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Robustness and
Vulnerability of Scale-
Free Random Graphs
Béla Bollobás and Oliver Riordan

Abstract. Recently many new “scale-free” random graph models have been introduced,

motivated by the power-law degree sequences observed in many large-scale, real-world

networks. Perhaps the best known, the Barabási-Albert model, has been extensively

studied from heuristic and experimental points of view. Here we consider mathemati-

cally two basic characteristics of a precise version of this model, the LCD model, namely

robustness to random damage, and vulnerability to malicious attack. We show that the

LCD graph is much more robust than classical random graphs with the same number

of edges, but also more vulnerable to attack. In particular, if vertices of the n-vertex
LCD graph are deleted at random, then as long as any positive proportion remains, the

graph induced on the remaining vertices has a component of order n. In contrast, if the
deleted vertices are chosen maliciously, a constant fraction less then 1 can be deleted

to destroy all large components. For the Barabási-Albert model, these questions have

been studied experimentally and heuristically by several groups.

1. Introduction

Recently there has been much interest in developing and studying new random

graph models that capture certain observed common features of many large-scale,

real-world networks. Although the recent activity in this area perhaps started

with the “small-world” model of Watts and Strogatz [Watts and Strogatz 98],

the main focus now seems to be on so called “scale-free” random graphs, whose
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degree distributions follow power laws. Their introduction was motivated by

observations of Faloutsos, Faloutsos, and Faloutsos [Faloutsos et al. 99] and

many other groups, who noticed power laws in the degree sequences and other

properties of many real-world graphs, including the internet and web graphs.

Such power laws had been described much earlier in several contexts (see Lotka

[Lotka 26], Simon [Simon 55], and Zipf [Zipf 49], for example), without leading

to the same kind of explosion in activity.

Two approaches to scale-free models have been proposed. The first, introduced

by Aiello, Chung, and Lu [Aiello et al. 01], takes the degree sequence as a given;

the study of such models then tells us what other properties of the network

follow from its scale-free nature. The second approach seeks to explain the

degree distribution in terms of simple underlying principles. One of the first,

and perhaps the most studied, of the models in this vein is the Barabási-Albert

model described in [Barabási and Albert 99].

The Barabási-Albert model has two key features. The first is that the graph

grows one vertex at a time, each new vertex sending a fixed number m of edges

to older vertices. The second is the principle of “preferential attachment”; at

each step the probability that a certain old vertex is chosen is proportional to

its degree at the time. Together these two features give a power-law degree

sequence. (Other mechanisms, such as “copying” have also been considered;

see [Kumar et al. 00], for example.)

Although the Barabási-Albert model has been much studied, most of the work

on it is of a heuristic or experimental rather than mathematical nature. In

particular, it is not often pointed out that the definition given by Barabási

and Albert is incomplete, and, strictly speaking, does not make sense. (See

[Bollobás and Riordan to appear] for further details.) A precisely defined model,

the linearized chord diagram or LCD model, was introduced in [Bollobás and

Riordan to appear], motivated by the vague description of Barabási and Albert,

and incorporating its key features as well as other useful mathematical properties.

(See Section 2.)

For heuristic and experimental studies of the Barabási-Albert model, we refer

the reader to the extensive surveys [Albert and Barabási 02] and [Dorogovtsev

and Mendes 02]; these references also describe many generalizations, and contain

much background material on the by now rather large subject of scale-free ran-

dom graphs. In contrast, so far there has been rather little rigorous mathematical

work; what there is sometimes confirms and sometimes contradicts the heuristic

results. See [Aiello et al. 01, Cooper and Frieze 02, Bollobás et al. 01, Buckley

and Osthus to appear, Cooper and Frieze 01] and [Cooper and Frieze 02] for

some examples, or the survey [Bollobás and Riordan 02].

