s−1
i=0 1I(Xi = k) +

∑s−1
i=0 1I(Xi = k − 1)

2s− 1
, (6.2)

where 1I(·) is an indicator function.

Using (6.2), we can calculate the conditional moment-generating function of
the nodes’ heights as follows:

IE[cXs |Xs−1, . . . , X0;Yv(n) ≥ s] =
s∑

k=0

ckIP[Xs = k|Xs−1, . . . , X0;Yv(n) ≥ s]



�

�

“imvol3” — 2007/2/7 — 18:57 — page 219 — #13
�

�

�

�

�

�

Avrachenkov and Lebedev: PageRank of Scale-Free Growing Networks 219

=
∑s

k=0 c
k1I(Xs−1 = k) +

∑s
k=1 c

k1I(Xs−1 = k − 1)
2s− 1

+
2s− 3
2s− 1

IE[cXs−1 |Xs−2 . . . , X0;Yv(n) ≥ s]

=
∑s

k=0 c
k1I(Xs−1 = k) + c

∑s−1
k=0 c

k1I(Xs−1 = k)
2s− 1

+
2s− 3
2s− 1

IE[cXs−1 |Xs−2 . . . , X0;Yv(n) ≥ s],

where 1I(Xi = s) = 0 for all i < s. Next, applying the double expectation value
rule with respect to IE[·|Yv(n) ≥ s], we obtain the following recurrent equation:

IE[cXs |Yv(n) ≥ s] =
(

1 − 1 − c

2s− 1

)
IE[cXs−1 |Yv(n) ≥ s]. (6.3)

The above recurrent equation gives

IE[cXs |Yv(n) ≥ s] =
s∏

k=1

[
1 − 1 − c

2s− 1

]
=

Γ(s+ c
2 )
√
π

Γ(s+ 1
2 )Γ( c

2 )
, (6.4)

which completes the proof.

Using the derivations in the proof of Lemma 6.1, we can also estimate the
average subtree height. Namely, we have

IE[Xs|Yv(n) ≥ s] = IE[Xs−1|Yv(n) ≥ s] +
1

2s− 1

and, consequently,

IE[Xs|Yv(n) ≥ s] =
s∑

k=1

1
2s− 1

. (6.5)

Equation (6.5) can be interpreted as follows.

Lemma 6.2. The average height of the subtree Tv(n) after s steps in local time is of
order log(s).

This result is in line with the results of [Bollobás and Riordan 04].
Now, we can already calculate the expected PageRank value of the initial node.

Using (3.6) and the fact that Y0(n) = n, we obtain

IEπ0(n) =
1

1 + n

(
1

c+ 1
+

2
√
πΓ(n+ c

2 + 1)
(c+ 1)Γ( c

2 )Γ(n+ 1/2)

)
. (6.6)
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7. Final Result Statement and Asymptotics

The expected value of PageRank is provided by the following theorem.

Theorem 7.1. The expected value of PageRank πv(n) of node v at time step n in the
present growing network model Gm

n is given by

IEπv(n) =
1 − c

1 + n

(
1

1 + c
+

cΓ(v + 1
2 )Γ(n+ c

2 + 1)
(1 + c)Γ(v + c

2 + 1)Γ(n+ 1
2 )

)
, (7.1)

for v > 0, and

IEπ0(n) =
1

1 + n

(
1

c+ 1
+

2
√
πΓ(n+ c

2 + 1)
(c+ 1)Γ( c

2 )Γ(n+ 1/2)

)
, (7.2)

for the particular case of v = 0.

