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Connectivity Transitions in
Networks with Super-Linear
Preferential Attachment
Roberto Oliveira and Joel Spencer

Abstract. We analyze an evolving network model of Krapivsky and Redner in which
new nodes arrive sequentially, each connecting to a previously existing node b with
probability proportional to the pth power of the in-degree of b. We restrict to the
super-linear case p > 1. When 1+ 1

k
< p < 1+ 1

k−1
, the structure of the final countable

tree is determined. There is a finite tree T with distinguished v (which has a limiting
distribution) on which is “glued” a specific infinite tree; v has an infinite number of
children, an infinite number of which have k − 1 children, and there are only a finite
number of nodes (possibly only v) with k or more children. Our basic technique is
to embed the discrete process in a continuous time process using exponential random
variables, a technique that has previously been employed in the study of balls-in-bins
processes with feedback.

1. Introduction

In some important examples of growing networks, such as the World Wide Web
or the scientific citation network, one can interpret the fact that a given node has
high in-degree as indicative that the node is “popular.” For instance, popular
papers are the ones more often cited by other works, and popular web pages
receive more links than less popular ones. A consequence of differences in popu-
larity is that a node with high in-degree has more propensity to receive further
edges as the network evolves than an unpopular node with low in-degree. In
other words, the more popular a node is, the more visible it is to the community
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that creates the network and/or interacts through it, and high visibility makes
future increases in popularity more likely.

Barabási and Albert [Barabási and Albert 99] incorporated this so-called pref-
erential attachment phenomenon into a generative model for these and other
networks. In this model, nodes arrive at the network one at a time and direct a
fixed number m of edges to previously existing nodes that are chosen with prob-
abilities proportional to their in-degrees. It is quite remarkable that this simple
model already replicates many nontrivial features of the above networks, such
as power-law degree distributions, small diameter, and high resistance to ran-
dom failures, as argued nonrigorously by physicists (see [Albert et al. 99, Albert
and Barabási 02] and references therein) and later proven rigorously by mathe-
maticians [Bollobás et al. 00, Bollobás and Riordan 03b, Bollobás and Riordan
04, Bollobás and Riordan 03a].

The success of the Barabási-Albert model has also inspired many different
variants. The models in [Cooper and Frieze 03, Bollobás et al. 03] permit that
the power-law exponent of the degree distribution be adjusted to fit real-world
data. Other models [Bianconi and Barabási 01] feature a preferential attachment
that is dictated both by node fitness and popularity. This work is dedicated to
yet another kind of variant of the model of [Barabási and Albert 99], one in
which the strength of preferential attachment can be varied.

This model was proposed and studied by Krapivsky and Redner [Krapivsky
and Redner 01] and independently by Drinea, Mitzenmacher, and Enachescu
[Drinea et al. 01]. It differs from the Barabási-Albert network in that each
incoming node chooses a preexisting vertex to which to link with probability
proportional to a fixed function f (the attachment kernel) of the degree of that
vertex.1 While the Barabási-Albert model is recovered by setting f(x) = x, we
will be mostly concerned with kernels of the form f(x) ∼ xp with p > 1 thought
of as a tunable parameter; this is referred to in [Krapivsky and Redner 01] as the
super-linear case. One of the many remarkable nonrigorous results about this
so-called GN (Growing Network) model is that it undergoes an infinite sequence
of connectivity transitions at p = pk ≡ 1+1/k, k = 1, 2, 3, . . . . By this it is meant
that for p > pk the GN process has only finitely many vertices that receive more
than k links, whereas for p ≤ pk the number of such vertices is infinite. Another
way of stating this property is the following: the smallest integer k for which
p > pk = 1 + 1/k is also the smallest number k for which only finitely many
nodes ever reach in-degree k.

1As in the original Barabási-Albert model, one could also consider a similar model in which
each incoming node creates a fixed number m of new edges, but we will only consider the case
m = 1 in this paper.
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The connectivity transitions are both mathematically intriguing and physically
interesting. The fact that the p > 1, p = 1, and (conjecturally) p < 1 cases of
the model are very different leads the authors of [Dorogovtsev and Mendes 02] to
suggest that so-called self-organized criticality is at work in networks with power-
law degree distributions (the p = 1 case). It was also noted elsewhere [Albert and
Barabási 02] that the condensation regime of the fitness model of Bianconi and
Barabási [Bianconi and Barabási 01] has qualitatively similar behavior to the
super-linear GN; [Albert and Barabási 02] even suggests that a direct connection
between the two models could exist. There is also some modeling interest in
the connectivity transitions, since networks in which preferential attachment
is very strong (conceivably even some parts of the World Wide Web) should
exhibit behavior that is qualitatively similar to the GN model in the super-linear
regime.

Despite the striking characteristics, we do not know of any rigorous work on the
GN model to the present date. A modified model was addressed in independent
work by Chung, Handjani, and Jungreis [Chung et al. 03]. In their process, an
attachment kernel is still present, but at each time step either a new vertex and
a new edge are added with probability 0 < q < 1 or only a new edge is added
with probability 1−q. This modified model does exhibit connectivity transitions
in the sense of [Krapivsky and Redner 01], but it is not clear how to deduce the
analogous results for the original GN model from the techniques in [Chung et al.
03].

In this paper we attempt to give a rigorous description of the super-linear
GN process in the large-time limit. Our rigorous results imply the existence of
connectivity transitions, but they also go beyond that. The first result that we
prove is the following.

Theorem 1.1. Let {Tm}m≥1 be the GN process with attachment kernel f(x) = (x+1)p

(defined in Section 3). Also let T∞ be the increasing limit of the {Tm}m≥1

process, and assume that p > pk = 1 + 1/k. Then with probability 1 all but
finitely many nodes of T∞ have less than k descendants (see the definition in
Section 2.2).

A vertex of T∞ with in-degree larger than or equal to k necessarily has at
least k descendants. For this reason, Theorem 1.1 implies that, for p > pk, only
finitely many vertices of T∞ have in-degree ≥ k. As a result, the number of
vertices in Tm with in-degree bigger than k is bounded as m → +∞. This shows
that Theorem 1.1 implies the nonrigorous “p > pk” result of [Krapivsky and
Redner 01] and is in fact stronger than it. Similarly, Theorem 1.2 implies the
p ≤ pk case of Krapivsky and Redner’s result.
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Theorem 1.2. Let f , p > 1, and T∞ be as in Theorem 1.1, and let k = kp be the
smallest positive integer for which p > pk = 1 + 1/k. Consider the construction
Glue(T, v, k) defined in Section 2.2. Then the set of values (up to isomorphism)
that T∞ attains with positive probability is precisely the set of all trees that can
be obtained by choosing a finite rooted tree T and a distinguished vertex v ∈ T

and setting T∞ = Glue(T, v, k).

Theorem 1.2 completely describes (up to isomorphisms) the limit set of the GN

process in the large-time limit. In particular, it also implies that if p ≤ pk, the
number of vertices of in-degree ≥ k in Tm diverges as m → +∞. This differs from
the original claim in [Krapivsky and Redner 01], in which the authors argue that
the expectation of the number of vertices of degree � ≥ k diverges at a certain
rate. While we have nothing to say about this rate, Theorem 1.2 is stronger
than the claim of [Krapivsky and Redner 01] in that divergence of the expected
number is implied but almost sure divergence is not implied. Moreover, our
description of the structure of T∞ is new. Finally, we note that there is nothing
special about the choice of f(x) = (x+1)p as our super-linear kernel. In fact, the
proof of both theorems will make it clear that it suffices to assume that f(x) > 0
for all x and that f(x) = Θ (xp) for x � 1, with only minor modifications in our
arguments.

We now briefly outline our proof techniques. On a high level, we rely strongly
on the similarity pointed out by Drinea, Frieze, and Mitzenmacher [Drinea et al.
02] between the GN process and balls-in-bins models with feedback. The latter
model describes the evolution of a system with a fixed number of bins at which
balls are thrown. A ball arrives at each discrete time step and chooses a bin
to go into with probability proportional to a fixed function f (that we call the
feedback function) of the number of balls currently in that bin. This model can
also be viewed as a static variant of the GN process in which new edges are
repeatedly added but without the creation of any new nodes/bins. This analogy
permits that a certain technique applied to the study of balls-in-bins problems
[Khanin and Khanin 01, Mitzenmacher et al. 04, Spencer and Wormald 04] is
adapted to the GN process. It consists of building a continuous-time process
out of exponential random variables and of showing that it embeds the original
discrete-time process. For this reason we call this construction the exponential
embedding. The GN version of the exponential embedding is essential to the
construction and analysis of the infinite tree limit T∞, and we view it as an
important part of our paper’s contribution.

The remainder of the paper is organized as follows. In Section 2 we introduce
our notation and review a few basic concepts. We formally define the GN process
in Section 3, starting with its original definition in [Krapivsky and Redner 01,
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Drinea et al. 01] and then describing a useful labeled version of it. Section 4
introduces the exponential embedding technique. We begin with a review of the
simpler balls-in-bins case, then we move on to the construction of the embedding
of the GN process for general attachment kernels. We then employ the embedding
to show that so-called “explosive kernels” give rise to GN processes for which
Tm → T∞ in finite time under the exponential embedding. This section ends
with some lemmas on sums of exponential random variables that will be useful
later on. Theorem 1.1 is proven in the subsequent Section 5. The section starts
with weaker results that intuitively pave the way for the actual proof of the
theorem, which relies on a careful consideration of the time of the birth of the kth
descendant of a given node in the exponential embedding setting. In Section 6
we prove Theorem 1.2, relying on Theorem 1.1 and on the techniques developed
in the previous sections. We discuss some consequences of our main theorems
and some related open questions in the Conclusion (Section 7). The appendix
contains the proofs of some technical results.

2. Preliminaries

2.1. Probabilistic Ingredients

We briefly remind the reader of some basic probabilistic concepts and tools, while
also fixing some notation.

2.1.1. Distributions. We say that two random variables X, Y taking values on the
same set U have the same distribution (or are identical in law) if for all mea-
surable subsets A ⊆ U P (X ∈ A) = P (Y ∈ A). This will be symbolically repre-
sented by X =d Y .

2.1.2. The exponential distribution. A random variable X is said to be exponentially-
distributed with rate λ > 0 if X almost surely takes values on the positive reals
and

P (X > t) = e−λt, t ≥ 0.

We denote this property by X =d exp(λ). The shorthand exp(λ) will also denote
a generic exponentially-distributed random variable with rate λ. We list below
some elementary but extremely useful properties of those random variables.

1. Lack of memory. Let X =d exp(λ) and Z ≥ 0 be independent from X.
The distribution of X − Z conditioned on X > Z is still equal to exp(λ).
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2. Minimum property. Let {Xi =d exp(λi)}m
i=1 be independent. Then Xmin ≡

min1≤i≤m Xi =d exp(λ1 + λ2 + . . . λm). Moreover, for all 1 ≤ i ≤ m,

P (Xi = Xmin) =
λi

λ1 + λ2 + . . . λm
.

