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Coupling Scale-Free
and Classical Random Graphs
Béla Bollobás and Oliver Riordan

Abstract. Recently many new “scale-free” random graph models have been introduced,

motivated by the power-law degree sequences observed in many large-scale real-world

networks. The most studied of these is the Barabási-Albert growth with “preferential

attachment” model, made precise as the LCD model by the present authors. Here we

use coupling techniques to show that in certain ways the LCD model is not too far from

a standard random graph; in particular, the fractions of vertices that must be retained

under an optimal attack in order to keep a giant component are within a constant

factor for the scale-free and classical models.

1. Introduction

Recently many variants of the following question have been considered: how

vulnerable are scale-free graphs to attack? To form a specific question we must

choose a suitable graph model, and a notion of vulnerability. We start with the

model.

The most studied, and perhaps the most basic scale-free graphs are those

introduced in vague terms by Barabási and Albert in [Barabási and Albert 99].

They, and many, but not all, authors use “scale-free” to mean having power-law

distribution of, for example, the degree sequence–a feature observed in many

real-world graphs. See, for example, the extensive surveys [Albert and Barabási

02, Dorogovtsev and Mendes 02] for general background. In any case, whatever

the terminology, the key features of the Barabási-Albert model are that the graph

grows one vertex at a time, each new vertex sending edges to randomly chosen
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old vertices, selected with probabilities proportional to their degrees; this leads

to a power-law distribution for the degree sequence.

The original definition of the Barabási-Albert model in [Barabási and Albert

99] (repeated in the survey [Albert and Barabási 02]) is not properly specified

in the growth step, and there is a problem getting started. See [Bollobás and

Riordan 04] for the details, or [Bollobás and Riordan 02] for a fuller discussion,

as well as a partial survey of rigorous mathematical results in this area. To

prove mathematical results, something definite and precise is needed, and this

is one reason for the introduction of the “Linearized Chord Diagram” or LCD

model in [Bollobás and Riordan 04]. The other reason is that this particular

model has a special property that makes it convenient for mathematical work,

namely a simple static description, via random pairings or LCDs (see [Bollobás

and Riordan 04]). Here we shall not need this static description, working instead

with the dynamic one.

As for the Barabási-Albert model, the LCD model G
(n)
m of [Bollobás and Ri-

ordan 04] is determined by an integer parameter m ≥ 1, giving the number of
edges per vertex. The n-vertex LCD graph G

(n)
m is constructed one vertex at a

time, starting from an empty “graph” with no vertices (or, if one prefers, a single

vertex with m loops, or any other fixed given graph). At each step, a new vertex

is added. Then m edges from this new vertex are added one by one; the other

end of each edge is a vertex chosen randomly, with probability proportional to

degree (more precisely, to avoid problems with zero degrees, we use degree at

the time, counting the previously added edges, and the “first half” of the edge

being added). A more formal definition is given in the next section.

The robustness under random failure and vulnerability to attack of the Barabási-

Albert and LCD models have been considered in several papers, including [Albert

et al. 00, Bollobás and Riordan 03, Callaway et al. 00, Cohen et al. 00, Cohen et

al. 01]. In all but [Bollobás and Riordan 03], the results are either experimental,

or heuristic. Roughly speaking, it turns out that G
(n)
m is much more robust to

random failures than classical random graphs with the same number of vertices

and edges, but also more vulnerable to attack. When analyzing vulnerability,

there are various kinds of attack one could consider, and various measures of

its success. In all cases, we measure the success of the attack by looking at the

size of the largest component in the graph that remains after deleting a certain

number of vertices. In [Bollobás and Riordan 03], which is the only rigorous

mathematical work listed above, the simplest possible attack on G
(n)
m is consid-

ered: delete the oldest vertices, as they are the ones with the largest expected

degrees. The simplicity of this attack makes precise analysis possible, but it is

still far from easy. In experimental and heuristic work, other attacks are consid-

ered: either delete vertices starting with those of highest degree [Callaway et al.
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00], or delete the vertex of highest degree, then the vertex of highest degree in

the graph that remains, and so on [Albert et al. 00]. There turns out to be little

difference between these attacks.