Proof. First, we reduce the case m > 1 to the case m = 1 by Theorem 4.1.
Then, we calculate IEπv(n) using Equation (3.5). We note that in (3.5) we sum

a random number of random variables. The calculation of this sum is similar
in spirit to the proof of Wald’s identity or Kolmogorov-Prokhorov identity (see,
e.g., [Ross 92] or [Borovkov 98, Chapter 4.4]). Namely, we have

IEπv(n) =
1 − c

n+ 1

⎛
⎝1 + IE

Yv(n)∑
s=1

cX(v,s)

⎞
⎠

=
1 − c

n+ 1

(
1 + IE

n−v∑
s=1

cX(v,s)1{Yv(n) ≥ s}
)

=
1 − c

n+ 1

(
1 +

n−v∑
s=1

IE[cX(v,s)1{Yv(n) ≥ s}]
)

=
1 − c

n+ 1

(
1 +

n−v∑
s=1

IE[cX(v,s)|Yv(n) ≥ s]P [Yv(n) ≥ s]

)

=
1 − c

n+ 1

(
1 +

n−v∑
s=1

IE[cX(v,s)|Yv(n) ≥ s]
n−v∑
i=s

P [Yv(n) = i]

)
.

Changing the order of summation, we get

IEπv(n) =
1 − c

n+ 1

(
1 +

n−v∑
i=1

P [Yv(n) = i]
i∑

s=1

IE[cX(v,s)|Yv(n) ≥ s]

)
.



�

�

“imvol3” — 2007/2/7 — 18:57 — page 221 — #15
�

�

�

�

�

�

Avrachenkov and Lebedev: PageRank of Scale-Free Growing Networks 221

Next, we substitute into the above expression Equations (5.1) and (6.1) for
IP[Yv(n) = i] and IE[cX(v,s)|Yv(n) ≥ s], respectively, to obtain

IEπv(n) =
1 − c

n+ 1

(
1 +

n−v∑
i=1

Γ(n− v + 1)
Γ(n− v − i+ 1)Γ(i+ 1)

× Γ(i+ 1/2)Γ(n− i)Γ(v + 1/2)
Γ(v)Γ(n+ 1/2)

i∑
k=1

Γ(k + c/2)
Γ(k + 1/2)Γ(c/2)

)
.

(7.3)

Simplifying the internal sum in the above equation, we obtain the following
expression

IEπv(n) =
1 − c

n+ 1

(
1 +

Γ(n− v + 1)Γ(v + 1/2)
Γ(v)Γ(n+ 1/2)

×
n−v∑
i=1

Γ(n− i)Γ(i+ 1/2)
Γ(n− v − i+ 1)Γ(i+ 1)

×
(

2
√
πΓ(i+ 1 + c/2)

(1 + c)Γ(i+ 1/2)Γ(c/2)
− c

c+ 1

))

=
1 − c

n+ 1

(
1 +

2
√
πΓ(n− v + 1)Γ(v + 1/2)

(1 + c)Γ(c/2)Γ(v)Γ(n+ 1/2)

×
n−v∑
i=1

Γ(n− i)Γ(i+ 1 + c/2)
Γ(n− v − i+ 1)Γ(i+ 1)

−cΓ(n− v + 1)Γ(v + 1/2)
(1 + c)Γ(v)Γ(n+ 1/2)

×
n−v∑
i=1

Γ(n− i)Γ(i+ 1/2)
Γ(n− v − i+ 1)Γ(i+ 1)

)
. (7.4)

By using Zeilberger’s algorithm and his package EKHAD for Maple, we prove
(see Lemma 10.1) the following hypergeometric identity:

n−v∑
i=1

Γ(n− i)Γ(i+ 1 + c/2)
Γ(n− v − i+ 1)Γ(i+ 1)

=
Γ(v)Γ(n+ c/2 + 1)Γ(1 + c/2)
Γ(v + c/2 + 1)Γ(n− v + 1)

− Γ(n)Γ(1 + c/2)
Γ(n− v + 1)

.

(7.5)

We can apply this identity to both sums in (7.4), since we can think of the
second sum as a particular case of the first one, with c = −1/2. After some
simplifications we obtain the final result (7.1).
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Figure 2. Comparison between the asymptotics (7.6) and the exact expression (7.1).