3. Multiplication property. If X =d exp(λ) and η > 0 is a fixed number,
ηX =d exp(λ/η).

2.1.3. The Borel-Cantelli Lemma. Let {An}n∈N be a sequence of events in some fixed
probability space, with N a countable set. The event “An infinitely often (n ∈
N)” (or “An i.o. (n ∈ N)”) contains all outcomes that belong to an infinite
number of the events An. The Borel-Cantelli Lemma states that∑

n∈N

P (An) < +∞ ⇒ P (An i.o. (n ∈ N)) = 0

and∑
n∈N

P (An) = +∞ and {An}n∈N independent ⇒ P (An i.o. (n ∈ N)) = 1 .

2.1.4. Discrete-time Markov chains. A (discrete-time) Markov chain on the countable
set Ω is specified by transition probabilities Π : Ω × Ω → [0, 1] and a initial
condition X0 ∈ Ω (possibly nondeterministic). The recipe

P (∀0 ≤ i ≤ t Xi = ωi) = P (X0 = ω0)
t∏

i=1

Π(ωi−1, ωi)

defines the distribution of a sequence {Xi}+∞
i=0 of Ω-valued random variables.

2.2. Tree Terminology

2.2.1. Trees. All trees are rooted and have their edges directed towards the root.
No loops or parallel edges are allowed. Given vertices a, b in a tree T , the
existence of the oriented edge (a, b) will be indicated by saying that a is a child
of b, or that b is a’s parent, or that a links to b. With this terminology, the
(in-)degree dT (b) of b in T is the number of its children. If r is a node of T , the
subtree Tr of T rooted at r is the tree with root r, together with r’s children, the
children of those children, and so on. The nodes in Tr\{r} are referred to as the
descendants of r, and r is said to be k-fertile in T if it has k or more descendants.
Theorem 1.1 consists of showing that for p > pk, only finitely many nodes in T∞
are k-fertile.
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Figure 1. An example of Glue(T, v, k) for k = 3.

2.2.2. The Glue construction. Given a finite (rooted, oriented) tree T, a distinguished
node v of T and an integer k ≥ 1, we define Glue(T, v, k) as follows. For each
finite (rooted, oriented) tree S on k or less nodes, take countably many copies
{Si}i≥1 of S. Glue(T, v, k) is the union of T with all the trees Si as above, with
the addition of edges from the root of each one of the Si to v.

As a simple example suppose T consists of a single node (the root v) and
k = 2. Then in Glue(T, v, k) the root has a countably infinite number of
children. Infinitely many of these children are childless and infinitely many of
these children have precisely one child and none of them have more than one
child. Further, all grandchildren of the root are childless.

A more complex example of Glue(T, v, k), now with k = 3, is portrayed in
Figure 1. The starred node is v, and the finite tree T lies to the left of the dashed
line. The countably many copies of the four rooted trees on three or less vertices
(numbered 1, 2, 3, and 4 in the figure) appear to the right of the line and are all
connected to v by their roots.

Our task in proving Theorem 1.2 will be to show that with probability 1 there
exist T and v as above with T∞ = Glue(T, v, k) and that all such Glue(T, v, k)
occur as values of T∞ with some positive probability.

2.3. Labeled Trees and Parent-Closed Sets

2.3.1. Labels. It will be convenient for us to label the vertices of trees. For
our purposes, a label is a (possibly empty) sequence of elements of the set
N = {1, 2, 3, . . . } of positive integers. The empty sequence is denoted by ε,
and all other sequences a = {ai}m

i=1 ⊂ N (with m ≥ 1) will be represented by
a = a1a2 . . . am. Moreover, we call a1 . . . am−1 (the sequence a without its last
element) the parent sequence of a. The set of all labels will be denoted by N

∗.



128 Internet Mathematics

2.3.2. Labeling trees. A labeling of a finite tree T is an assignment of labels to the
vertices of T that obeys two rules:

• the label of the root of T is the empty sequence ε;

• if vertex v has degree d and is labeled by the sequence v1 . . . vm, its children
will receive labels v1 . . . vmi, 1 ≤ i ≤ d.

The second rule implies that the label of a vertex v’s parent in T is the parent
sequence of the label of v.

2.3.3. Parent-closed subsets. A subset A ⊂ N
∗ is said to be parent-closed if it is

nonempty and, for all nonempty sequences a ∈ A, the parent sequence of a is
also in A. Any parent-closed A corresponds to a finite tree with vertex set A

and edges from each a ∈ A\{ε} to a’s parent. Conversely, given a tree T , the
labeling procedure above provides a proper set A = A(T ) that corresponds to
tree T . This set A(T ) is not uniquely defined, but this will not keep us from
representing finite trees by finite parent-closed A ⊂ N

∗ in what follows. For this
reason, we will often apply tree terminology to parent-closed A ⊂ N

∗, speaking,
for instance, of the degree dA(a) of an element a ∈ A. We also observe that
the potential descendants of a = a1 . . . am ∈ N

∗ are obtained by adjoining the
terms of another sequence b = b1 . . . bn to a, thus forming the concatenation
ab ≡ a1 . . . amb1 . . . bn. Finally, we define for convenience

Efin ≡ {A ⊂ N
∗ : A parent-closed and finite}.

3. Definition of the GN Process

3.1. The Standard Definition

The GN[f ] process is defined in terms of an attachment kernel, that is, a function
f : N∪{0} → R

+. The process evolves in discrete time m = 0, 1, 2, 3, . . . ; its state
at time m ≥ 0 is a (rooted, oriented) tree Tm = (Vm, Em) with vertex set Vm and
edge set Em. Initially, T0 contains a single root node and no edges. At each time
m > 0, the tree is updated by the addition of a new node (Vm = Vm−1 ∪ {vm})
and a new edge (Em = Em−1 ∪ {vmwm}), where wm is chosen according to the
following probability distribution:

∀w ∈ Vm−1 P (wm = w | Tm−1) =
f(dTm−1(w))∑

v∈Vm−1
f(dTm−1(v))

.

These definitions already specify the process completely as a finite-tree-valued
Markov chain.
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3.2. The Labeled Process

In the labeled GN[f ] process, we start by labeling the root (and unique element)
of T0 by the empty sequence ε. At subsequent times m ≥ 1, assume that the
incoming node vm links to a node wm, which is labeled by the sequence a1 . . . an,
and that vm is the �th node to link to wm. Then, the label of vm is defined to
be a1 . . . an�, i.e., the sequence corresponding to vm’s parent wm, with a new
number � added to it.

This recursive labeling obeys the definition of a labeling of a tree given in
Section 2.3 and provides an alternative description of the process as a Markov
chain on Efin, as defined in Section 2.3. The transition probabilities of the GN

process on Efin are

Π(A,B) =
f(dA(a))∑

b∈A f(dA(b))
, if ∃a ∈ A : B = A ∪ {a(dA(a) + 1)} (3.1)

= 0 otherwise,

and its initial state is T0 = {ε}. We note in passing that the limit T∞ =⋃
m≥0 Tm of the GN process takes values in the uncountable set

E ≡ {A ⊂ N
∗ : A parent-closed and nonempty};

E a closed subset of the topological space 2N
∗

(with the product topology). We
will refrain from explicitly considering measurability questions related to T∞
and E in what follows, since all such problems can be addressed in a rather
straightforward manner.

4. Exponential Embedding

Our aim in the present section is to present the special construction of the labeled
GN process that we alluded to in Section 1. We will show how one can explicitly
embed the process in continuous time by employing sequences of independent
exponential random variables. Although perhaps complicated at first sight, this
embedding will prove to be fundamental to our analysis, with the independence
of the involved random variables playing a key role in most of our computations.

4.1. The Balls-in-Bins Case

Davis [Davis 90] applied the elementary properties of exponential random vari-
ables to the study of reinforced random walks in a very interesting way. His
method was later adapted by Khanin and Khanin [Khanin and Khanin 01] to the
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balls-in-bins setting. We present this latter use of exponential random variables
(which was also rediscovered by Spencer and Wormald [Spencer and Wormald
04]) as a preparation for the more difficult GN case.

Consider independent random variables {Xj , Yj =d exp(f(j))}j∈N∪{0}, and
define for t ≥ 0

N(t) ≡ sup{n ∈ N ∪ {0} |
n−1∑
i=0

Xi ≤ t},

M(t) ≡ sup{m ∈ N ∪ {0} |
m−1∑
j=0

Yj ≤ t}.

We interpret the times
∑n−1

i=0 Xi and
∑m−1

j=0 Yj as the times when N(·) and M(·)
receive their nth and mth “hits,” respectively. We now fix some t ≥ 0 and
n,m ∈ N ∪ {0} and define the event

At
n,m ≡ {N(t) = n,M(t) = m} =

⎧⎨
⎩

n−1∑
i=0

Xi ≤ t <
n∑

i=0

Xi,
m−1∑
j=0

Yj ≤ t <
m∑

j=0

Yj

⎫⎬
⎭ .

What is the probability that the N(·) process is the first one to receive a hit
after time t, conditioned on At

n,m? This probability can be written as

P

⎛
⎝ n∑

i=0

Xi <
m∑

j=0

Yj

∣∣∣∣∣∣ At
n,m

⎞
⎠ .

If we further condition on
∑n−1

i=0 Xi = s1 ≤ t and
∑m−1

j=0 Yj = s2 ≤ t, we can
write this probability as

P (Xn + s1 < Ym + s2 | Xn ≥ t − s1, Ym ≥ t − s2) .

The lack-of-memory property of exponentials implies that under the conditioning
event above Xn − t + s1 =d exp(f(n)) and Ym − t + s2 =d exp(f(m)). The
minimum property then implies

P (Xn + s1 < Ym + s2 | Xn ≥ t − s1, Ym ≥ t − s2) =

= P (exp(f(n)) + t < exp(f(m)) + t) =
f(n)

f(n) + f(m)
.

Since this holds for all 0 ≤ s1 and s2 ≤ t, we have in fact proven that

P

⎛
⎝ n∑

i=0

Xi <

m∑
j=0

Yj

∣∣∣∣∣∣ At
n,m

⎞
⎠ =

f(n)
f(n) + f(m)

.
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We thus arrive at a surprising conclusion.