Here we shall analyze rigorously the best possible attack: delete a given num-

ber of vertices so as to minimize the size of the largest component in what

remains. Due to the complexity of this attack we can only give results within a

constant factor. However, the method itself should be useful for studying other

properties of scale-free graphs. Loosely speaking, we shall show that there are

two classical random graphs whose sizes differ by a constant factor, such that

G
(n)
m contains almost all of the first, and is almost entirely contained in the sec-

ond. The precise details of the results we prove are tuned for the application,

but the method should be useful in other contexts.

Before getting started, let us note that everything we do here applies equally

well to certain other models, in particular, to (a precise version of) the “pref-

erential attachment with initial attractiveness” models of Dorogovtsev, Mendes,

and Samukhin [Dorogovtsev et al. 00], and Drinea, Enachescu, and Mitzen-

macher [Drinea et al. 01], whose degree distribution is analyzed rigorously in

certain cases by Buckley and Osthus [Buckley and Osthus 04]. Such models give

power-law degree distributions with variable exponents, rather than the fixed

exponent given by the Barabási-Albert or LCD model.

2. Definition of the Model

In [Bollobás and Riordan 04], the LCD model, G
(n)
m , is defined as follows:

For precise definitions, we start with the case m = 1. Consider a

fixed sequence of vertices v1, v2, . . .. (Most of the time we shall take

vi = i to simplify the notation.) We write dG(v) for the degree of

the vertex v in the graph G. We shall inductively define a random

graph process (Gt1)t≥0 so that Gt1 is a graph on {vi : 1 ≤ i ≤ t}, as
follows. Start with G01, the empty “graph” with no vertices, or with

G11 the graph with one vertex and one loop. Given G
t−1
1 , we form Gt1

by adding the vertex vt together with a single edge between vt and

vi, where i is chosen randomly with

Pr(i = s) =
dGt−1

1
(vs)/(2t− 1) 1 ≤ s ≤ t− 1,

1/(2t− 1) s = t.
(2.1)

In other words, we send an edge e from vt to a random vertex vi,

where the probability that a vertex is chosen as vi is proportional to
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its degree at the time, counting e as already contributing one to the

degree of vt. . . . For m > 1 we add m edges from vt one at a time,

counting the previous edges as well as the “outward half” of the edge

being added as already contributing to the degrees. Equivalently,

we define the process (Gtm)t≥0 by running the process (G
t
1) on a

sequence vI1, v
I
2, . . .; the graph G

t
m is formed from Gmt1 by identifying

the vertices vI1, v
I
2, . . . , v

I
m to form v1, identifying v

I
m+1, v

I
m+2, . . . , v

I
2m

to form v2, and so on.

Note that this is just a more formal way of writing the description of G
(n)
m

given in the introduction. For the rest of the paper we take vi = i, so G
(n)
m is a

graph on the vertex set [n] = {1, 2, . . . , n}.
The standard random graph model we shall use for comparison is G(n, p), a

graph on [n] where each pair of vertices is joined independently with probability

p. This is often known as the Erdős-Rényi random graph: while they proved

many fundamental results about G(n, p), their original model G(n,M) [Erdős

and Rényi 59] was slightly different. G(n, p), which is much easier to work with,

was actually introduced by Gilbert [Gilbert 59].

3. Results

Throughout, whp means with high probability, i.e., with probability tending to

1 as n→∞, with all other parameters (e.g., m) fixed.

Theorem 3.1. There are absolute constants m0 and c > 0 such that, for all m ≥
m0, whp the graph G

(n)
m has the following two properties. (a) Every induced

subgraph of G
(n)
m on at least 10n logm/m vertices contains a component of order

at least 2n logm/m. (b) The graph G
(n)
m contains an independent set of order

cn logm/m.

Property (a) shows that whatever method we use to delete vertices from G
(n)
m ,

all but a fraction Θ(logm/m) must be deleted to make the graph “fall apart,”

i.e., to avoid leaving a component of order Θ(n). For comparison, when deleting

vertices from the start, all but a fraction Θ(1/m) must be deleted. Property

(b) shows that our result is best possible apart from the constant for general

attacks. It remains an interesting question to obtain a result for the specific

attack considered by Albert, Jeong, and Barabási [Albert et al. 00], although

intuition from standard random graphs suggests that this attack will not work

much better than a näıve attack, probably also requiring the deletion of all but

a fraction Θ(1/m) of the vertices, but with a different implicit constant.
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The proof of Theorem 3.1 is based on two coupling results comparing G
(n)
m

with a standard random graph G(n, p) in which each pair of vertices is joined

independently with probability p. In the statements below, ∼ means “has the
same distribution as.” Given two graphs G1, G2 on the same vertex set, we write

e(G1 \G2) for the number of edges present in G1 but not in G2.

