
Internet Mathematics Vol. 2, No. 3: 251-273

Fast PageRank Computation via
a Sparse Linear System
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Abstract. Recently, the research community has devoted increased attention to reduc-
ing the computational time needed by web ranking algorithms. In particular, many
techniques have been proposed to speed up the well-known PageRank algorithm used
by Google. This interest is motivated by two dominant factors: (1) the web graph has
huge dimensions and is subject to dramatic updates in terms of nodes and links, there-
fore the PageRank assignment tends to became obsolete very soon; (2) many PageRank
vectors need to be computed according to different choices of the personalization vectors
or when adopting strategies of collusion detection.

In this paper, we show how the PageRank computation in the original random surfer
model can be transformed in the problem of computing the solution of a sparse linear
system. The sparsity of the obtained linear system makes it possible to exploit the
effectiveness of the Markov chain index reordering to speed up the PageRank computa-
tion. In particular, we rearrange the system matrix according to several permutations,
and we apply different scalar and block iterative methods to solve smaller linear sys-
tems. We tested our approaches on web graphs crawled from the net. The largest
one contains about 24 millions nodes and more than 100 million links. Upon this web
graph, the cost for computing the PageRank is reduced by 65% in terms of Mflops and
by 92% in terms of time respect to the power method commonly used.

1. Introduction

The research community has devoted increased attention to reducing the com-
putation time needed by web ranking algorithms. In fact, the web changes very
rapidly: in one week more than 25% of links are changed and 5% of “new con-
tent” is created [Cho and Roy 04]. This result indicates that search engines need
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to update link based ranking metrics very often and that a week-old ranking
may not reflect very well the current importance of the pages.

Many efforts have been devoted to improve PageRank [Brin and Page 98,
Page et al. 98], the well-known ranking algorithm used by Google. The core of
Page-Rank exploits an iterative weight assignment of ranks to the web pages,
until a fixed point is reached. This fixed point turns out to be the (dominant)
eigenpair of a matrix derived from the web graph itself. Brin and Page originally
suggested to compute this pair using the well-known power method [Golub and
Van Loan 96], and they also gave a nice interpretation of PageRank in terms of
Markov chains. Recent studies about PageRank address at least two different
needs: first, the desire to reduce the time spent weighting the nodes of the
web graph, which takes several days of computation, and second, the need to
assign many PageRank values to each web page. This is necessary for Page-
Rank’s personalization [Haveliwala 02, Haveliwala et al. 03, Jeh and Widom 03]
that was recently presented by Google as beta-service (see http://labs.google.
com/personalized/) or for some heuristic for collusion-proof PageRank [Zhang
et al. 04] algorithms that requires the computation of many different PageRank
vectors for different choices of a parameter.

Previous approaches followed different directions such as the attempt to com-
press the web graph to fit it into main memory [Boldi and Vigna 04] or the
implementation in external memory of the algorithms [Haveliwala 99, Chen et
al. 02]. A very interesting research track exploits efficient numerical methods
to reduce the computation time. These kinds of numerical techniques are the
most promising, and we have seen many intriguing results in the last few years
that accelerate the power iterations [Kamvar et al. 03a, Haveliwala 99, Lee et
al. 03]. In the literature [Arasu et al. 02, Lee et al. 03, Page et al. 98] models
are presented that treat in a different way pages with no out-links. In this paper
we consider the original PageRank model (see Section 3), and by using numer-
ical techniques, we show that this problem can be transformed in an equivalent
linear system of equations, where the coefficient matrix is as sparse as the web
graph itself. This new formulation of the problem makes it natural to investigate
the structure of the sparse coefficient matrix in order to exploit its reducibility.
Moreover, since many numerical iterative methods for linear system solution can
benefit by a reordering of the coefficient matrix, we rearrange the matrix, in-
creasing the data locality and reducing the number of iterations needed by the
solving methods (see Section 5). In particular, we evaluate the effect of many
different permutations, and we apply several methods, such as power, Jacobi,
Gauss-Seidel, and Reverse Gauss-Seidel [Varga 62], on each of the rearranged
matrices. The disclosed structure of the permuted matrix makes it possible to
use block methods that turn out to be more powerful than the scalar ones. Note
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that the phase of reordering a matrix according to a given permutation requires
extra computational effort, but the time spent reordering the matrix is negligi-
ble with respect to the time required to solve the system. A more important
consideration is that the same reordering can be used to solve many PageRank
problems with different personalization vectors.

We tested our approaches on a web graph crawled from the net of about 24
million nodes and more than 100 million links. Our best result, achieved by a
block method, is a reduction of 65% in Mflops and of 92% in time with the respect
of the power method taken as the reference method to compute the PageRank
vector.