Fact 4.1. (Exponential embedding for balls-in-bins.) [Davis 90, Spencer and Wormald
04] Consider the balls-in-bins process [Drinea et al. 02] with two bins and
feedback function f , i.e., the discrete Markov Chain that evolves from state
(n,m) ∈ (N ∪ {0})2 to state (n + 1,m) with probability f(n)

f(n)+f(m) and from

(n,m) to (n,m + 1) with probability f(m)
f(n)+f(m) . It then holds that the joint hit

counts of the (N(·),M(·)) processes up to the (possibly finite) time when either
one becomes infinite is identical in law to the balls-in-bins process with feedback
function f started from (0, 0). That is, the balls-in-bins process is embedded
in the continuous time (N(·),M(·)) process, with Xj (respectively Yj) parame-
terizing the time between the arrivals of the jth and (j + 1)th balls at the first
(respectively second) bin.

Many nontrivial results that do not have direct combinatorial proofs can be
deduced from the construction in Fact 4.1. This method seems to be especially
powerful in the case when either N or M reaches an infinite value in finite
time. The reader is directed to [Khanin and Khanin 01, Mitzenmacher et al. 04,
Spencer and Wormald 04] for many examples of applications of the exponential
embedding. We will now show how we can adapt this technique to our present
context.

4.2. Exponential Embedding of the GN Process

As pointed out in Section 1, a balls-in-bins process with feedback function f is
very similar to a GN process with attachment kernel f to which only new edges
(and no new vertices) are added. Conversely, one may think of a GN process
as a balls-in-bins process in which each new ball also creates a corresponding
bin. This analogy was exploited in [Chung et al. 03], in which a variant of
the original GN process was modeled as an “infinite Pólya Urn process” for
the purposes of studying the degree sequence. We take this analogy further
by adapting the exponential embedding technique to the labeled GN process as
defined in Section 3.2.

Our construction starts from an independent sequence {X(a, j) =d exp(f(j)) |
a ∈ N

∗, j ∈ N ∪ {0}} of random variables. The random variable X(a, 0) shall
correspond to the age of vertex a at the time its first child a1 is born. For
j ≥ 1, X(a, j) shall parameterize the time between the births of the jth and
(j + 1)th children of the a. Therefore, the sequence {X(a, j)}a,j plays a role
that is similar to that of the Xi and Yj in Section 4.1. There is, however, one
important difference: whereas balls-in-bins processes always have a fixed number
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of bins at which balls/hits arrive, the number of “bins” in the GN process grows.
That is, the potential vertices a ∈ N

∗ of the trees {Tm}m≥0 do not all come
into existence at the same time; they are rather born at appropriate times. We
therefore introduce a notion of birth time, which is defined recursively as follows:

• the birth time of the empty string a = ε is B(ε) = 0;

• let a1, a2, . . . , an ∈ N, and consider the sequence a = a1 . . . an. The birth
time of a is the birth time of the parent sequence b = a1 . . . an−1 plus the
time until an’s birth at b. More precisely,

B(a) = B(a1 . . . an) = B(a1 . . . an−1) +
an−1∑
j=0

X(a1 . . . an−1, j).

An equivalent form of the definition of B(a) is

B(a) = B(a1 . . . an) =
n−1∑
i=0

ai+1−1∑
j=0

X(a1 . . . ai, j). (4.1)

Our continuous time process is defined by setting

W(t) ≡ {a ∈ N
∗ : B(a) ≤ t}, t ∈ R.

W(·) always takes values in the set E of parent-closed subsets of N
∗ (defined in

Section 2.3). This is because the definition of birth time implies that the birth
time of a1 . . . an−1 is always smaller than or equal to that of a1 . . . an.

Let us now specialize to the case where f : N ∪ {0} → R is given by f(x) =
(x + 1)p for some constant p > 1. Such attachment kernels satisfy the explosion
condition ∑

n≥0

1
f(n)

< +∞. (4.2)

The condition implies that the expectation of

P(a) ≡
+∞∑
j=0

X(a, j) = sup
k∈N

B(ak) − B(a), a ∈ N
∗, (4.3)

is finite. Therefore, all the random variables defined in (4.3) are almost surely
finite.

Definition 4.2. For an element a ∈ N
∗, the random variable P(a) defined in (4.3) is

the explosion time of a. The infimum of B(a) + P(a) over all a ∈ N
∗ is the tree

explosion time, or the explosion time of the W(·) process, and is denoted by S:

S ≡ inf
a∈N

B(a) + P(a). (4.4)



Oliveira and Spencer: Connectivity Transitions in Networks with Super-Linear Preferential Attachment 133

The intuition behind the definition of S is that it is the first time when some
node in the W(·) process has an infinite number of children. In fact, we claim
that

Claim 4.3. The following events hold with probability 1. The birth times B(a) that
are smaller than S are pairwise distinct and can be well ordered with order type
ω. Let 0 = B(ε) = B0 < B1 < . . . < Bn < . . . denote their ordered sequence, then
Bn ↗ S as n → +∞. Moreover, there exists a unique v ∈ N

∗ that has infinite
degree in W(S); this v satisfies B(v) + P(v) = S and B(w) + P(w) > S for all
w �= v.

A direct consequence of Claim 4.3 is Theorem 4.4 below.

Theorem 4.4. Let {Bn}n≥0 be as in Claim 4.3. Then, the sequence {Tn ≡ W(Bn)}n≥0

is identical in law to the labeled GN process. Moreover, Tn → T∞ ≡ W(S) as
n → +∞.

However, to prove Claim 4.3, we will need some elements of the proof of
Theorem 1.1. This could potentially result in a problem: using Theorem 1.1
to prove Claim 4.3, then employing the claim to prove Theorem 4.4, and finally
using this theorem in the proof of Theorem 1.1 would not be acceptable. Instead,
we circumvent this difficulty as follows.

1. In the beginning of the next section, we state Lemma 5.1, which is the
same as Theorem 1.1 but with W(S) replacing T∞ in the statement.

2. Claim 4.3 is then proven, assuming the lemma.

3. The remainder of the section proves Lemma 5.1, without assuming Claim 4.3
or Theorem 4.4 in any way.

4. The argument below shows that Claim 4.3 implies Theorem 4.4, which
directly implies that Lemma 5.1 can be strengthened to Theorem 1.1.

Irrespective of formal proofs, the reader should keep in mind that W(S) rep-
resents the tree T∞ in the statements of Theorem 1.1 and Theorem 1.2. Vertices
a ∈ N

∗ whose birth times satisfy B(a) > S are not really “born” in T∞ but
rather constitute a fictitious continuation of T∞ in which new vertices continue
to arrive even though infinitely many vertices have already appeared. We will
use this continuation to our advantage in many of the proofs below.
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Proof of Theorem 4.4. Assuming Claim 4.3, it suffices to show that for all A ∈ Efin

and all a ∈ A,

P (first birth of W(·) after time t is at a | W(t) = A)

= P

(
B(adA(a)) + X(a,dA(a)) = min

b∈A
B(bdA(b)) + X(b,dA(b)) | W(t) = A

)
= Π(A,A ∪ {a(dA(a) + 1)}).

(4.5)
To prove this, we first observe that the conditioning event is

{W(t) = A} =

⎧⎨
⎩∀c ∈ A B(c) +

dA(c)−1∑
j=0

X(c, j) ≤ t < B(c) +
dA(c)∑
j=0

X(c, j)

⎫⎬
⎭ .

We proceed as in the previous section and condition on the values X(b, j) =
x(b, j) ≥ 0 for b ∈ A and 0 ≤ j ≤ dA(b) − 1. We want this event to be a subset
of {W (t) = A}, so we require that the birth times of all b ∈ A are at most t;
that is, we must have

∀b1 . . . br ∈ A y(b1 . . . br) ≡
r−1∑
i=0

bi+1−1∑
j=0

x(b1 . . . bi, j) ≤ t. (4.6)

Under this more stringent conditioning, the probability that we wish to com-
pute is

P

(
y(adA(a)) + X(a,dA(a)) = min

b∈A
y(bdA(b)) + X(b,dA(b))

∣∣∣∣B
)

, (4.7)

where
B ≡ {∀b ∈ A X(b,dA(b)) > t − y(b,dA(b))}.

The exponential random variables in (4.7) are all independent. Moreover, by the
lack-of-memory property, X(b,dA(b))+y(b,dA(b))−t conditioned on X(b,dA(b)) >

t − y(b,dA(b)) is distributed as exp(f(dA(b))). It follows that

P

(
y(adA(a)) + X(a,dA(a)) = min

b∈A
y(bdA(b)) + X(b,dA(b)) | B

)

= P

(
exp

(
f(dA(a))

)
− t = min

b∈A
exp

(
f(dA(b))

)
− t

)
, (4.8)

where all the experimental functions are independent. From the minimum prop-
erty, this last probability is

f(dA(a))∑
b∈A f(dA(b))

, (4.9)



Oliveira and Spencer: Connectivity Transitions in Networks with Super-Linear Preferential Attachment 135

and this holds irrespective of the values {x(b, j)}, as long as (4.6) is satisfied. As
a result, (4.5) holds.

Remark 4.5. The proof of Theorem 4.4 makes it clear that the W(·) process is a
continuous-time Markov Chain on Efin up to time S. A consequence of this is
the following. Let t ≥ 0 be given, and let E be an event for W(·) that is entirely
defined in terms of {W(s)}0≤s≤t. Assume that inside the event E, W(t) = A ∈
Efin. Finally, let F be an event defined entirely in terms of {W(s)}s≥t. Then,

P (F | E) = P (F | W(t) = A) .

We will employ this Remark in the proofs of Lemma 6.1 and Lemma 6.2.

4.3. Three Useful Lemmas

Before we move on to prove the main theorems in the paper, we collect three
lemmas (proven in the appendix) that will be useful in dealing with sums of in-
dependent exponential random variables. The present lemmas provide estimates
of several probabilities that are intimately related to the presence of nodes with
k descendants in the final tree T∞. All of them are key ingredients of the proofs
of Theorem 1.1 and Theorem 1.2. We assume that f(x) = (x + 1)p with p > 1
in all statements.

Lemma 4.6. (A large-deviations bound.) There exist constants C, n0 > 0 depending only
on f such that for all n ≥ n0, all independent sequences of random variables
{Xj =d exp(f(j))}j≥n, and all δ > 0,

P

⎛
⎝∑

j≥n

Xj > E

⎡
⎣∑

j≥n

Xj

⎤
⎦ + δ

⎞
⎠ ≤ Ce−δnp− 1

2

P

⎛
⎝∑

j≥n

Xj < E

⎡
⎣∑

j≥n

Xj

⎤
⎦− δ

⎞
⎠ ≤ Ce−δnp− 1

2 .

Lemma 4.7. Let Y = Y1 + · · ·+ Yk be a sum of k independent random variables for
which

∀1 ≤ i ≤ k P (Yi ≤ ε) = Θ(ε) as ε ↘ 0.