Theorem 3.2. Let η < 1/2 be fixed. Then there exist constants A, c > 0, independent
of m, such that for each fixed m we may construct coupled random graphs G1

and G2 on the same vertex set, with G1 ∼ G(n)m and G2 ∼ G(n, ηm/n), such that
whp e(G2 \G1) ≤ Ae−cmn.

In other words, if m is large then we can couple G
(n)
m and a standard random

graph G(n, p) with roughly a quarter as many edges in such a way that G
(n)
m

contains almost all edges of the standard random graph.

Theorem 3.3. Let 6 > 0 be given. Then there is a constant C, independent of m,

such that for each fixed m we may construct coupled random graphs G1 and G2

on the same vertex set, with G1 ∼ G(n)m and G2 ∼ G(n,Cm/n), such that whp
G2 contains G1 \ V for some set V of vertices with |{i ∈ V : i ≥ 6n}| ≤ 6n/m.

In other words, if m is large then we can couple G
(n)
m and a standard random

graph G(n, p) with a constant times as many edges in such a way that almost

all of G
(n)
m is contained in the standard random graph. Although this result is

stated in terms of numbers of vertices, a corresponding result for numbers of

edges follows immediately. In Theorem 3.3, we control not only the number of

vertices that must be deleted, but also where they are.

Although the precise forms of Theorems 3.2 and 3.3 are chosen for the appli-

cation to Theorem 3.1, they themselves, or similar results proved by the same

method, are likely to be useful in other applications for showing that, in a certain

sense, G
(n)
m is not all that far from a standard random graph.

4. Proofs

We start with the proof of Theorem 3.2.

Proof of Theorem 3.2. For simplicity in the proof, we make no effort to optimize
the constants. We construct the graphs G1 and G2 on the vertex set [n] =

{1, 2, . . . , n} one vertex at a time. In fact, G1 will be a multigraph (loops and
multiple edges are allowed), constructed according to the inductive definition of
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G
(n)
m . Let k0 be a slowly growing function of n to be chosen later. We start by

constructing graphs Gi[k0], i = 1, 2, on [k0] with the appropriate distributions,

making no assumptions about the coupling of these initial graphs.

Suppose that we have constructed G1[k] and G2[k], the subgraphs of G1 and

G2 induced by the first k vertices, with G1[k] ∼ G(k)m and G2[k] ∼ G(k, ηm/n).
We consider adding the m edges of G1 from vertex k + 1 to earlier vertices,

according to the preferential attachment rule (2.1). Let the ith edge added join

vertex k+1 to vertex ti, 1 ≤ ti ≤ k+1. Note that the sum of the vertex degrees

in G1[k] is exactly 2mk, and that, during the addition of the m edges from vertex

k+1, the sum of the degrees of all k+1 vertices cannot exceed 2mk+2m. Note

also that each vertex of G1[k] has degree at least m. Hence, thinking of G1[k]

as fixed, given t1, . . . , ti−1, the probability for any 1 ≤ j ≤ k that ti = j is at

least m/(2mk+2m) = 1/(2k+2). We may thus construct independent random

variables si, 1 ≤ i ≤ m, taking values in [k] ∪ {∅}, such that for each i and each
j, 1 ≤ j ≤ k, we have Pr(si = j) = 1/(2k+2), and so that if si W= ∅ then ti = si.
(Here si = ∅ is a convenient way of writing “si undefined.”) To do this, we can
consider a portion of the event ti = j with probability 1/(2k+2) as arising from

uniform attachment, setting si = j in this case, and the rest from some more

strongly biased preferential attachment, setting si = ∅.
Let X be the number of values i for which si W= ∅, noting that X has a binomial

Bi(m, k/(2k + 2)) distribution. Note that X is independent of G1[k]. We shall

construct a random variable Y with a Bi(k, ηm/n) distribution, which will be

the degree of vertex k+1 in G2[k+1]. Note that, as η < 1/2 and k ≤ n, while k
is large, we have E(X) = mk/(2k + 2) ≥ (1 + 6)ηmk/n = (1 + 6)E(Y ) for some
constant 6 > 0 depending on η but not onm. It follows from standard inequalities

(for example, the Chernoff bounds) that the probability that a binomial deviates

from its mean by more than a constant factor is exponentially small in the mean.