The expression (7.1) is already simple enough. However, it can be made even
more transparent by using the following asymptotics:

Γ(x+ a)/Γ(x) ≈ xa,

when 0 < a < 1 and x→ +∞. Thus, we have

IEπv(n) ≈ 1 − c

1 + n

(
1

1 + c
+

c

1 + c
(v +

1
2
)−

1+c
2 (n+

1
2
)

1+c
2

)
(7.6)

or, neglecting the first term,

IEπv(n) ≈ 1 − c

1 + c
cv−

1+c
2 n−

1−c
2 . (7.7)

In particular, for the zero node we have

IEπ0(n) ≈ 2
√
π

(1 + c)Γ( c
2 )
n−

1−c
2 . (7.8)

As one can see from Figure 2, the asymptotics (7.6) indeed closely follows the
exact expression (7.1).

8. Discussion and Comparison with Related Work

First, let us compare our results with the results of Pandurangan et al. [Pan-
durangan et al. 02]. In the present work we have obtained an exact analytical
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expression and asymptotics for the expected value of the PageRank as a func-
tion of the age of the growing network and the age of a particular node. In
Pandurangan et al. [Pandurangan et al. 02] the authors have used the “mean-
field” approach [Barabási and Albert 99, Barabási et al. 99, Barabási et al. 00]
to obtain an approximation for the PageRank distribution. Let us use our re-
sults on the expected value of PageRank for the “mean-field” calculations of
[Pandurangan et al. 02]. Specifically, suppose that n is fixed, PageRank depends
continuously on v, and the node age is uniformly distributed. Then, using our
asymptotic expression (7.6), we obtain

P (x) = IP[πv < x]

≈ IP

[
v >

((
1 + n

1 − c
x− 1

1 + c

)
1 + c

c
(n+

1
2
)−

1+c
2

)− 2
1+c

− 1/2

]

= 1 −
(((

1 + n

1 − c
x− 1

1 + c

)
1 + c

c
(n+

1
2
)−

1+c
2

)− 2
1+c

− 1/2

)
/n

= 1 +
1
2n

−
(

1 +
1
2n

)
c

2
1+c

(
1 + c

1 − c
(n+ 1)x− 1

)− 2
1+c

. (8.1)

In particular, we note that P ( 1−c
n+1 ) = 0, since x = 1−c

n+1 is the minimal value
of PageRank. Taking the derivative of (8.1), we obtain the density distribution
function of the PageRank value:

p(x) =
2

1 − c
(n+ 1)

(
1 +

1
2n

)
c

2
1+c

(
1 + c

1 − c
(n+ 1)x− 1

)− 3+c
1+c

. (8.2)

For large values of n and for values of x that are not too small and not too
close to one, the expression (8.2) is close to the power law

p(x) � 1

x
3+c
1+c

.

For instance, for the dumping factor c = 0.85, we can conclude that the density
distribution of PageRank for the nodes whose numbers are not too small and
not too close to n can be approximated by a power law with the exponent 2.08.
Note that the “mean-field” approximation of [Pandurangan et al. 02] gives the
exponent 2 and the experiments with the real web data in [Pandurangan et al. 02]
give the exponent 2.1.

To test the mean-field estimation (8.1), we ran simulations of our growing
network model. The network grew up to n = 1000 for 100,000 simulation runs
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Figure 3. Cumulative complimentary distribution function: Simulation results
compared to the mean-field estimation.

with m = 10. In Figure 3 the mean-field estimation (8.1) is compared with the
cumulative complimentary distribution function IP[πv > x] = 1 − IP[πv < x]
obtained from the simulations. As pointed out in [Newman 05], when dealing
with power laws, it is preferable to work with the cumulative complimentary
distribution function rather than with the density distribution function or the
histogram. The cumulative distribution function of a power law x−α also follows
the power law, but with exponent x−α+1. When calculating the PageRank, we
used c = 0.85. We note that the plot is indeed close to a straight line for the
middle segment of the PageRank range. In [Pandurangan et al. 02] the authors
also noticed that PageRank follows a power law except for those pages with very
small PageRank. This phenomenon can easily be explained with the help of
(8.2). The term 1+c

1−c (n+ 1)x becomes comparable with 1 in (8.2) for values of x
too close to the minimal PageRank 1−c

n+1 , and the distribution density function
cannot be, in this case, approximated by O(x−α). The mismatch for large values
of PageRank can be explained as follows: the “mean-field” approach cannot be
applied to the nodes with large PageRank because there are simply not enough
such nodes to use the “averaging” argument.