Then, there exist constants C and n0 depending only on k, f , and the distri-
butions Yi such that for all independent sequences of random variables {Xj =d
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exp(f(j))}j≥n that are independent of Y and all n ≥ n0,

1
Cnk(p−1)

≤ P

⎛
⎝Y ≤

∑
j>n

Xj

⎞
⎠ ≤ C

nk(p−1)
.

Lemma 4.8. Let Z1, . . . , Zk be independent exponentials with mean one and let
Z ≡ Z1 + . . . + Zk. Then, for all λ > 0,

P (Z ≤ λ) = e−λ
∑
j≥k

λj

j!
≤ λk

k!
.

5. Finitely Many k-Fertile Vertices

In this section we prove the first of our main results about the GN process,
Theorem 1.1. As noted in the previous section, Claim 4.3—which has not been
proven yet—is necessary for the connection between the exponential process and
the GN process. Proving the claim will require a preliminary form of Theorem 1.1
that we shall present. We assume throughout the section that f(x) = (x + 1)p

for some p > pk = 1 + 1/k.
Recall that a node is k-fertile if it has k or more descendants in the corre-

sponding tree.

Lemma 5.1. Consider the W(·) process defined in Section 4, and assume that its
attachment kernel is f(x) = (x + 1)p, p > pk. Then, for all T > 0,

E [#{a ∈ W(S) : a is k-fertile} | P(ε) ≤ T ] < +∞, (5.1)

and therefore

P (#{a ∈ W(S) : a is k-fertile} < +∞ | P(ε) ≤ T ) = 1.

Since P(ε) < +∞ almost surely, this implies that W(S) almost surely has only
finitely many k-fertile vertices.

As noted in Section 4, we will use Lemma 5.1 to prove Claim 4.3, and this in
turn will imply that Theorem 4.4 holds. This last theorem and Lemma 5.1 di-
rectly imply Theorem 1.1. Therefore, most of the present section will be devoted
to proving Lemma 5.1.
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This section is organized as follows. In Section 5.1 we show how Lemma 5.1
implies Claim 4.3. Having settled that matter, we move on to proving Lemma 5.1.
Our proof will consist of bounding the probabilities of the form

P (a is k-fertile | P(ε) ≤ T )

and then showing that their sum is finite. We illustrate our techniques for doing
so in Section 5.2, where we show a partial result in the direction of Lemma 5.1.
We then show in Section 5.3 that the time at which a given a ∈ N

∗ becomes
k-fertile in the W(·) process can be bounded in terms of a sum of k exponential
random variables (Lemma 5.6). This permits an improved bound on the prob-
ability of k-fertility (Section 5.4), which is then applied to prove Lemma 5.1 in
Section 5.5.

5.1. Lemma 5.1 Implies Claim 4.3

Proof of Claim 4.3. The following lemma is a well-known combinatorial result.

Lemma 5.2. (Konig’s Infinity Lemma.) Let T be an infinite rooted tree in which every
vertex has finite degree. Then T contains an infinite path starting from the root.

We will use Konig’s Infinity Lemma and Lemma 5.1 to prove a series of almost-
sure statements that imply the claim.

All birth times are almost surely distinct. This occurs because, for all distinct
a, b ∈ N

∗, the difference B(a) − B(b) is a sum of terms of the form ±X(c, j) for
some (c, j) ∈ N

∗ × N ∪ {0}. Each such term has a smooth distribution with
no point masses, and all terms are independent, hence B(a) − B(b) �= 0 with
probability 1.

There almost surely exists at least one vertex v ∈ N
∗ with infinite degree in

W(S). Suppose that this is not the case. Since W(S) is infinite, Konig’s Infinity
Lemma would imply that there is an infinite path starting from the root in W(S).
But all the infinitely many vertices on such path would have ≥ k descendants,
for any k ∈ N. However, p > 1 implies that p > pk = 1 + 1/k for some k ∈ N,
and Lemma 5.1 then implies that only finitely many vertices in W(S) can be
k-fertile, a contradiction.

There almost surely exists a unique vertex v for which S = B(v)+P(v). With
probability 1, there is a vertex v of W(S) with infinite degree. Since the degree
of v is infinite in W(S), all the children of v must have been born before time S:

∀n ∈ N, B(vn) ≤ S.

As n → +∞, B(vn) → B(v)+P(v), thus B(v)+P(v) ≤ S. Then, by the definition
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of S, S = B(v) + P(v). Thus, there exists a v as claimed. For uniqueness, one
can show that B(a) + P(a) �= B(b) + P(b) for all distinct a, b ∈ N

∗.
With probability 1, W(t) is finite for all t < s. Suppose that this is not the

case. For all a ∈ N
∗,

B(a) + P(a) = lim
d→+∞

B(ad) ≥ S > t,

which implies that for all a there is an integer da ≥ 0 such that B(ada) > t.
Therefore, any a has finite degree ≤ da −1 in W(t). By Konig’s Infinity Lemma,
W(t) must then have an infinite path from ε, a1, a1a2, a1a2a3, . . . . But all nodes
along this path have infinitely many descendants in W(t), and hence also in
W(S), which was shown above to have probability 0. The contradiction implies
the assertion.

The set of birth times before S can be well ordered. This is a consequence of
the previous assertion.

With probability 1, when the descendants of v are removed from W(S), the
result is a finite tree. Again, the key property here is that all a ∈ N

∗\{v} have
finite degree. So, if W(S) without the descendants of v would be infinite, Konig’s
Infinity Lemma would imply the existence of an infinite path in W(S), which
would imply that all nodes along the path have infinitely many descendants.
Since this is impossible, the assertion must be true.

The ordered birth times B0 = 0 ≤ B1 ≤ B2 ≤ . . . are almost surely distinct
and converge almost surely to S. That they are distinct follows from the first
assertion. Since they form an increasing sequence bounded by S < +∞, they
converge to some finite limit. But the birth times {B(vm)}+∞

m=1 (with v as in
the previous paragraph) form a subsequence of {Bn}n∈N∪{0} that converges to
B(v) + P(v) = S, so the {Bn}n sequence converges to S as well.

The series of assertions implies the claim.

5.2. Two Instructive Examples

Having shown that Lemma 5.1 implies Claim 4.3, we now turn to the proof of
the lemma. Recall that the goal of the lemma is to prove that only finitely
many vertices have k or more descendants in W(S). For the sake of the reader,
however, we first consider two special classes of a ∈ N

∗ and prove that only
finitely many nodes in each class have large degree. While the corresponding
general result combines ingredients of the two special cases, we believe that our
techniques become much clearer if introduced separately.

To state the present results, we need two definitions. Fix a number L > 0, and
call a ∈ N

∗\{ε} L-moderate if all numbers in the sequence a are smaller than
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or equal to L. If on the other hand all numbers in a are bigger than L, call it
L-extreme. Our two simple lemmas are presented below.

Lemma 5.3. For all integers L > 0 and all T ≥ 0, the expected number of L-
moderate, 1-fertile vertices in W(S) conditioned on P(ε) = T is finite.

Lemma 5.4. There exists a constant L0 > 0 defined only in terms of p such that
for all integers L ≥ L0, the expected number of L-extreme vertices in W(S) that
have at least k children is finite.

Proof of Lemma 5.3. For any a = a1 . . . am, the time for the birth of the first child of
a is

B(a1) = B(a) + X(a, 0)

=
m−1∑
j=0

aj+1−1∑
i=0

X(a1 . . . aj , i) + X(a1 . . . am, 0) ≥
m∑

j=1

X(a1 . . . aj , 0). (5.2)

Notice that this lower bound on B(a1) is actually independent of P(ε), which is
at least as big as the tree explosion time S. As a result,

P (a is 1-fertile | P(ε) = T ) = P (B(a1) ≤ S | P(ε) = T )

≤ P

⎛
⎝ m∑

j=1

X(a1 . . . aj , 0) ≤ P(ε) | P(ε) = T

⎞
⎠

= P

⎛
⎝ m∑

j=1

X(a1 . . . aj , 0) ≤ T

⎞
⎠ .

We now apply Lemma 4.8 with λ = T and Z =
∑m

j=1 X(a1 . . . aj , 0) to deduce

P (a is 1-fertile | P(ε) = T ) ≤ P

(
m∑

i=1

X(a1 . . . ai, 1) ≤ T

)
≤ Tm

m!
.

There are Lm L-moderate a of length m, and this implies that

∑
a L-moderate

P (a is 1-fertile | P(ε) = T ) ≤
+∞∑
m=1

TmLm

m!
= eTL − 1 < +∞.

This finishes the proof.
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Proof of Lemma 5.4. We assume L ≥ k +1, n0, where n0 comes from Lemma 4.7. Fix
an L-extreme a = a1 . . . am with all ai ∈ N, and let am+1 = k. The event

{a has at least k children} = {B(ak) ≤ S} (5.3)

is contained in the event

Ha,i ≡

⎧⎨
⎩

k−1∑
j=0

X(a1 . . . ai, j) ≤
+∞∑
s=ai

X(a1 . . . ai−1, s)

⎫⎬
⎭ , (5.4)

for each 1 ≤ i ≤ m. This is true because for all 1 ≤ i ≤ m

B(a1 . . . ai) +
k−1∑
j=0

X(a1 . . . ai, j) = B(a1 . . . aik)

by properties of birth times

≤ B(a1 . . . aiai+1)

since ai ≥ L ≥ k for i < m, and am+1 = k

≤ B(ak)

since ak is either a descendant of a1 . . . ai+1 or equal to ak and

S ≤ B(a1 . . . ai−1) + P(a1 . . . ai−1)

by definition of S

= B(a1 . . . ai−1) +
+∞∑
j=0

X(a1 . . . ai−1, j)

= B(a1 . . . ai) +
+∞∑
j=ai

X(a1 . . . ai−1, j).

Therefore,

{a has at least k children}
= {B(ak) ≤ S}

⊆

⎧⎨
⎩B(a1 . . . ai) +

k−1∑
j=0

X(a1 . . . ai, j) ≤ B(a1 . . . ai) +
+∞∑
j=ai

X(a1 . . . ai−1, j)

⎫⎬
⎭

=

⎧⎨
⎩

k−1∑
j=0

X(a1 . . . ai, j) ≤
+∞∑
j=ai

X(a1 . . . ai−1, j)

⎫⎬
⎭ = Ha,i.
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Now note that all the events {Ha,i}1≤i≤m are in fact independent. In fact, for
any 1 ≤ i ≤ n − 1, Ha,i depends only on the random variables X(a1 . . . ai−1, j)
with j ≥ ai ≥ L ≥ k + 1 and X(a1 . . . ai, �) with 0 ≤ � ≤ k. Therefore, the
choice of L implies that no random variable can appear in the definitions of two
different Ha,i. Thus,

P (a has at least k children) ≤
m∏

i=1

P (Ha,i) .