2. Definitions and Notations

In this section we give some notations and definitions that will be useful in the
rest of the paper. Let M by an n×n matrix. A scalar λ and a nonzero vector x
are an eigenvalue and the corresponding (right) eigenvector of M if Mx = λx. In
the same way, if xT M = λx, x is called the left eigenvector corresponding to the
eigenvalue λ. Note that, a left eigenvector is a (right) eigenvector of the transpose
matrix. A matrix is row-stochastic if its rows are nonnegative and the sum of
each row is one. In this case, it is easy to show that there exists a dominant
eigenvalue equal to 1 and a corresponding eigenvector x = (c, c, . . . , c)T , for any
constant c. A very simple method for the computation of the dominant eigenpair
is the power method [Golub and Van Loan 96], which, for stochastic irreducible
matrices, is convergent for any nonnegative starting vector. A stochastic matrix
M can be viewed as a transition matrix associated to a family of Markov chains,
where each entry Mij represents the probability of a transition from state i to
state j. By the Ergodic Theorem for Markov chains [Stewart 95], an irreducible
stochastic matrix M has a unique steady state distribution, that is, a vector π

such that πT M = πT . This means that the stationary distribution of a Markov
chain can be determined by computing the left eigenvector of the stochastic
matrix M . Given a graph G = (V,E) and its adjacency matrix A, let outdeg(i)
be the out-degree of vertex i that is the number of nonzeros in the ith row of A.
A node with no out-links is called dangling.

3. Google’s PageRank Model

In this section we review the original idea of Google’s PageRank [Brin and
Page 98]. The web is viewed as a directed graph (the web graph) G = (V,E),
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where each of the N pages is a node and each hyperlink is an edge. The in-
tuition behind this model is that a page i ∈ V is important if it is pointed by
other pages which are in turn important. This definition suggests an iterative
fixed-point computation to assigning a rank of importance to each page in the
web. Formally, in the original model [Page et al. 98], a random surfer sitting
on the page i can jump with equal probability pij = 1/outdeg(i) to each page
j adjacent to i. The iterative equation for the computation of the PageRank
vector z becomes zi =

∑
j∈Ii

pjizj , where Ii is the set of nodes in-linking to the
node i. The component zi is the “ideal” PageRank of page i and is given by
the sum of the PageRanks assigned to the nodes pointing to i, weighted by the
transition probability pij . The equilibrium distribution of each state represents
the ratio between the number of times the random walk is in the state over the
total number of transitions, assuming that the random walk continues for infinite
time. In matrix notation, the above equation is equivalent to the solution of the
following system of equations: zT = zT P , where Pij = pij . This means that the
PageRank vector z is the left eigenvector of P corresponding to the eigenvalue
1. In the rest of the paper, we assume that ‖z‖1 =

∑N
i=1 zi = 1, since most of

the time one is not interested in assigning an exact value to each zi but rather
in the relative rank between the nodes.

The “ideal” model unfortunately has two problems. The first one is due to
the presence of dangling nodes, which capture the surfer indefinitely. Formally,
a dangling node corresponds to an all-zero row in P . As a consequence, P is not
stochastic and the Ergodic Theorem cannot be applied. A convenient solution to
the problem of dangling nodes is to define a matrix P̄ = P + D, where D is the
rank-one matrix defined as D = dvT , and di = 1 iff outdeg(i) = 0. The vector v
is a personalization vector that records a generic surfer’s preference for each page
in V [Haveliwala 02, Jeh and Widom 03]. The matrix P̄ imposes a random jump
to every other page in V whenever a dangling node is reached. Note that the
new matrix P̄ is stochastic. In Section 4, we refer to this model as the natural
model and compare it with other approaches proposed in the literature. The
second problem with the “ideal” model is that the surfer can “get trapped” by
a cyclic path in the web graph. Brin and Page [Brin and Page 98] suggest to
enforce irreducibility by adding a new set of artificial transitions that with low
probability jump to all nodes. Mathematically, this corresponds to defining a
matrix P̂ as

P̂ = αP̄ + (1 − α) evT , (3.1)

where e is the vector with all entries equal to 1 and α is a constant, 0 < α < 1. At
each step, with probability α the random surfer follows the transitions described
by P̄ , while with probability (1−α) she/he bothers to follows links and jumps to
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any other node in V accordingly to the personalization vector v. The matrix P̂

is stochastic and irreducible, and both these conditions imply that the PageRank
vector z is the unique steady state distribution of the matrix P̂ such that

zT P̂ = zT . (3.2)

From (3.1) it turns out that the matrix P̂ is explicitly

P̂ = α(P + dvT ) + (1 − α) evT . (3.3)

The most common numerical method used to solve the eigenproblem (3.2) is the
power method [Golub and Van Loan 96]. Since P̂ is a rank-one modification of
αP , it is possible to implement a power method that multiplies only the sparse
matrix P by a vector and upgrades the intermediate result with a constant vector
at each step, as suggested by Haveliwala in [Haveliwala 99].

The eigenproblem (3.2) can be rewritten as a linear system. By substitut-
ing (3.3) into (3.2) we get zT (αP + αdvT ) + (1 − α)zT evT = zT , which means
that the problem is equivalent to the solution of the linear system of equations

Sz = (1 − α)v, (3.4)

where S = I−αPT −αvdT , and we make use of the fact that zT e =
∑N

i=1 zi = 1.
The transformation of the eigenproblem (3.2) into (3.4) opens the route to a large
variety of numerical methods not completely investigated in the literature. In
the next section we present a lightweight solution to handling the nonsparsity
of S.