As it can be observed from (7.2) and (7.1), the zero node is special. As n
grows, its PageRank converges to 0, but, nevertheless, its value is bigger than
the PageRank of other nodes. We can normalize the expected value of PageRank
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of all nodes by IEπ0. In fact, we have

π̃v = lim
n→∞

IEπv(n)
IEπ0(n)

=
(1 − c)cΓ( c

2 )
2
√
π

Γ(v + 1
2 )

Γ(v + c
2 + 1)

. (8.3)

Let us call π̃ the relative PageRank. We would like to emphasize that the relative
PageRank does not depend on time. The relative PageRank closely follows a
power law except for some initial nodes.

Recall that Google divides the whole range of PageRank into ten intervals using
logarithmic scale. Curiously enough, if PageRank exactly followed a power law,
then this division would be independent of c and the exponent of the power law
but would depend only on n, the age of the network. Specifically, in such a case,
the following formula holds for the boundaries of the ranking intervals:

v∗k = (n)
k
10 , k = 1, ..., 10.

The above observation justifies further the scale-free term for the growing net-
work model.

The authors of [Boldi et al. 05] investigated the effect of the damping factor c
on PageRank. In their numerical example they have noticed that the PageRank
for some nodes attains a maximal value for some value of c. Let us investigate
the dependence of PageRank on c in our growing network model. In our case the
value of c that maximizes the PageRank expression (7.6) depends on the ratio
v/n. In Figure 4 we plot the optimal value of c as a function of the ratio v/n.
As an example, in Figure 5 we plot the expected values of PageRank for node
1 and node 2 when n = 10000. If the World Wide Web has eight billion pages,
then the present model suggests that the pages which benefit the most from the
value of c = 0.85 are around the node v = 46212. Thus, it looks like the damping
factor c = 0.85 benefits only a small fraction of old pages. Thus, to give a better
ranking to less established webpages and to distribute PageRank more fairly, it
is necessary to decrease the value of c. Of course, this will also have a positive
effect on the convergence of the numerical methods for PageRank computation.
The question of by how much the damping factor can be reduced merits a careful
special investigation.

Finally, we would like to note that the choice of the initial weight for the
zero node was a crucial factor for the derivation of simple explicit expressions.
This choice affects only the preferential attachment process. In fact, all the
methods in the present work can be applied to the growing network models with
a different preferential attachment process. The expression (5.1) would change
slightly, but there is no guarantee that one could find a simple closed form of
the final expression (7.1).
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Figure 4. The optimal value of c as a function of v/n.

Figure 5. The expected value of PageRank as a function of c for v = 1, 2 and
n = 10000.
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Curiously enough, we have tested several scale-free growing network models,
and in all our experiments the results were very close. Thus, the analysis of
PageRank for different growing network models and further generalization of
the results are interesting perspective research directions.

9. Appendix: Polya-Eggenberger Urn Model

We follow the book [Johnson and Kotz 77] in our description of the urn models.
The Pólya-Eggenberger urn model starts with one urn containing b + w balls
of two colors: black and white. Let b be the number of black balls, and let w
be the number of white balls. At every time step one ball is drawn at random
from the urn, and then it is returned together with s balls of the same color.
The Pólya-Eggenberger distribution is used to estimate the number of black (or
white) balls at time step n. The probability to draw a black ball k times from
the urn after n steps can then be expressed as

Pn,k(w, b, s) =
(
n

k

)
b(b+ s) . . . (b+ (k − 1)s)

× w(w + s) . . . (w + (n− k − 1)s)
(b+ w)(b+ w + s) . . . (b+ w + (n− 1)s)