Thus, we may couple X and Y so that with probability at least 1−Ae−cIm we

have Y ≤ X, for some A, cI > 0.
Now with probability 1 − O(m2/k) = 1 − o(1), the values other than ∅ taken

by the si are distinct, and, conditional on this event and on X, these values are

a subset S1 of [k] of size X distributed uniformly among all such subsets. Let

us construct G2[k + 1] form G2[k] by adding edges from k + 1 to all vertices in

a subset S2 of [k] with |S2| = Y , chosen uniformly among all such subsets. Let
us couple the uniform choices so that S2 is contained in S1 if Y ≤ X . Let Dk+1
be the number of edges of G2[k + 1] incident with vertex k + 1 not contained in

G1[k + 1], so from the definitions Dk+1 ≤ |S2 \ S1|. From the couplings of X

with Y and of S1 with S2, by the remarks above we have

Pr(Dk+1 > 0) = Ae
−cIm + o(1). (4.1)
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Also, Dk+1 is highly unlikely to be very large. In particular, Dk+1 is bounded

by Y , a binomial random variable with mean at most m/2. Thus, from the

Chernoff bounds, the probability that Dk+1 exceeds m is exponentially small in

m. Together with (4.1) this shows that for n large enough we have

E(Dk+1) ≤ Ame−cIm,

changing the constants A, cI if necessary.
Theorem 3.2 follows by observing that the total number of edges of G2 \ G1

is bounded by k0
2 +

n
k=k0+1

Dk. The sum of the Dk has expectation at most

Amne−c
Im. Moreover, it is easy to check that this sum is concentrated around

its expectation, using the independence of each step in the construction. Also,

the term k0
2 is negligible provided we choose k0 = k0(n) to tend to infinity

sufficiently slowly, so the result follows, replacing cI by a larger constant c to
absorb the initial factor of m.

The first claim in Theorem 3.1 follows by a straightforward calculation.

Proof of Theorem 3.1(a). We apply Theorem 3.2 with η = 6/13. Let m0 be a

large constant to be chosen later, and let m ≥ m0 be fixed. Construct coupled

graphs G1 and G2 as described in Theorem 3.2. Suppose that V is a set of

10n logm/m vertices of G1 ∼ G(n)m inducing a subgraph with no component of

order at least 2n logm/m. (We ignoring rounding to integers, which makes no

essential difference.) Then V has a partition V1, V2 with |Vi| ≥ 4n logm/m,

i = 1, 2, such that G1 contains no V1 − V2 edges. Let x = Ae−cmn, where A
and c are the constants obtained from Theorem 3.2. Then either the global

condition e(G2 \G1) ≤ x fails, or G2 has at most x V1 − V2 edges. The former
event has probability o(1) by Theorem 3.2. To bound the probability of the

latter event, we bound the probability p that G2, a standard random graph,

contains any set V of the appropriate size with a partition into parts V1, V2 of

the appropriate sizes spanning at most x edges. There are at most n
|V | choices

for the set V , and at most 2|V | choices for the partition into V1, V2. Given V1 and
V2, the number of V1 − V2 edges in G2 has a binomial distribution with mean
µ = |V1||V2|ηm/n ≥ 24η(logm)2n/m. Now x < µ/100 if m is large enough,

which we can enforce by the choice of m0. Then, from the Chernoff bounds,

the probability that given sets V1 and V2 span fewer than x edges is at most

e−11µ/12. Thus,

p ≤ n

|V | 2
|V |e−22η(logm)

2n/m.
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Using the bound a
b ≤ (ea/b)b, we have

p ≤ 2em

10 logm

10n logm/m

exp(−22η(logm)2n/m).

Thus, for m large enough,

p ≤ m10n logm/m exp(−22η(logm)2n/m).

Since 22η > 10 this is o(1), completing the proof.

We now turn to coupling in the other direction. This time we give no explicit

constants, as we shall be very cavalier with the constants in the proof.