4. A Sparse Linear System Formulation

In this section we show how we can compute the PageRank vector as the solution
of a sparse linear system. We remark that the way one handles the dangling node
is crucial, since there can be a huge number of them. According to Kamvar et
al. [Kamvar et al. 03b], a 2001 sample of the web containing 290 million pages had
only 70 million nondangling nodes. This large amount of nodes without out-links
includes both pages that do not point to any other page and also pages whose
existence is inferred by hyperlinks but not yet reached by the crawler. Besides,
a dangling node can represent a pdf, ps, txt, or any other file format gathered
by a crawler but with no hyperlinks pointing outside. Page et al. [Page et al. 98]
adopted the drastic solution of completely removing the dangling nodes. In this
way, the size of the problem is sensibly reduced, but a large amount of infor-
mation present in the web is ignored. This has an impact on both the dangling
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(a) (b)

(c) (d)

Figure 1. Removing the dangling node in (a) generates new dangling nodes,
which are in turn removed in (b), (c), and (d). At the end of the process, no
node receives a PageRank assignment.

nodes—which are simply not ranked—and on the remaining nodes—which don’t
take into account the contribution induced by the random jump from the set of
dangling nodes. Moreover, removing this set of nodes could potentially create
new dangling nodes, which must in turn be removed (see Figure 1). Therefore,
the nodes with an assigned PageRank could be a fraction of the web graph.

Arasu et al. [Arasu et al. 02] handled dangling nodes in a different way with
respect to the natural model presented in Section 3. They modify the web graph
by imposing that every dangling node has a self loop. In terms of matrices,
P̄ = P + F where Fij = 1 iff i = j and outdeg(i) = 0. The matrix P̄ is row
stochastic, and the computation of PageRank is solved using a random jump
similar to equation (3.3), where the matrix F replaces D. This model is different
from the natural model, as is evident from the following example.

Example 4.1. Consider the graph and the associated transition matrix in Fig-
ure 2. The PageRank obtained, by using the natural model, orders the nodes as
(2, 3, 5, 4, 1). Arasu’s model orders the nodes as (5, 4, 2, 3, 1). Note that in the
latter case node 5 ranks better than node 2, which is not what one expects.

P =

⎛⎜⎜⎜⎜⎝
0 1/2 1/2 0 0
0 0 1/3 1/3 1/3
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
Figure 2. An example of a graph whose rank assignment differs if the dangling
nodes are treated as in the model presented by Arasu et al. in [Arasu et al. 02].
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From the above observations we believe that it is important to take into ac-
count the dangling nodes, and we consider the natural model, which better
captures the behavior of a random surfer. The dense structure of the matrix
S poses serious problems to the solution of the linear system (3.4). For this
reason, the problem has been largely addressed as an eigenproblem, while we
have seen very few attempts to solve the problem as a linear system. Computing
the PageRank vector with the power method allows one to exploit the sparsity
of the matrix P . In fact, it is common to implement the power method in such
a way that the matrix-vector multiplications involve only the sparse matrix P

while the rank-one modifications are handled separately [Haveliwala 99].
In the following, we show how to manage dangling nodes in a direct and

lightweight manner that makes it possible to use iterative methods for linear
systems. In particular, we prove formally the equivalence of (3.4) to the solution
of a system involving only the sparse matrix R = I − αPT . The next theorem
makes use of a very powerful tool: the Sherman-Morrison formula (see [Golub
and Van Loan 96], paragraph 2.1.3). It is well known that the Sherman-Morrison
formula is unstable; however, we use it here only as an elegant technique for
proving the theorem without any need of implementing it.

Theorem 4.2. The PageRank vector z solution of (3.4) is obtained by solving the
system Ry = v and taking z = y/‖y‖1.

Proof. Since S = R−α vdT , equation (3.4) becomes (R−α vdT )z = (1−α) v, that
is, a system of equations where the coefficient matrix is the sum of a matrix R

and a rank-one matrix. Note that R is nonsingular since α < 1 and therefore all
the eigenvalues of R are different from zero. We can use the Sherman-Morrison
formula (see [Golub and Van Loan 96], paragraph 2.1.3) to compute the inverse
of the rank-one modification of R. As a consequence, we have

(R − αvdT )−1 = R−1 +
R−1vdT R−1

1/α + dT R−1v
. (4.1)

From (4.1), denoting by y the solution of the system Ry = v, we have

z = (1 − α)
(

1 +
dT y

1/α + dT y

)
y,

which means that z = γy, and the constant γ = (1 − α)
(
1 + dT y

1/α+dT y

)
can be

computed normalizing y in such a way that ‖z‖1 = 1.

In summary, we have shown that, in order to compute the PageRank vector z,
we can solve the system Ry = v and then normalize y to obtain the PageRank
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vector z. This means that the rank-one matrix D in the PageRank model which
accounts for the dangling pages plays a role only in the scaling factor γ. More-
over, the computation of γ is not always necessary, and this step can occasionally
be omitted.

Note that the matrix used by Arasu and al. [Arasu et al. 02] is also sparse
due to the way in which they deal with the dangling nodes, but the PageRanks
obtained don’t rank the nodes in a natural way (see Example 4.1). Instead, our
approach guarantees a more natural ranking and handles the density of S by
transforming a dense problem into one that uses the sparse matrix R.

Bianchini et al. in [Bianchini et al. 03] prove that the iterative method derived
by (3.2) and involving P̂ produces the same sequence of vectors as the Jacobi
method applied to matrix R. Recently Eiron et al. [Eiron et al. 04] proposed
another way to deal with dangling nodes. They assign separately a rank to
dangling and nondangling pages, and their algorithm requires the knowledge of
a complete strongly-connected subgraph of the web.