Now notice that

P (Ha,i) = P

⎛
⎝ k∑

�=1

Y� ≤
∑
j≥ai

X(a1 . . . ai−1, j)

⎞
⎠ , (5.5)

with Y� = X(a1 . . . ai, �− 1). It is straightforward to check that the assumptions
of Lemma 4.7 hold (since we know ai ≥ L ≥ n0) and that as a result

P (Ha,i) ≤
C

a
(p−1)k
i

, (5.6)

where C depends only on p, as the distributions of the Y� are determined by p.
It follows that

∑
a L-ext.

P (a has k children) ≤
+∞∑
m=1

∑
a1,...,am>L

m∏
i=1

C

a
k(p−1)
i

=
+∞∑
m=1

(
C

Lk(p−1)−1

)m

.

(5.7)

Noting that p > pk ⇒ k(p − 1) > 1, we can now take L ≥ L0 ≡ (2C)
1

k(p−1)−1 to
have a finite sum.

Remark 5.5. One can show by the same proof technique used above that for all
fixed v ∈ N

∗ and all fixed k ∈ N,

P (vi has k children before v explodes) = O
(
i−(p−1)k

)
as i → +∞. (5.8)

To prove this, note that the event in (5.8) is

{B(vik) ≤ B(v) + P(v)} =

⎧⎨
⎩

k−1∑
j=0

X(vi, k) ≤
∑
j≥i

X(v, j)

⎫⎬
⎭ ,
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because B(vik) = B(vi)+
∑k−1

j=0 X(vi, k) and B(v)+P(v) = B(vi)+
∑

j≥i X(v, j).
Then, apply Lemma 4.7, as in the previous proof.

Similarly, one can show that, for all t ≥ 0, all v, w ∈ N
∗, and all finite trees

Tn such that v has n children in Tn,

P (w has k children after time t and before v explodes | W(t) = Tn)

= O
(
n−(p−1)k

)
as n → +∞.

We will employ this remark in the proof of Lemma 6.2.

5.3. Subtrees and the Time until k Descendants Are Born

There are two reasons why Lemma 5.3 and Lemma 5.4 do not imply Lemma 5.1.
First, there are a ∈ N

∗ that are neither L-moderate nor L-extreme. Second, the
two lemmas only bound the probability of a certain node having degree ≥ k,
which is different from k-fertility for all k ≥ 2. The next lemma deals with the
latter difficulty. Fix some a ∈ N

∗, and let Wa(t) ≡ {c ∈ N
∗ : B(ac)−B(a) ≤ t},

for t ∈ R, be the subtree of W(t + B(a)) rooted at a. Clearly, Wa(·) and
W(·) = Wε(·) have the same distribution. Moreover, a is k-fertile if and only
if the size of Wa(S − B(a)) is at least k + 1 (i.e., Wa(S − B(a)) has at least k

vertices other than the root). Lemma 5.6 provides tools for the analysis of the
k-fertility event.

Lemma 5.6. For a fixed a ∈ N
∗, let T0(a) be the time of the first birth of a node other

than the root in the Wa(·) process. Moreover, for i ∈ N, let Ti(a) be the time
elapsed between the ith and (i + 1)th births in Wa(·) (again excluding the birth
time of the root). Then, there exists a sequence of random variables {Rj(a)}+∞

j=0

such that

1. {Rj(a)}+∞
j=0 is a sequence of independent random variables;

2. the sequence {Rj(a)}+∞
j=0 is a deterministic function of the random variables

{X(ac, i) | c ∈ N
∗, i ∈ N};

3. for each j ∈ N ∪ {0}, Rj(a) =d exp((j + 1)f(j));

4. R0(a) = T0(a) and, for all j ∈ N, Rj(a) ≤ Tj(a).

Proof. It suffices to consider the case a = ε. For convenience, we introduce the
notation

Σ(c) ≡
{ ∑m

i=1 ci c = c1 . . . cm ∈ N
∗\{ε}

0 c = ε
.
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We prove inductively that the random variables {Rj(ε)}r
j=0 can be defined as

above so that, for all j ∈ N ∪ {0}, Rj(ε) is completely defined by the values
of X(c, r) for c ∈ N

∗, 0 ≤ Σ(c) + j ≤ r. For r = 0, this is easy: just set
R0(ε) = T1(ε) = X(ε, 0). Now assume inductively that Rj(ε) has been defined
for all 0 ≤ j ≤ r = n−1. To prove that the same is possible for r = n, condition
on a particular value

Wε

⎛
⎝n−1∑

j=0

Tj(ε)

⎞
⎠ = A ∈ E ,|A| < +∞. (5.9)

The sum
∑n−1

j=1 Tj(ε) is exactly the birth time of the nth descendant of the root
in Wε(·) (for ε is born at time 0), hence |A| = n + 1. We also notice that
Σ(c) + dA(c) ≤ n for all c ∈ A. Indeed, the sequence

b =
{

cdA(c) if dA(c) > 0
c if dA(c) = 0

is an element of A with Σ(b) = Σ(c)+dA(c), and it is a simple fact (whose proof
we omit) that Σ(b) ≤ |A| − 1 for any b ∈ A ∈ Efin.

Conditioned on the event in (5.9), the random variable Tn(a) has exponential
distribution with rate

∑
c∈A f(dA(c)), which is bounded by |A|f(n) ≤ (n+1)f(n)

by the previous remarks. Therefore,

Rn(a) ≡
∑

c∈A f(dA(c))
(n + 1)f(n)

Tn(a) ≤ Tn+1(a)

⎛
⎝where A = Wε

⎛
⎝n−1∑

j=1

Tj(ε)

⎞
⎠
⎞
⎠

is exponential with rate (n + 1)f(n) irrespective of A, by the multiplication
property of exponentials (see Section 2.1). Because Wa(

∑n−1
j=1 Tj(a)) and Tn(a)

are completely defined by the random variables {X(ac, j) : c ∈ N
∗,Σ(c) + j ≤

n + 1}, the same is true of Rn(a). This finishes the proof.

5.4. A General Bound on the Probability of k-Fertility

Lemma 5.6 is now used to prove a stronger form of the bounds in Section 5.2 that
applies to all a ∈ N

∗ (not just L-moderate or L-large sequences). To present this
bound, we need a definition. For a fixed L > 0 and a sequence a = a1a2 . . . am ∈
N

∗ of length m, the set of small indices in a is smL(a) = {1 ≤ i ≤ m : ai ≤ L},
and the set of large indices in a is lgL(a) = {1 ≤ i ≤ m : ai > L}.
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Lemma 5.7. There exist constants C,L0 > 0 depending only on k and p such that
for any T > 0, L ≥ L0, and a = a1 . . . am ∈ N

∗,

P (a is k-fertile and P(ε) ≤ T ) ≤ max{T,C}m

|smL(a)|!
∏

j∈lgL(a)

1

a
(p−1)k
j

. (5.10)

Proof. For most of the proof, we will only assume that L0 ≥ k; more conditions
on L0 will be imposed later. Set am+1 ≡ k, and for each i ∈ lgL(a), define Ii to
be the smallest j ∈ lgL(a) ∪ {m + 1} satisfying j > i; notice that the choice of
L0 implies aIi

> L0 ≥ k whenever Ii < m+1 . Employing the random variables
{Rj(a)}k−1

j=0 whose existence Lemma 5.6 guarantees, we deduce that

{a is k-fertile} ⊂ {B(a) +
k−1∑
n=0

Rn(a) ≤ S} (5.11)

= {B(a) + X(a, 0) +
k−1∑
n=1

Rn(a) ≤ S}.

In what follows, we will bound the probability on the right-hand side, noting that
the Rj(a) and X(b, i) that appear in the definitions below are all independent
because of Lemma 5.6. Consider the following events:

FT
a ≡

{
B(a) + X(a, 0) +

k−1∑
n=1

Rn(a) ≤ S and P(ε) ≤ T

}
, (5.12)

GT
a ≡

⎧⎨
⎩

∑
i∈smL(a)

X(a1 . . . ai, 0) ≤ T

⎫⎬
⎭ , (5.13)

Ha,i ≡

⎧⎨
⎩
(

X(a1 . . . ai, 0)
+
∑k−1

j=1 X(a1 . . . aIi−1, j)

)
≤

∑
j≥ai

X(a1 . . . ai−1, j)

⎫⎬
⎭ , (5.14)

i ∈ lgL(a), Ii �= m + 1,

Ha,i ≡

⎧⎨
⎩X(a1 . . . ai, 0) +

k−1∑
j=1

Rj(a) ≤
∑
j≥ai

X(a1 . . . ai−1, j)

⎫⎬
⎭ , (5.15)

i ∈ lgL(a), Ii = m + 1.
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The first event is the one whose probability we want to bound. The second event
is similar to the one in the proof of Lemma 5.3, whereas the remaining events
are reminiscent of those in the proof of Lemma 5.4. We now claim the following.

Claim 5.8. It holds that

FT
a ⊆ GT

a ∩
⋂

i∈lgL(a)

Ha,i. (5.16)

Moreover, the events on the right-hand side of (5.16) are independent.

Claim 5.8 is proven at the end of the current proof, but we now present the
following concrete example of its application to illustrate our argument. Assume
that k = 2, L = L0 = 3, and a = a1a2 . . . a6 = 142461, in which case smL(a) =
{1, 3, 6} and lgL(a) = {2, 4, 5}. Figure 2 represents some of the random variables
involved in (5.16) by rectangles. The first six columns of rectangles stand for
random variables of the form X(b, j) for b = ε (the empty string), 1, 14, . . . ,
14246 and j = 0, 1, . . . , 6, while the last column represents the random variables
R0(a) = X(a, 0) and R1(a). The rectangles that lie completely below the dashed
line correspond to the random variables that appear in

B(a) = X(ε, 0) +
3∑

j1=0

X(1, j1) +
1∑

j2=0

X(14, j2) (5.17)

+
3∑

j3=0

X(142, j3) +
5∑

j4=0

X(1424, j4) + X(14246, 0).

6

5

4

3

2

1

0

empty 1 14 142 1424 14246 R

Figure 2. Illustration of Claim 5.8 for a = 142461.
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Moreover,

Ii =

⎧⎨
⎩

4, i = 2
5, i = 4
7, i = 5.

By checking the definitions of GT
a and Ha,i, one can check that the following

statements hold:

1. GT
a ⊇ FT

a , since in the event FT
a the explosion time S is at most T , and the

sum (5.17) defining B(a)+X(a, 0) contains the terms of
∑

i∈smL(a) X(a1, . . .

ai, 0). Moreover, the random variables appearing in GT
a correspond to the

rectangles marked with triangles in Figure 2.