, (9.1)

for k = 0, 1, . . . , n. Using the gamma function, the above formula can be rewrit-
ten as follows:

Pn,k(w, b, s) =
(
n

k

)
Γ( b+w

s )Γ( b
s + k)Γ(w

s + n− k)
Γ(b/s)Γ(w/s)Γ( b+w

s + n)

=
(
n

k

)
B( b

s + k, w
s + n− k)

B( b
s ,

w
s )

. (9.2)

It is worthwhile to note here that the problem of the nodes’ heights in subtrees,
which we study in Section 6, can also be described in terms of the urn model
with a node height value as a mark (or color).

10. Appendix: Zeilberger’s Algorithm

We follow the book [Petkovsek et al. 96] in our description of Zeilberger’s Algo-
rithm. Let us consider a sum

f(n) =
∑

k

F (n, k). (10.1)
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The goal of Zeilberger’s Algorithm is to find function G(·, ·) and coefficients aj(n)
such that

J∑
j=0

aj(n)F (n+ j, k) = G(n, k + 1) −G(n, k). (10.2)

This method is also called the method of creative telescoping. When such a
representation is obtained, we can sum equation (10.2) by k, and, if we are lucky
with the values F and G, the right part of the sum might collapse to 0, leaving
us with an equation of the type

J∑
j=0

aj(n)f(n+ j) = 0. (10.3)

For example, if J = 1, we find the recurrence a0(n)f(n) + a1(n)f(n + 1) = 0,
and then f(n) is easy to find.

D. Zeilberger wrote the package EKHAD [Zeilberger 01] for Maple, which
implements his algorithm and finds a0, . . . , aJ and R(·, ·) such that

G(n, k) = R(n, k)F (n, k). (10.4)

Fortunately, Zeilberger’s Algorithm gives a satisfying result for the sum in
(7.3). Let us prove the following lemma.

Lemma 10.1.

n−v∑
i=1

Γ(n− i)Γ(i+ 1 + c/2)
Γ(n− v − i+ 1)Γ(i+ 1)

=

Γ(v)Γ(n+ c/2 + 1)Γ(1 + c/2)
Γ(v + c/2 + 1)Γ(n− v + 1)

− Γ(n)Γ(1 + c/2)
Γ(n− v + 1)

. (10.5)

Proof. Consider the internal sum (7.3). We introduce the following notation:

F (n, i) =
Γ(n+ v − i)Γ(i+ 1 + c/2)Γ(v + c/2 + 1)Γ(n+ v + 1)
Γ(n− i+ 1)Γ(i+ 1)Γ(v)Γ(n+ v + c/2 + 1)Γ(1 + c/2)

. (10.6)

This is the summand from (10.5) divided by the result that we want to prove (it
was guessed from the values of IEπv for v = 1, 2, 3); also, we change the variable
from n to n− v, and we add the zeroeth summand. Now, we want to prove that

f(n) =
n∑

i=0

F (n, i) ≡ 1. (10.7)
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The function zeil from the EKHAD package [Zeilberger 01] finds the following
identities: a0 = −1, a1 = 1, and

R(n, i) = − (n+ v − i)i
(n+ v + c

2 + 1)(n− i+ 1)
. (10.8)

Therefore, in our case (10.2) takes the following form:

F (n, i) − F (n+ 1, i) = R(n, i+ 1)F (n, i+ 1) −R(n, i)F (n, i). (10.9)

Then, we sum Equation (10.9) for the values i = 0, . . . , n− 1, and we find that

R(n, n)F (n, n) −R(n, 0)F (n, 0) − F (n, n) + F (n+ 1, n) + F (n+ 1, n+ 1) = 0

for the values F and R in (10.6) and (10.8). Therefore, f(n) = f(n + 1). As
f(0) = 1, it completes the prove.

Note that it is indeed a proof, because Maple and EKHAD provide the iden-
tities (i.e., the values of ai, i = 0, 1 and (10.8)), which can be easily checked.
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