4.1. The Conditioning of the Problem in the New Formulation

When solving a linear system, one must devote particular attention to the con-
ditioning of the problem, the magic number accounting for the “hardness” of
solving a linear system. The condition number of a matrix A is defined as
cond(A) = ‖A‖ ‖A−1‖ for any matrix norm. It is easy to show, as proved by
Kamvar and Haveliwala [Kamvar and Haveliwala 03], that the condition number
in the 1-norm of S is cond(S) = 1+α

1−α , which means that the problem tends to
become ill-conditioned as α goes to one. For the conditioning of R, we can prove
the following theorem.

Theorem 4.3. The condition numbers expressed in the 1-norm of matrices S and R

are such that
cond(R) ≤ cond(S).

Moreover, the inequality is strict if and only if from every node there is a direct
path to a dangling node.

Proof. In order to prove the theorem, we have to show that cond(R) ≤ 1+α
1−α . We

have

‖R‖1 = max
j=1,...,n

n∑
i=1

|rij | = max
j=1,...,n

⎛⎝1 + α

n∑
i=1,i �=j

pji

⎞⎠ .

Then, if P �= O, ‖R‖1 = 1 + α. Note that R−1 is a nonnegative matrix, hence

‖R−1‖1 = ‖eT R−1‖1 = ‖R−T e‖∞.
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Moreover,

R−T = (I − αP )−1 =
∞∑

i=0

αiP i. (4.2)

Since every entry of the vector Pe is less or equal 1, we have P ie ≤ e, hence

‖R−1‖1 = ‖
∞∑

i=0

αiP ie‖ ≤
∞∑

i=0

αi =
1

1 − α
,

which proves that cond(R) ≤ cond(S).
Let us now prove with Markov chain state transitions that the inequality

is strict if from every page it is possible to reach a dangling node. Since P

has dangling nodes, P is reducible. Let k, k ≥ 1, be the number of strongly-
connected components of the web graph. We can permute rows and columns of
P , grouping together the nodes belonging to the same connected component and
listing the dangling nodes in the last rows. Therefore, P can be expressed in the
reduced form

P =

⎡⎢⎢⎢⎢⎢⎣
P11 P1,2 · · · · · · P1,k

P2,2 · · · P2,k

. . .
...

Pk−1,k−1 Pk−1,k

O O

⎤⎥⎥⎥⎥⎥⎦ ,

where the diagonal blocks Pii are irreducible. By hypothesis, from every web
page we can reach a dangling node with a finite number of clicks. In terms of
the matrix P , this means that, for every i, 1 ≤ i ≤ k, each block Pii has at
least one row whose sum is strictly less than 1. An extension of the Gershgorin
circle Theorem [Varga 62, Theorem 1.7, page 20] ensures that the spectral radius
of every diagonal block Pii is less than 1. Since the eigenvalues of P are the
eigenvalues of the diagonal blocks, this guarantees that ρ(P ) < 1. Let us consider
the iterative method xi+1 = Pxi; since ρ(P ) < 1, this method is convergent to
the zero vector, for every choice of the starting vector x0. Then, choosing x0 = e,
there exists an integer i such that P i e < e. From (4.2) we have

‖R−T ‖1 = ‖
∞∑

i=0

αiP ie‖∞ < ‖
∞∑

i=0

αie‖ =
1

1 − α
,

which proves the “if” part. To prove the “only if” part, assume by contradiction
that there is at least one page from which it is not possible to reach a dangling
page, and assume that this page belongs to the hth connected component. Since
Phh is irreducible, this means that from every node in Phh, it is not possible
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to reach a dangling page. Hence, there is at least one index i, 1 ≤ i ≤ k − 1,
such that the strip corresponding to the ith block is zero, except for the diagonal
block Pii. This means that the diagonal block Pii has an eigenvalue equal to one,
hence ρ(P ) = 1 and Piiei = ei, which implies that cond(R) = (1+α)/(1−α).

Theorem 4.3 proves that the condition number of matrix R is always less than
or equal to the condition number of S. This means that computing the PageRank
vector that solves the system with matrix R is never worst than computing the
one that solves the system involving S. In fact, the system in R is less sensitive
to errors due to the finite representation of the numbers appearing in P than
the system involving S is.

Note that if the condition that guarantees the strict inequality between the
condition number of S and R is not satisfied, there exists a reordering of R

which allows one to split the original problem into two disjoint subproblems. As
we will see in Section 5, this is computationally convenient, and moreover, the
conditioning of the two subproblems should be compared with the conditioning
of the two subproblems regarding S.

5. Exploiting the Web Matrix Permutations

In Section 4 we have shown how to transform the linear system involving the
matrix S into an equivalent linear system, where the coefficient matrix R is as
sparse as the web graph. The new sparse formulation allows one to exploit the ef-
fectiveness of other iterative procedures to compute the PageRank vectors, which
were not applicable when dealing with S. To solve the linear system Ry = v, two
convenient strategies to use are the Jacobi and Gauss-Seidel methods [Varga 62],
because they use space comparable to that used by the power method. These
methods are convergent if and only if the spectral radius of the iteration matrix
is strictly lower than one. Moreover, the rate of convergence depends on the
spectral radius, and the lower the radius is, the faster the convergence. Since
R = I − αP where P is a nonnegative matrix, R is a so-called M -matrix, and
it is well known that both the Jacobi and Gauss-Seidel methods are convergent
and that the Gauss-Seidel method applied to M -matrices is always faster than
the Jacobi method [Varga 62].