Proof of Theorem 3.3. Let 6 > 0 be given, and let A be a large constant to be chosen
later. We proceed as in the proof of Theorem 3.2, inductively constructing G1[k]

and G2[k]. This time we start at k0 = 6n. Let us say that a vertex i, 1 ≤ i ≤ k,
is bad at stage k if i has degree at least Am in the graph G1[k]. Note that if

i is bad at some stage, it is bad at all later stages, in particular, in the final

graph G1. From known results about the distributions of individual degrees in

G
(n)
m (see [Bollobás et al. 01]), whp the graph G1 ∼ G(n)m has at most 6n/m bad

vertices with index i ≥ 6n: for any vertex i ≥ 6n and any d ≥ 0, the probability
that vertex i has degree d+m in G

(n)
m is

o(n−1) + (1 + o(1))
d+m− 1
m− 1 κm/2(1−√κ)d,

where κ = i/n. (See page 286 of [Bollobás et al. 01].)

As κ is bounded away from zero, this is exponentially small in d as d → ∞.
It follows that, given any B > 0, if we choose A large enough, then the expected

number of bad vertices i with i ≥ 6n is at most e−Bmn. In particular, for a
suitable choice of A, whp there are at most 6n/m such bad vertices.

Suppose that the graphs G1[k] and G2[k] are given, for some k0 ≤ k < n. Let
t1, . . . , tm be defined as in the proof of Theorem 3.2. Let Vk be the set of vertices

j, k0 ≤ j ≤ k, which are good, i.e., not bad, at stage k. Then for 1 ≤ i ≤ m,
conditional on t1, . . . , ti−1, for each j ∈ Vk, we have

Pr(ti = j) ≤ (Am+m)/(2mk) ≤ A/k ≤ A6−1/n. (4.2)

Also, since the vertices before k0 = 6n all have degree at least m, and none of

these is in Vk,

Pr(ti /∈ Vk) ≥ k0m/(2mn) = 6/2. (4.3)
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Enumerate the vertices of Vk as j1 < j2 < · · · < jkI . For a fixed i and for any r,
given that ti /∈ {j1, . . . , jr−1}, the probability that ti = jr is at most 2A6−2/n;
here we use (4.2) to bound the numerator in the conditional probability, and

(4.3) to bound the denominator below. It follows that we can construct a random

subset Ti of Vk, formed by selecting vertices of Vk independently with probability

p = 2A6−2/n, in such a way that ti ∈ Ti whenever ti ∈ Vk. In fact, as the relevant
bounds hold conditional on t1, . . . , ti−1, we can construct the sets Ti so as to be
independent of each other.

Putting the above together, let S1 be the set of vertices in Vk which are

neighbours of k + 1 in G1. Then we can construct a random subset S2 = T1 ∪
· · · ∪ Tm of Vk so that S1 ⊂ S2, and so that S2 is obtained by selecting vertices
in Vk independently with probability 1 − (1 − p)m ≤ mp. If we take C large

enough, then Cm/n ≥ mp, so we may construct G2[k + 1] so that every vertex
of S2, and hence of S1, is a neighbour of k + 1 in G2.

At the end of the construction we have coupled G1 and G2 so that, apart from

multiple edges, an edge of G1 not contained in G2 is either incident with a vertex

i ≤ 6n, or with a vertex i ≥ 6n that was bad at some stage, and hence is bad in

the final graph. As noted above, whp at most 6n/m vertices with index larger

than 6n are bad in the final graph, while it is easy to check that whp o(n/m)

vertices are incident with multiple edges, completing the proof.

Part (b) of Theorem 3.1 now follows easily.

Proof of Theorem 3.1(b). Let m0 be a large constant to be chosen later. Let us

construct G1 and G2 coupled as in the statement of Theorem 3.3, taking 6 = 1/2,

and assuming (as we may) that the constant C is greater than 2. It is well known

that, if a > 1 is a constant and n → ∞, then whp the standard random graph

G(n, a/n) has independence number (f(a) + o(1))n, where f(a) ∼ log a/a as

a→ ∞. (See, for example, the much more detailed result of Frieze [Frieze 90].)
We shall apply this result to the subgraph of G2 induced by the vertices with

index larger than n/2: since this graph has the distribution of G(n/2, Cm/n) =

G(n/2, (Cm/2)/(n/2)), whp it contains an independent set of size at least (1−
o(1))f(Cm/2)n/2, which is asymptotically at least n(logm)/(Cm). From the

coupling given by Theorem 3.3, the graph G1 ∼ G(n)m contains an independent

set of size at least n(logm)/(Cm) − n/(2m). If c is any constant smaller than
1/C, and if m is large enough, which can be enforced by the choice of m0, then

the final bound is at least cn logm/m, completing the proof.
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