2. Ha,2 ⊇ FT
a . In order for FT

a to happen, a1a2 . . . aI2 = 1424 must be
born before a1 = 1 explodes. In particular, using the critical fact that
k = 2 < L = 3, so that aI2 > k, 1422 = a1a2 . . . aI2−1k must be born
before node a1 = 1 explodes. Since a1 explodes at time B(a1) + P(a1) =
B(1) + X(1, 0) + X(1, 1) + . . . , 1422 is born at a time that is larger than
B(14) + X(14, 0) + X(142, 1) and B(14) = B(1) + X(1, 0) + · · · + X(1, 3),
it follows that

FT
a ⊂

⎧⎨
⎩
⎛
⎝ B(1) + X(1, 0)+

+ · · · + X(1, 3)+
X(14, 0) + X(142, 1)

⎞
⎠ ≤ B(1) + X(1, 0) + X(1, 1) + . . .

⎫⎬
⎭

⊂

⎧⎨
⎩X(14, 0) + X(142, 1) ≤

∑
j≥4

X(1, j)

⎫⎬
⎭ = Ha,2,

so Ha,2 ⊇ FT
a is indeed true. Moreover, one can check that the random

variables appearing in the definition of Ha,2 are precisely the ones marked
with circles in Figure 2.

3. Similarly, one can show that Ha,4 ⊇ FT
a (respectively, Ha,5 ⊇ FT

a ) and that
the random variables marked with stars (respectively squares) are precisely
the ones appearing in the definition of Ha,4 (respectively Ha,5).

Items 1, 2, and 3 imply not only the validity of (5.16) but also that no random
variable of the form X(·, ··) or R(·)(a) appears in the definition of more than one
of the events in (5.13)–(5.15). Since those random variables are also independent,
we have proven that GT

a , Ha,2, Ha,4, and Ha,5 are independent events, which
implies the claim in this special case. The proof of Claim 5.8 for general L, k,
and a is entirely analogous to the argument sketched above.
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We continue with the proof of Lemma 5.7, noting that Claim 5.8 implies

P
(
FT

a

)
≤ P

(
GT

a

)
×

∏
i∈lgL(a)

P (Ha,i) . (5.18)

The remainder of our proof consists of bounding the probabilities on the right-
hand side of (5.18), which is done in roughly the same way as in Lemmas 5.3
and 5.4. The probability of GT

a is bounded using Lemma 4.8 with the Zi corre-
sponding to the X(a1 . . . ai, 0) for i ∈ smL(a) and λ = T :

P
(
GT

a

)
≤ T |smL(a)|

|smL(a)|! . (5.19)

Now fix some i ∈ lgL(a) with Ii �= m + 1. We apply Lemma 4.7 with Y1 =
X(a1 . . . ai, 0), Y� = X(a1 . . . aIi−1, � − 1) for 2 ≤ � ≤ k, and

{Xj}j≥n = {X(a1 . . . ai−1, j)}j≥ai
.

In the present case, the distributions of the Y� are all defined in terms of f and k.
Therefore, there exist C and n0 depending only on k and f such that if ai ≥ n0,

P (Ha,i) ≤
C

a
(p−1)k
i

. (5.20)

For i ∈ lgL(a) with Ii = m+1, a similar reasoning with Y� = R�(a) for 2 ≤ � ≤ k

implies that for (possibly enlarged) C and n0 depending only on k and f , and
all ai ≥ n0, (5.20) still holds. So, if we take L0 ≥ n0, we can plug (5.19) and
(5.20) into (5.18) for any a, which finishes the proof.

To conclude, we now prove Claim 5.8.

Proof of Claim 5.8. We first show that each of the events (re)defined as

GT
a ≡

⎧⎨
⎩

∑
i∈smL(a)

X(a1 . . . ai, 0) ≤ T

⎫⎬
⎭ , (5.21)

Ha,i ≡

⎧⎨
⎩
(

X(a1 . . . ai, 0)
+
∑k−1

j=1 X(a1 . . . aIi−1, j)

)
≤

∑
j≥ai

X(a1 . . . ai−1, j)

⎫⎬
⎭ , (5.22)

i ∈ lgL(a), Ii �= m + 1, and

Ha,i ≡

⎧⎨
⎩X(a1 . . . ai, 0) +

k−1∑
j=1

Rj(a) ≤
∑
j≥ai

X(a1 . . . ai−1, j)

⎫⎬
⎭ , (5.23)
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i ∈ lgL(a), Ii = m + 1,

contains

FT
a =

⎧⎨
⎩B(a) + X(a, 0) +

k−1∑
j=1

Rj(a) ≤ S and P(ε) ≤ T

⎫⎬
⎭ . (5.24)

First containment: GT
a ⊃ FT

a . On the one hand, all terms appearing in the
sum ∑

i∈smL(a)

X(a1 . . . ai, 0)

also appear in the sum defining B(a) = B(a1 . . . am) (see (4.1)), so that

∑
i∈smL(a)

X(a1 . . . ai, 0) ≤ B(a) ≤ B(a) + X(a, 0) +
k−1∑
j=1

Rj(a). (5.25)

On the other hand, by the definition of S in (4.4),

S ≤ B(ε) + P(ε) = P(ε) (5.26)

since B(ε) = 0. Therefore,

FT
a occurs ⇒

∑
i∈smL(a)

X(a1 . . . ai, 0) ≤ P(ε) ≤ T ⇒ GT
a occurs.

Second containment: Ha,i ⊃ FT
a if i ∈ lgL(a) and Ii < m + 1. Consider the

sum

X(a1 . . . ai, 0) +
k−1∑
j=1

X(a1 . . . aIi−1, j).

In the present case, Ii ∈ lgL(a). Our choice of L ≥ k is now used, for it implies
that aIi

≥ L ≥ k, and hence

X(a1 . . . ai, 0) +
k−1∑
j=1

X(a1 . . . aIi−1, j) ≤ X(a1 . . . ai, 0) +
aIi

−1∑
j=1

X(a1 . . . aIi−1, j).

The terms in this sum each appear once in

m−1∑
t=i

at+1−1∑
j=0

X(a1 . . . at, j) + X(a, 0) +
k−1∑
j=1

Rj(a)

= B(a) − B(a1 . . . ai) + X(a, 0) +
k−1∑
j=1

Rj(a), (5.27)
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and it follows that

X(a1 . . . ai, 0) +
k−1∑
j=1

X(a1 . . . aIi−1, j)

≤ B(a) − B(a1 . . . ai) + X(a, 0) +
k−1∑
j=1

Rj(a). (5.28)

Therefore,

FT
a occurs ⇒ B(a) + X(a, 0) +

k−1∑
j=1

Rj(a) ≤ S

⇒ X(a1 . . . ai, 0) +
k−1∑
j=1

X(a1 . . . aIi−1, j) ≤ S − B(a1 . . . ai).

But, it is always true that

S ≤ B(a1 . . . ai−1) + P(a1 . . . ai−1)

and

B(a1 . . . ai−1) + P(a1 . . . ai−1) − B(a1 . . . ai) =
∑
j≥ai

X(a1 . . . ai−1, j).

Hence,

FT
a occurs ⇒ X(a1 . . . ai, 0) +

k−1∑
j=1

X(a1 . . . aIi−1, j) ≤
∑
j≥ai

X(a1 . . . ai−1, j)

⇒ Ha,i occurs.

Third containment: Ha,i ⊂ FT
a if i ∈ lgL(a) and Ii = m + 1. In this case, the

terms of the sum

X(a1 . . . ai, 0) +
k−1∑
j=1

Rj(a)

are all contained in
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m−1∑
t=i

at+1−1∑
j=0

X(a1 . . . at, j) + X(a, 0) +
k−1∑
j=1

Rj(a)

= B(a) − B(a1 . . . ai) + X(a, 0) +
k−1∑
j=1

Rj(a). (5.29)

The rest of the proof proceeds exactly as in the case of the second containment.
We now show that the events in (5.21) to (5.23) are independent. This is

proven by showing that no term X(b, r) appears in the definition of more than
one of those events. We will analyze three different cases.

1. Comparing GT
a to the remaining events. GT

a is entirely defined in terms of
X(a1 . . . at, 0) for t ∈ smL(a). The only terms of the form X(b, 0) appearing
in the definition of the events Ha,i have b = a1 . . . ai for i ∈ lgL(a). This
implies that no random variable appears in the definition of both GT

a and
Ha,i, for all i ∈ lgL(a).

2. Comparing Ha,i to Ha,� for i < Ii < �, i, � ∈ lgL(a). The definition of
Ha,i only involves random variables of the form X(a1 . . . at, j) for some
j ∈ N ∪ {0} and t ≤ Ii − 1 < � − 1, whereas the definition of Ha,� involves
X(a1 . . . as, j) for s ≥ � − 1. Therefore, the ranges of the indices t and s

will never overlap in this case.

3. Comparing Ha,i to Ha,� for i < Ii = �, i, � ∈ lgL(a). By the same argument
and with the same notation as above, the only possibility for trouble is
when t = Ii − 1 = � − 1 = s. This is precisely where the assumption that
L ≥ k comes in. The event Ha,i involves random variables of the form

{X(a1 . . . aIi−1, j) : 1 ≤ j ≤ k − 1}, (5.30)

whereas the event Ha,� uses the random variables

{X(a1 . . . a�−1, j) : j ≥ a�}. (5.31)

Since � ∈ lgL(a), a� > L ≥ k, the ranges of j in the two formulae above do
not overlap, and we are done.
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5.5. Proof of Lemma 5.1

Having proven Lemma 5.7, we now come to the end of the proof of Lemma 5.1.

Proof of Lemma 5.1. Our aim is to show that, for any T > 0,∑
a∈N∗

P (a is k-fertile | P(ε) ≤ T ) < +∞. (5.32)

To this end, we employ Lemma 5.7 and prove instead that, for some fixed number
L ≥ L0 depending only on f , k, and T ,

∑
a∈N∗

max{C, T}m

|smL(a)|!
∏

j∈lgL(a)

1

a
(p−1)k
j

< +∞. (5.33)

We will eventually choose some L such that

∑
|a|=m

max{C, T}m

|smL(a)|!
∏

j∈lgL(a)

1

a
(p−1)k
j

= 2−Ω(m) as m → +∞, (5.34)

which clearly implies (5.33). Fix some m and a subset S ⊆ {1, . . . , m} of size
|S| = s. The sum of these quantities over all a of length |a| = m with smL(a) = S

is

Ls max{T,C}m

s!

∏
i∈{1,...,m}\S

∑
ai>L

1

a
(p−1)k
i

,

because there are Ls ways of choosing the aj with j ∈ smL(a). Now note that S

can be chosen in
(
m
s

)
for any 0 ≤ s ≤ m, and therefore

∑
|a|=m

|smL(a)|=s

max{C, T}m

|smL(a)|!
∏

j∈lgL(a)

1

a
(p−1)k
j

=
(

m

s

)
Ls max{C, T}m

s!

m−s∏
j=1

∑
aj>L

1

a
(p−1)k
j

≤
(

m

s

)
Ls T̂m

s!