When solving a sparse linear system, a common practice [Douglas et al. 00] is
to look for a reordering scheme that reduces the (semi)bandwidth for increasing
data locality and hence the time spent for each iteration. Moreover, if the matrix
is reducible, the problem can be split into smaller linear systems that can be
solved in cascade.
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The simpler permutation scheme is the one that separates dangling from non-
dangling pages. In this case the matrix system involving R has a very simple
shape, [

I − αPT
1 O

−αPT
2 I

] [
y1

y2

]
=

[
v1

v2

]
, (5.1)

and once the system (I−αPT
1 )y1 = v1 is solved, the vector y2 is computed with

only a matrix vector multiplication as y2 = v2+αPT
2 y1. Two recent papers, one

by Eiron et al. [Eiron et al. 04] and the other by Langville and Meyer [Langville
and Meyer 04], arrive, with different reasoning, to the same formulation of the
problem, observing that a problem much smaller than the initial one has to be
solved. The problem involving P1 is still solved using the power method, and
they did not further investigate other reordering schemes that could increase the
benefits of permutation strategies.

Note that once R is reordered into a block triangular matrix, a natural way
to solve the system is to use forward/backward block substitution. For instance,
on the lower block triangular system⎡⎢⎢⎢⎣

R11

R21 R11

...
. . .

Rm1 · · · Rmm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

y1

y2

...
ym

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
v1

v2

...
vm

⎤⎥⎥⎥⎦ ,

the solution can be computed as follows:{
y1 = R−1

11 v1,

yi = R−1
ii

(
vi −

∑i−1
j=1 Rijyj

)
for i = 2, . . . , m.

(5.2)

This requires the solution of m smaller linear systems, where the coefficient
matrices are the diagonal blocks in the order that they appear. Note that this
strategy is always better than applying an iterative method to the whole matrix.

Moreover, for some iterative methods, it may happen that a permutation in
the matrix reduces the spectral radius of the iteration matrix and hence the
number of iterations needed to reach convergence. This is not the case for the
Jacobi method since the spectral radius of the iteration matrix is invariant under
permutation. In the same way, the rate of convergence of the power method is
also independent of matrix reordering, since it depends only on the spectral
properties of the matrix and on the starting vector. A very nice attempt in this
direction is given in [Kamvar et al. 03b] where it is shown how reordering the
matrix by sorting the URLs lexicographically may help to construct a better
starting vector for the power method and to improve data locality.
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Full Lower Block Triangular Upper Block Triangular

T T B BT
OdT OdT B OdBT
OaT OaT B OaBT
IdT IdT B IdBT
IaT IaT B IaBT

Figure 3. Web matrix permutation taxonomy.

A more challenging perspective is the reordering of the web matrix for the
Gauss-Seidel method, where opportune permutations can lead both to an in-
crease in data locality and to an iteration matrix with a reduced spectral
radius.

The permutation strategies that we propose have two different purposes. The
first goal is to increase data locality and decrease, when possible, the spectral
radius of the iteration matrix. The second one is to discover a block triangular
structure in the web matrix in order to apply block methods as described in
equation (5.2).

Applying a permutation to a sparse matrix as well as finding the permutation
that satisfies some desiderata is a costly operation. However, it is often conve-
nient to spend more effort to decrease the running time of the solving method
when the same matrix is used many times to solve different PageRank problems,
as required for personalized web search [Haveliwala 02] or in the case of the
heuristic for collusion-proof PageRank [Zhang et al. 04].

The permutations that we considered are obtained by combining different el-
ementary operations. A very effective reordering scheme, denoted by B, is the
one obtained by permuting the nodes of the web graph according to the order
induced by a BFS visit. The BFS visit makes it possible to discover reducibil-
ity of the web matrix, since this visit assigns contiguous permutation indices to
pages pointed to by the same source. Therefore, this permutation produces lower
block triangular matrices. It has been observed by Cuthill and McKee [Cuthill
and McKee 69] that the BFS strategy for reordering sparse symmetric matrices
produces a reduced bandwidth when the children of each node are inserted in
order of decreasing degree. For this reason, even if P is not symmetric, we exam-
ine other reordering schemes that are obtained by sorting the nodes in terms of
their degree. In particular we consider the permutation that reorders the pages
by decreasing out-degree, denoting this scheme as Od while the permutation Oa

sorts the pages of the web matrix by ascending out-degree. Note that these
permutations list the dangling pages in the last and in the first rows of the web
matrix, respectively. We experimented also with the permutations obtained by
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Figure 4. Different shapes obtained by rearranging the web matrix P in accor-
dance to the taxonomy. The first row represents full matrices, the second and
third lower and upper block triangular matrices, respectively. The web graph is
made of 24 million nodes and 100 million links.

reordering the matrix by ascending and descending in-degree, denoted by Ia and
Id, respectively. Since R = I−αPT , our algorithms needs to compute the trans-
pose of the web matrix; we denote this operation by T . The various operations
can be combined to obtain different reorderings of the web matrix as shown in
Figure 3. In accordance with the taxonomy in Figure 3, we denote, for instance,
RIdT B = I − αΠ(P ), where the permuted matrix Π(P ) is obtained by first ap-
plying the Id permutation, then transposing the matrix, and finally applying the
B permutation on the reordered matrix. The first column in Figure 3 gives rise
to full matrices, while the second and third columns produce block triangular
matrices due to the BFS’s order of visit.

In Figure 4, we show a plot of the structure of a web matrix rearranged
according to each item of the taxonomy in Figure 3. It is important to observe
that on nonsymmetric matrices the BFS order of visit transforms the matrix
into a lower block triangular form, with a number of diagonal blocks that is
greater than or equal to the number of strongly-connected components. However,
the number of diagonal blocks detected with a BFS depends very much on the
starting node of the visit. For example, starting from node 1 in Figure 5, we
detect just one component, while starting from node 4 we get four separate
components.
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R1 =

⎛⎜⎜⎝
1 −α 0 0
0 1 −α 0
0 0 1 −α
0 0 0 1

⎞⎟⎟⎠ R4 =

⎛⎜⎜⎝
1 0 0 0
−α 1 0 0
0 −α 1 0
0 0 −α 1

⎞⎟⎟⎠
Figure 5. An example of a connected graph. Applying a BFS visit starting with
node 1, one detects just one component and R1 is in unreduced form; starting
with node 4, we get four different components and R4 is fully reduced.

Figure 6. Different shapes obtained by rearranging the web matrix P made of 24
million nodes and 100 million links according to permutations involving two BFS
visits.
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Scalar methods shapes

PM all
Jac all
GS all
RGS all

Block methods shapes

LB R∗B and ROdT
LBR R∗B and ROdT
UB R∗T
UBR R∗T

Figure 7. Numerical Methods Taxonomy. PM is the power method, Jac denotes
the Jacobi method, GS and RGS are the Gauss-Seidel and Reverse Gauss-Seidel
methods, respectively. All of them can be applied to each transformation of the
matrix according to the taxonomy in Figure 3. Among block-methods we have
LB and LBR, which can be applied to all lower block triangular matrices, and use
GS or RGS to solve each diagonal block. Similarly, UB and UBR refer to the upper
block triangular matrices.

In order to have diagonal blocks of smaller size and split the problem into
smaller subproblems, we investigate other permutations that further exploit the
reducibility of the matrix. Let J denote the reverse permutation, that is, the
permutation which assigns the index n−i to the ith node. To some of the shapes
in Figure 4, we can apply another B operation, sometimes after a reversion of
the matrix with the operator J . We obtain the shapes in Figure 6.

Note that the smallest size of the largest diagonal block is achieved for
ROaBT JB. The size of the largest component in ROaBT JB is something more
than 13 million, while for the permutations in Figure 3, which uses only a BFS,
we were able to reach a size of around 17 million.

We adopted ad hoc numerical methods for dealing with the different shapes
of the matrices in Figures 4 and 6. In particular, the power method and the
Jacobi iterations are compared with the Gauss-Seidel and the Reverse Gauss-
Seidel methods. We recall that the Gauss-Seidel method computes y

(k+1)
i , the

ith entry of the vector at the (k + 1)th iteration step as a linear combination of
y
(k+1)
j for j = 1, . . . , i − 1 and of y

(k)
j for j = i + 1, . . . , n. On the contrary, the

Reverse Gauss-Seidel method computes the entries of the vector y(k+1) bottom-
up, that is, it computes y

(k+1)
i for i = n, . . . , 1 as a linear combination of y

(k+1)
j

for j = n, . . . , i+1 and of y
(k)
j for j = 1, . . . , i− 1. Note that ROdT = JROaT JT

and RIdT = JRIaT JT , where J is the anti-diagonal matrix, that is, Jij = 1 iff
i + j = n + 1. This means that applying Gauss-Seidel to ROdT (RIdT ) is the
same as applying Reverse Gauss-Seidel to ROaT (RIaT ).

The shapes of some matrices in Figures 4 and 6 encourage one to exploit
the matrix reducibility by experimenting with block methods. Moreover, the
matrix ROdT is also lower block triangular, since it separates nondangling nodes
from dangling nodes. This matrix is a particular case of the one considered in
Equation (5.1).
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As solving methods for the diagonal block systems, we tested both the Gauss-
Seidel and Reverse Gauss-Seidel methods. We denote by LB and UB the methods
obtained using Gauss-Seidel as the solver of the diagonal blocks on lower or upper
block structures, respectively. LBR and UBR use instead Reverse Gauss-Seidel to
solve the diagonal linear systems. Summing up, we report the taxonomy of
solution strategies in Figure 7. In Section 6 we report the experimental results
obtained by applying each method in Figure 7 to all the suitable matrices in
Figure 4 and in Figure 6.