(∫ +∞

L

dx

xk(p−1)

)m−s

≤
(

m

s

)
(L)s−α(m−s) T̂

m

s!
,

where α ≡ k(p − 1) − 1 and

T̂ ≡ max{C, T} × max
{

1,
1
α

}
.
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Here, we make critical use of the condition p > pk = 1 + 1/k: under this
assumption, α > 0. Summing over s, we discover that

∑
|a|=m

max{C, T}m

|smL(a)|!
∏

j∈lgL(a)

1

a
(p−1)k
j

≤
m∑

s=0

(
m

s

)
T̂mLs−(m−s)α

s!
. (5.35)

To bound this last sum, we split it into two parts, corresponding to s ≤ αm/2(1+
α) and s > αm/2(1 + α). For the first part, we forget the s! term and bound
s − (m − s)α ≤ −αm/2; for the second, we simply bound s! ≥ �αm/2(1 + α)�!
and s − (m − s)α ≤ m:

∑
s≤ αm

2(1+α)

(
m

s

)
T̂mLs−(m−s)α

s!
≤

(
T̂

L
α
2

)m ∑
s≤ αm

2(1+α)

(
m

s

)
,

∑
s> αm

2(1+α)

(
m

s

)
T̂mLs−(m−s)α

s!
≤

(
T̂L

)m⌈
αm

2(1+α)

⌉
!

∑
s> αm

2(1+α)

(
m

s

)
.

It follows that for L ≥ (4T̂ )2/α, which only depends on f , p, and T ,

∑
|a|=m

(
m

s

)
T̂mLs−(m−s)α

s!
≤ 2m

⎛
⎝ 1

4m
+

(
T̂ 1+2/α

)m⌈
αm

2(1+α)

⌉
!

⎞
⎠ (5.36)

= 2−Ω(m) as m → +∞. (5.37)

This proves (5.34) and finishes the proof.

6. The Structure of the Infinite Tree

Now that the proof of Theorem 1.1 is complete, we proceed to prove Theorem 1.2.
We will assume throughout the section that f(x) = (x + 1)p (with p > 1) and
that k = kp is as in the statement of the theorem. As in the previous section, it
is convenient to break the proof down into steps.

Lemma 6.1. If S is a rooted tree with |S| = � + 1 vertices, then for all a ∈ N
∗

P (#{n ∈ N : Wan(P(a) + B(a) − B(an)) is isomorphic to S} = +∞)

=

{
1 p ≤ p�,
0 p > p�.

(6.1)
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Lemma 6.2. Let T̃ be any finite tree and v be a vertex of T̃. There is a positive
probability that all of the following events hold:

1. the labeled GN process reaches state T̃,

2. v is the unique vertex present in T̃ to have any children after state T̃ is
reached, and

3. all nodes that are born after state T̃ is reached are �-fertile for some � < k.

As we shall see below, these lemmas permit that Theorem 1.2 is easily proven.

Proof of Theorem 1.2. By Claim 4.3, there almost surely exists a unique node v ∈ N
∗

with B(v) + P(v) = S, and all other nodes have finitely many descendants in
T∞. Moreover, since p > 1 + 1/kp, one can apply Theorem 1.1 and deduce that
with probability 1 there are only finitely many children vn of v that are k-fertile.

If we remove all other children of v (i.e., those that have ≤ k − 1 descendants,
which must be infinitely many) and their descendants from T∞, we obtain a
finite tree T. We claim that in fact T∞ = Glue(T, v, k). Consider some (rooted,
oriented) tree S with |S| ≤ k. By Lemma 6.1, there almost surely exist infinitely
many n ∈ N such that Wvn(P(v) −

∑n−1
j=0 X(v, j)) is isomorphic to S, and

because S = B(v) + P(v) = B(vn) + (P(v) −
∑n−1

j=0 X(v, j)), this implies that
Wvn(S − B(vn)) is isomorphic to S for infinitely many n. But Wvn(S − B(vn))
is the subtree of T∞ = W(S) rooted at (and oriented towards) vn, hence with
probability 1 there are infinitely many n ∈ N such that the subtree of T∞ rooted
at vn is isomorphic to S. This is true for any S of size ≤ k, so all such trees
must appear infinitely often, and this finishes the proof of the claim.

We have shown that T∞ is always isomorphic to some Glue(T, v, k). More-
over, Lemma 6.2 says that any Glue(T, v, k) has a positive probability of being
the value of T∞. This finishes the proof.

We now proceed to prove Lemmas 6.1 and 6.2.

6.1. Proof of Lemma 6.1

Proof of Lemma 6.1. The p > p� case is implied by Theorem 1.1, so we focus on
p ≤ p�, using “≈” to denote a rooted oriented tree isomorphism. We will prove
the theorem only for the case a = ε. This entails no loss of generality because
the joint distribution Wa(·),P(a), and {B(an) − B(a)}n∈N does not depend on
the choice of a ∈ N

∗.
Define the sequence of events

Bn ≡ {Wn(P(ε) − B(n)) ≈ S}, n ∈ N. (6.2)
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Our goal is to show that

P (Bn infinitely often) = 1.

If the events Bn were independent, we could apply the Borel-Cantelli Lemma for
independent events to prove this statement. Since independence is lacking, we
will substitute the events Bn by a sequence of independent events An such that

P (An i.o. but not Bn i.o.) = 0, (6.3)∑
n∈N

P (An) = +∞. (6.4)

Because the sequence {An} consists of independent events, (6.4) implies An

infinitely often almost surely, which implies (via (6.3)) Bn infinitely often almost
surely. Therefore, (6.3) and (6.4) imply the lemma.

We define the sequence An as follows

An ≡
{
∀t ∈

[
1

2(p − 1)np−1
,

3
(p − 1)np−1

]
Wn(t) ≈ S

}
, n ∈ N. (6.5)

The independence of those events is a consequence of the independence of the
processes {Wn(·)}n∈N. Moreover,

P (An i.o. but not Bn i.o.)

≤ P

(
P(ε) − B(n) �∈

[
1

2(p − 1)np−1
,

3
2(p − 1)np−1

]
i.o.

)
. (6.6)

We claim that the event on the RHS of (6.6) has probability 0. To see this, note
that

P(ε) − B(n) =
∑
j≥n

X(ε, j)

is a sum of independent, rate-f(j) exponentials and that

E [P(ε) − B(n)] =
∑
j≥n

1
f(j)

.

As a result, direct use of Lemma 4.6 and the estimate

S1(n) =
+∞∑
j=n

1
(j + 1)p

∼ 1
(p − 1)np−1

, n � 1,

implies

∑
j≥1

P

(
P(ε) − B(n) �∈

[
1

2(p − 1)np−1
,

3
2(p − 1)np−1

])
< +∞.
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Therefore, the Borel-Cantelli Lemma implies that

P

(
P(ε) − B(n) �∈

[
1

2(p − 1)np−1
,

3
2(p − 1)np−1

]
i.o.

)
= 0, (6.7)

thereby proving the claim and (via (6.6)) proving (6.3).
It remains to prove (6.4). For this purpose, we will only need a very rough

lower bound on the probability of An. Consider a labeling of the elements of S.
That is, pick a finite parent-closed subset of N

∗, i.e., an element Ŝ ∈ Efin, that
corresponds to a labeling of the vertex set of S as defined in Section 3.2. We
assume that Ŝ is ordered

Ŝ = {s(0) = ε, s(1), . . . s(�)} (6.8)

in a way such that, for all 1 ≤ i ≤ �, there is an index pi < i such that s(pi) is
the parent sequence of s(i). We also define the subsets

Ŝ(i) ≡ {s(0), . . . , s(i)}, 1 ≤ i ≤ �.

The ordering property implies that Ŝ(i) is also a parent-closed subset of N
∗.

Now define (for 1 ≤ i ≤ �, where applicable):

tn =
1

2(p − 1)np−1
, (6.9)

Tn =
3

2(p − 1)np−1
, (6.10)

Cn(i) =
{

s(i) is the only vertex born in {W(t)}t∈[ i−1
� tn, i

� tn]
}

, (6.11)

Dn =
{
no vertex is born in {W(t)}t∈[tn,Tn]

}
. (6.12)

Clearly,

P (An) ≥ P (Cn(1)) ×

⎧⎨
⎩

�∏
i=2

P

⎛
⎝Cn(i)

∣∣∣∣∣∣
i−1⋂
j=1

Cn(j)

⎞
⎠
⎫⎬
⎭× P

(
Dn

∣∣∣∣∣
�⋂

r=1

Cn(r)

)
.

(6.13)
(In fact, An is defined in terms of Wn(·) rather than W(·), but in terms of
evaluating the probabilities, that does not make any difference since these two
processes have the same distribution.) We will lower bound the probabilities on
the RHS of the above inequality.

Probability of Cn(1). The probability of Cn(1) is the probability that the birth
time of s(1) is B(s(1)) ≤ tn/� and that no other birth occurs in the time interval
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[B(s(1)), tn/�]. Conditioning on a value 0 ≤ B(s(1)) = t ≤ tn/�, the time of the
next birth in W(·) is

min{X(s(0), 0),X(s(1), 1)} =d exp(f(0) + f(1)).

Hence,

P

(
Cn(1) | B(s(1)) = u

)
= P

(
exp(f(0) + f(1)) ≥ tn

�
− u

)

≥ e−(f(0)+f(1)) tn
� −u ≥ e−(2f(2))( tn

� ).
(6.14)

Moreover,

P

(
B(s(0)) ≤ tn

�

)
= 1 − e−f(0) tn

� .

Since tn → 0 as n → +∞, it follows that there exist constants C1, n1 > 0 such
that for all n ≥ n1

P

(
B(s(0)) ≤ tn

�

)
≥ C1tn.

We conclude that
P (Cn(1)) ≥ C1tn e−2f(2) tn

� . (6.15)

Probability of Cn(i), 2 ≤ i ≤ �. In this part, we will make use of the Markov
property of the continuous-time process (see Remark 4.5). Notice that the con-
ditioned event is defined entirely in terms of {W(s)}0≤s≤(i−1)tn/�, whereas Cn(i)
is defined entirely in terms of {W(s)}s≥(i−1)tn/�. Moreover, it is also true that
inside the event ∩i−1

j=1Cn(j)

W
(

i − 1
�

tn

)
= Ŝ(i − 1). (6.16)

Therefore, we can apply Remark 4.5 to deduce

P

⎛
⎝Cn(i)

∣∣∣∣∣∣
i−1⋂
j=1

Cn(j)

⎞
⎠ = P

(
Cn(i)

∣∣∣∣W
(

i − 1
�

tn

)
= Ŝ(i − 1)

)
. (6.17)

For Cn(i) to happen, two conditions must be satisfied:

1. B(s(i)) − (i − 1)tn/� ≤ tn�. That is, s(i) must be born in the interval

[(i − 1)tn/�, itn/�].