6. Experimental Results

We tested the approaches discussed in previous sections using a web graphs
obtained by a crawling of 24 million web pages with about 100 million hyper-
links and containing approximately 3 million dangling nodes. This data set was
donated to us by the Nutch project (see http://www.nutch.org/). We run our
experiments on a PC with a Pentium IV 3GHz, 2.0GB of memory and 512Kb
of L2 cache. A stopping criterion of 10−7 is imposed on the absolute difference
between the vectors computed in two successive iterations. In order to have a

Name PM GS RGS LB/UB LBR/UBR

T 3454 33093 152 1774 19957 92 1818 20391 94 −−− −−−
OdT 2934 33093 152 1544 20825 85 1477 19957 104 1451 19680 96 1397 18860 92
IdT 3315 33309 153 1840 21259 98 1735 19957 92 −−− −−−
T B 1386 32876 151 606 21910 101 519 18439 85 401 16953 100 359 15053 82

OdT B 1383 33093 152 582 21476 99 505 18439 85 392 17486 97 369 15968 85
OaT B 1353 32876 151 610 23645 109 440 16920 78 424 18856 106 315 13789 75
IdT B 1361 33309 153 561 21259 98 511 19090 88 385 17196 98 380 16414 87
IaT B 1392 32876 151 619 22343 105 450 16270 75 400 17972 100 314 13905 75

BT 1394 33093 152 522 18439 85 640 22560 104 379 15545 85 479 19003 104
OdBT 1341 33309 153 507 18873 87 579 21693 100 398 15937 87 466 18312 100
OaBT 1511 33093 152 591 18873 87 680 21693 100 357 15128 87 413 17387 100
IdBT 1408 33093 152 554 19306 89 626 21693 100 397 16075 88 450 18265 100
IaBT 1351 33093 152 497 18439 85 575 21693 100 386 15564 85 447 18310 100

Figure 8. Experimental Results: The columns list the numerical methods ana-
lyzed, and the rows describe some of the permutations applied to the matrix R.
Each cell represents the running time in seconds, the number of Mflops, and the
number of iterations taken by the solving methods. Note that the results in the
last two columns account either for the cost of the LB and LBR methods, applied
to lower block triangular matrices, or for the cost of the UB and UBR methods,
applied to upper block triangular matrices. In bold we highlight our best results
in terms of Mflops for scalar and block methods.
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fair comparison for the power method, the tolerance has been changed “a pos-
teriori” to obtain the same absolute error of the other methods. In fact, in the
case of the power method, the PageRank vector has 1-norm equal to one, while
for the other methods we do not scale the vector at each step.

In Figure 8 we report the running time in seconds, the Mflops, and the num-
ber of iterations for each combination of the solving and reordering methods
described in Figure 7 on the matrices of Figure 4. We believe that the number
of iterations and the number of floating point iterations of a method are more
fair measures than the running time in seconds, which is more implementation-
dependent. However, the running time is the only factor accounting for an
increase in data-locality when a permutation of the matrix does not change the
number of iterations.

Some cells of Figure 8 are empty since there are methods suitable only on
particular shapes. Moreover, in Figure 8 the results in the last two columns are
relative to LB and LBR methods for lower block triangular matrices and UB or UBR
for upper block triangular matrices. We do not report in the table the behavior
of the Jac method, since it always has worse performance than the GS method.
However, the measure of the gain using GS rather than Jac can be obtained
from Figure 10. Since the diagonal entries of R are equal to 1, the Jacobi
method is essentially equivalent to the power method. In our case, the only
difference is that Jac is applied to R while PM works on P̂ , which incorporates the
rank-one modification accounting for dangling nodes. Although we implemented
PM using the optimizations suggested in [Page et al. 98, Haveliwala 99], this
method requires a slightly greater number of operations. Using the results of
Theorem 4.2, we get a reduction in Mflops of about 3%. For the increased data
locality, the running time of Jac benefits from matrix reordering, and we have a
reduction of up to 23% over the power iterations.

We now compare the proposed methods versus PM applied to the original ma-
trix since this is the common solving method to compute PageRank vector.
Other comparisons can be obtained from Figure 8. As one can expect, the use
of GS and RGS on the original matrix already accounts for a reduction of about
40% in the number of Mflops and of about 48% in running time. These improve-
ments are striking when the system matrix is permuted. The best performance
of scalar methods is obtained using the IaT B combination of permutations on
the RGS method. This yields a Mflop reduction of 51% with respect to PM and
a further reduction of 18% with respect to GS, both applied to the full matrix.
The running time is reduced of 87%.

The common intuition is that the Gauss-Seidel method behaves better on a
quasi-lower triangular while Reverse Gauss-Seidel is faster when applied to quasi-
upper triangular matrices. However, in this case the intuition turns out to be
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Name GS RGS LB/UB LBR/UBR

T BJB 565 21476 99 488 18439 85 402 17534 99 327 13980 76
OdT BJB 613 23645 109 445 16920 78 426 18853 106 318 13790 76
OaT BJB 547 21476 99 478 18656 86 390 17891 99 362 16193 86
IdT BJB 568 22127 102 447 17354 80 407 18458 100 321 14326 78
IaT BJB 547 21476 99 487 18873 87 375 17175 99 368 16389 87
BT JB 605 22560 104 443 16486 76 333 15905 101 246 11617 73

OdBT JB 577 22560 104 415 16270 75 336 15915 101 252 11779 73
OaBT JB 655 21693 100 544 18005 83 365 15896 99 280 12231 82
IdBT JB 623 22560 104 447 16270 75 328 15896 101 250 11921 74
IaBT JB 553 21693 100 415 16270 75 328 15919 99 245 11624 72