2. No other birth happens in the interval [(i − 1)tn/�, itn/�].
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Choose a value 0 ≤ u ≤ tn/�. We will now bound

P

(
Cn(i)

∣∣∣∣W
(

(i − 1)tn
�

)
= Ŝ(i − 1), B(s(i)) = u +

(i − 1)tn
�

)
. (6.18)

In this case, note that the rate at which the first birth of a node a �= s(i) happens
in Ŝ(i − 1) is2

Ri−1 ≡
∑

0≤j<i, j �=pi

f(dŜ(i−1)(s
(j))) ≤ (i + 1)f(i + 1), (6.19)

the inequality being justified by the fact that the cardinality of Ŝ(i−1) is i. The
rate of births after time (i − 1)tn/� + u under the conditioning of (6.18) is

Ti ≡
∑

0≤j≤i

f(dŜ(i)(s
(j))) ≤ (i + 1)f(i + 1). (6.20)

Under the conditioning in (6.18), Cn(i) holds iff no a �= s(i) is born in the time
interval [(i−1)tn/�, (i−1)tn/�+u] and no births happen in [(i−1)tn/�+u, itn/�].
By the Markov property of W(·), these events in different time intervals are
independent given W((i − 1)tn/� + u) = Ŝ(i). Therefore, we can write

P

(
Cn(i)

∣∣∣∣W
(

(i − 1)tn
�

)
= Ŝ(i − 1), B(s(i)) = u +

(i − 1)tn
�

)
= P (exp(Ri−1) > u) × P (exp(Ti) > tn/� − u)

= e−Ri−1ue−Ti(
tn
� −u) ≥ e−(i+1)f(i+1) tn

� .

(6.21)

As a result,

P

(
Cn(i)

∣∣∣∣W
(

(i − 1)tn
�

)
= Ŝ(i − 1)

)

≥ e−(i+1)f(i+1) tn
� P

(
B(s(i)) − (i − 1)tn

�
≤ tn

�

∣∣∣∣W
(

(i − 1)tn
�

)
= Ŝ(i − 1)

)
.

(6.22)

Now notice that conditioned on W((i − 1)tn/�),

B(s(i)) − (i − 1)tn
�

=d exp(f(dŜ(i−1)(s
(pi)))).

Hence,

P

(
B(s(i)) − (i − 1)tn

�
≤ tn

�

∣∣∣∣W
(

(i − 1)tn
�

)
= Ŝ(i − 1)

)

= 1 − e−f(dŜ(i−1)(s
(pi))) tn

� ≥ 1 − e−f(�) tn
� . (6.23)

2This is the rate until some birth happens, whether it is the birth of a or of some s(i) �= a.
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To state our bound for the probability Cn(i), we note that tn → 0 as n → +∞,
and therefore there exist constants Ci, ni > 0 depending only on � and f such
that for all n ≥ ni

P

(
Cn(i)

∣∣∣∣W
(

(i − 1)tn
�

)
= Ŝ(i − 1)

)
≥ e−(i+1)f(i+1) tn

� Citn. (6.24)

Probability of Dn. For this bound, we again use the Markov property of W(·).
Notice that whereas Dn is only defined in terms of {W(t)}t≥tn

, the definition
of ∪i≤�Cn(i) only depends on {W(t)}0≤t≤tn

. Moreover, inside the latter event,
W(tn) = Ŝ. We can then apply Remark 4.5 to conclude that

P

(
Dn

∣∣∣∣∣
�⋃

i=1

Cn(i)

)
= P

(
Dn

∣∣∣W(tn) = Ŝ
)

. (6.25)

Under this last conditioning, the rate of new births in W(tn) is

∑
s∈S

f(dS(s)) ≤ (� + 1)f(� + 1),

and the probability that none of those births occur in [tn, Tn] is precisely

P

(
Dn

∣∣∣W(tn) = Ŝ
)

= e−(Tn−tn)
�

s∈S f(dS(s)) ≥ e−(Tn−tn)(�+1)f(�+1). (6.26)

Wrapping up. To finish this proof, we plug (6.15), (6.24), and (6.26) into
(6.13), letting n ≥ max{ni : 1 ≤ i ≤ �} and C = C1C2 . . . C� to get

P (An) ≥ C

(
�∏

i=1

e−(i+1)f(i+1) tn
�

)
× e−(Tn−tn)(�+1)f(�+1) × t�n (6.27)

≥ C exp(−(� + 1)f(� + 1)Tn)t�n. (6.28)

For � fixed, n → +∞, we deduce (using the definition of tn and Tn in (6.9) and
(6.10))

P (An) = Ω
(
t�n
)

= Ω
(
n−(p−1)�

)
.

Now the assumption p ≤ p� comes into play, for it implies that (p − 1)� ≤ 1. As
a result, ∑

n≥1

P (An) =
∑
n≥1

Ω
(
n−(p−1)�

)
= +∞.

This proves (6.4) and finishes the proof.
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6.2. Proof of Lemma 6.2

Proof of Lemma 6.2. Let T have u + 1 vertices, and let v have r children in T. Let
(T, v)+n denote T with n additional children added to v. Asymptotically in n we
consider the probability that T∞ is not isomorphic to Glue(T, v, k) conditional
on the GN process reaching (T, v) + n. Each w ∈ T, w �= v, has probability o(1)
of having a child before v explodes. Each of the n additional children of v has
probability O(nk(1−p)) of having k (or more) descendants before v explodes. For
i > n + l the ith child of v has k (or more) descendants before v explodes with
probability O(ik(1−p)). The total probability of any of these events occurring is
then bounded from above by u ·o(1)+n ·O(nk(1−p))+

∑
i>n+l O(ik(1−p)), which

is o(1) because k(1 − p) < −1. Therefore, we can find an explicit n so that this
probability is less than, say, 1

2 .
With positive (perhaps small) probability the first n+l steps of the GN process

yield (T, v) + n. Then, with probability at least 1
2 , the final T∞ is Glue(T, v, k)

as desired.

7. Conclusion

The two main theorems of this paper completely characterize the limits of the
super-linear GN process. Some of their consequences are the fact that the tree
T∞ has finite height (and thus the finite-time GN trees have bounded height)
and the fact that the nodes of in-degree ≤ k − 1 (where p > pk) are all but
finitely many. However, these characteristics raise many interesting questions
about distributions of these quantities. For instance, what does the tail of the
height distribution of T∞ look like? We believe that the methods presented in
this paper might be sharpened to prove this and other results.

There are many more open questions about the p < 1 case of GN. The authors
of [Chung et al. 03] have derived some results on their modified model for this
range of p under the assumption that certain limits exist. Proving unconditional
results of this nature for the GN model remains an important open problem
that is also potentially amendable to treatment by our techniques, since the
exponential embedding applies to any attachment kernel.

It would also be quite interesting if the exponential embedding could be used
to prove known and new properties of related network models, in particular the
original Barabási-Albert preferential attachment model. The rigorous version of
the process defined in [Bollobás and Riordan 04] is essentially the GN process
defined in our paper with attachment kernel f(x) = x+1, and it could be the case
that the embedding method is a viable technical alternative to the “linearized
chord diagrams” of [Bollobás and Riordan 04].
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A. Appendix—Proofs of Technical Lemmas

Proof of Lemma 4.6. We will only prove the first inequality, for the proof of the
second one is very similar. The technique that we employ is fairly standard and
is commonly used in other proofs of Chernoff-type large deviation inequalities
[Alon and Spencer 00]. Let An =

∑
j≥n Xj−f(j)−1. Fix any 0 < s ≤ (n+1)p/2,

and notice that, by the standard Bernstein’s trick, the formulae in Section 2.1,
the inequality “1 + x ≤ ex”, and some simple calculations,

P (An > δ) = P
(
es An > es δ

)
≤ e−s δ

E

[
e
�

j≥n s(Xj− 1
f(j) )

]
= e−s δ

∏
j≥n

E

[
es(Xj− 1

f(j) )
]

= e−s δ
∏
j≥n

e−
s

f(j)

1 − s
f(j)

= e−s δ

×
∏
j≥n

e−
s

f(j)

(
1 +

s

f(j)
+

s2

f(j)2
1

1 − s
f(j)

)

≤ e−s δ
∏
j≥n

exp
(

2
s2

(j + 1)2p

)

≤ exp
(

2s2

(2p − 1)n2p−1
− sδ

)
.

To finish the proof, we set s ≡ np−1/2, which is permissible since np−1/2 ≤
(n + 1)p/2 for all large enough n.

Proof of Lemma 4.7. To begin with, we note that

∀ε > 0
k∏

i=1

P

(
Yi ≤

ε

k

)
≤ P (Y ≤ ε) ≤

k∏
i=1

P (Yi ≤ ε)

and therefore the assumptions imply the existence of a constant C0 depending
only on the distributions of the Yi and on k such that

∀ε > 0,
εk

C0
≤ P (Y ≤ ε) ≤ C0ε

k.

We now use the notation and results in the proof of Lemma 4.6 with δ = n3/4−p.
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Then,

∀n ≥ n0, P

⎛
⎝
∣∣∣∣∣∣
∑
j≥n

Xj − µ

∣∣∣∣∣∣ > δ

⎞
⎠ ≤ 2C1 e−n

1
4

for some constant C1. Then,

P (Y ≤ µ − δ) − P

⎛
⎝
∣∣∣∣∣∣
∑
j≥n

Xj − µ

∣∣∣∣∣∣ > δ

⎞
⎠

≤ P

⎛
⎝Y ≤

∑
j≥n

Xj

⎞
⎠ ≤ P (Y ≤ µ + δ) + P

⎛
⎝
∣∣∣∣∣∣
∑
j≥n

Xj − µ

∣∣∣∣∣∣ > δ

⎞
⎠ ,

and by the previous bounds

(µ − δ)k

C0
− 2C1 e−n

1
4 ≤ P

⎛
⎝Y ≤

∑
j≥n

Xj

⎞
⎠ ≤ C0(µ + δ)k + 2C1 e−n

1
4 .

The result now follows from the fact that, as n → +∞,

µ ∼ 1
(p − 1)np−1

∼ µ ± δ � e−n
1
4 .

Proof of Lemma 4.8. P (Z ≤ λ) is equal to the probability that there are at least
k arrivals up to time λ in a Poisson process with rate 1. This has a Poisson
distribution with rate λ; hence, we have the exact result

P (Z ≤ λ) =
+∞∑
j=k

e−λ λj

j!
.

The upper bound follows from

∑
j≥k

λj

j!
=

λk

k!

∑
�≥0

λ�

(k + 1)(k + 2) . . . (k + �)
≤ λkeλ

k!
.
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