BT B 510 21259 98 483 19957 92 382 17354 98 370 16410 91
OdBT B 519 21476 99 487 19957 92 383 16800 98 376 16403 91
OaBT B 551 21259 98 522 19957 92 370 17168 98 367 16404 91
IdBT B 515 21476 99 485 19957 92 368 16996 98 369 16410 91
IaBT B 509 21259 98 480 19957 92 366 16790 98 366 16396 91
BJBT 529 20174 93 570 21693 100 413 16813 92 452 18286 100

OdBJBT 491 18656 86 566 21693 100 385 15545 85 450 18281 100
OaBJBT 501 19090 88 588 22560 104 399 16105 88 464 18841 103
IdBJBT 486 18439 85 563 21693 100 387 15565 85 449 18310 100
IaBJBT 504 19306 89 565 21693 100 398 16081 88 452 18269 100

Figure 9. Experimental results on the shapes in Figure 6. The columns list the
numerical methods analyzed and the rows describe the permutations applied to
the matrix R. Each cell represents the running time in seconds, the number of
Mflops, and the number of iterations taken by the solving methods. In bold we
highlight our best results in terms of Mflops for scalar and block methods. We
omit the values obtained with the Jacobi method since they are almost unaffected
by matrix permutations and can be found in Figure 8.

misleading. In fact, for our web matrix RGS works better on lower block trian-
gular matrices and GS works better on quasi-upper triangular matrices. Even
better results are obtained using block methods. LB applied to ROdT achieves a
reduction of 41% in Mflops with respect to PM. Adopting this solving method, we
explore just the matrix reducibility due to dangling nodes as in equation (5.1).
The best result is obtained for the OaT B permutation when the LBR solving
method is applied. In this case, we have a reduction of 58% in Mflops and of
90% in the running time. This means that our solving algorithm computes the
PageRank vector in about a tenth of the running time and with less than half
the operations of the power method.

We applied each of the methods in Figure 7 also on the shapes in Figure 6,
obtained with two BFS visits. The results are in Figure 9. From Figure 9 we
see that we have a further gain when the matrix is split into a greater number
of blocks. In fact, we have a reduction up to 92% on the running time and up
to 65% in terms of Mfops over the power method.

The results given in Figures 8 and 9 do not take into account the effort spent in
reordering the matrix. However, the most costly reordering scheme is the BFS
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Figure 10. A plot of some results from Figures 8 and 9 with the number of Mflops
on the x-axis and the running time in seconds on the y-axis. Each point is labeled
with the permutation applied and the solving method used. The power, Jacobi,
and Gauss-Seidel methods applying any permutation are compared with the best
result.

Figure 11. A plot of the more interesting results from Figures 8 and 9 with the
number of Mflops on the x-axis and the running time in seconds on the y-axis.
Each point is labeled with the permutation applied and the solving method used.
The best performance of a method, which permutes the node in separating them
into dangling and nondangling without applying any BFS visit, is plotted with
the best block and scalar methods that use one or two BFS visits.
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visit of the web graph, which can be efficiently implemented in semi-external
memory as reported in [Buchsbaum et al. 00, Mehlhorn and Meyer 02]. The
running time spent on doing the BFS are comparable to those reported by Broder
et al. in [Broder et al. 00], where less than four minutes are taken on a web graph
with 100 million nodes; it is, however, largely repaid by the speedup achieved
on the solving methods. Moreover, in the case of personalized PageRank, the
permutations can be applied only once and reused for all personalized vectors v.
An intuitive picture of the gain obtained by combining permutation strategies
with the scalar and block solving methods is shown in Figures 10 and 11.

7. Conclusion

The ever-growing size of the web graph implies that the value and the importance
of fast methods for web ranking are going to rise in the future. Moreover, the
even-growing interest toward personalized PageRank justifies an effort in “pre-
processing” the web graph matrix in order to compute faster the many PageRank
vectors needed.

The problem of PageRank computation can easily be viewed as a dense linear
system. We showed how to handle the density of this matrix by transforming
the original problem into one that uses a matrix as sparse as the web graph
itself. On the contrary to what was done by Arasu et al. in [Arasu et al. 02], we
achieved this result without altering the original model. This result allows one
to efficiently consider the PageRank computation as a sparse linear system, an
alternative to the eigenpair interpretation.

Dealing with a sparse linear system opens the way to exploiting the reducibility
of the web matrix by composing opportunely some permutation strategies to
speed up the PageRank computation. We showed that permuting the web matrix
according to a combination of in-degrees or out-degrees and sorting the pages
following the order of the BFS visit can effectively increase data locality and
reduce the running time when used in conjunction with a numerical method
such as lower block solvers.

Our best result achieves a reduction of 65% in Mflops and of 92% in terms of
the seconds required compared to the power method commonly used to compute
the PageRank. This means that our solving algorithm requires almost a tenth
of the time and much less than half of the Mflops used by the power method.
The previous improvement over the power method is due to Lee et al. in [Lee
et al. 03] where a reduction of 80% in time is achieved on a data set of roughly
400,000 nodes. In light of the experimental results, our approach for speeding
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up PageRank computation appears to be very promising especially when dealing
with personalized PageRank.
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