The properties we consider here are among the most basic properties of real-
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world networks, namely robustness, i.e., resistance to random damage, and vul-

nerability, i.e., vulnerability to malicious attack. These were considered experi-

mentally in [Albert et al. 00] and heuristically in [Callaway et al. 00, Cohen et

al. 00, Cohen et al. 01]. Writing n for the total number of vertices of the graph,

we ask when the damaged graph contains a giant component, i.e., a component

whose order is Θ(n) as n → ∞. In particular, we measure robustness or vul-
nerability by asking what fraction pc of vertices must remain in order to have

a giant component, when vertices are deleted at random or so as to cause the

most damage. This kind of measure is usual in random graphs, and corresponds

to the critical probability in percolation.

We shall show that the LCD graph is much more robust but also more vul-

nerable than classical random graphs with the same number of edges. Under

malicious attack, the critical proportion pc of vertices needed for a giant compo-

nent is roughly 4 times as high in the LCD graph as in classical random graphs.

In the other direction, and much more strikingly, the LCD graph is in some sense

“infinitely” robust, unlike classical models. More precisely, the critical proba-

bility is zero. In other words, for any constant p > 0, after randomly deleting

all but pn vertices of an LCD graph with n vertices a giant component of order

roughly λ(p)n remains, where λ(p) is a positive constant. However, we shall

show that λ(p) tends to zero very quickly as p→ 0, so in practice for p not very

much smaller than the threshold for classical models, the “giant” component

might as well not exist. We also investigate the reason for these results, showing

that the main difference comes from the preferential attachment rather than the

“growing” nature of the graph.

The threshold question considered by Aiello, Chung, and Lu [Aiello et al.

01] is related but rather different: Instead of deleting vertices, the power law is

varied and the question is which power laws give (undamaged) graphs with giant

components.

The rest of the paper is organized as follows. In the next section we give the

definition of the LCD model G
(n)
m itself, and describe exactly the graphs Gp and

Gc derived by random and malicious deletion of vertices respectively. In Section 3

we state our main results, described approximately above. In Section 4 we

describe an equivalent formulation of the LCD model also introduced in [Bollobás

and Riordan to appear], which gives a large amount of conditional independence.

In Section 5 we give the motivation for, and definition of, a certain continuous

process that we shall use to approximate the growth of neighbourhoods in Gp

and Gc; an exact approximation result for G
(n)
m is stated and proved in Section

6. In the next section we modify the process to account for vertex deletion, while

also simplifying its definition. Using the new process the proof of the robustness

result is completed in Section 8, and that of the vulnerability result in Section 9.
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The final section concerns comparisons with rigorous results for classical random

graphs and growing graphs with uniform rather than preferential attachment, as

well as with heuristic results for scale-free graphs.

2. Models

Throughout the paper, we consider the random graph process (G
(t)
m )t≥0 defined

by the LCD model of [Bollobás and Riordan to appear], where m is a positive

integer describing the number of edges sent out by each vertex. The definition

from [Bollobás and Riordan to appear] is as follows:

Consider a fixed sequence of vertices v1, v2, . . .. (Most of the time we shall

take vi = i to simplify the notation.) We write dG(v) for the degree of the vertex

v in the graph G. We shall inductively define a random graph process (G
(t)
1 )t≥0

so that G
(t)
1 is a graph on {vi : 1 ≤ i ≤ t}, as follows. Start with G(0)1 , the empty

“graph” with no vertices, or with G
(1)
1 the graph with one vertex and one loop.

Given G
(t−1)
1 , we form G

(t)
1 by adding the vertex vt together with a single edge

between vt and vi, where i is chosen randomly with

Pr(i = s) =
d
G
(t−1)
1

(vs)/(2t− 1) 1 ≤ s ≤ t− 1,
1/(2t− 1) s = t.

(2.1)

In other words, we send an edge e from vt to a random vertex vi, where the

probability that a vertex is chosen as vi is proportional to its degree at the

time, counting e as already contributing one to the degree of vt. For m > 1, we

add m edges from vt one at a time, counting the previous edges as well as the

“outward half” of the edge being added as already contributing to the degrees.

Equivalently, we define the process (G
(t)
m )t≥0 by running the process (G

(t)
1 ) on

a sequence vI1, vI2, . . .; the graph G
(t)
m is formed from G

(mt)
1 by identifying the

vertices vI1, vI2, . . . , vIm to form v1, identifying v
I
m+1, v

I
m+2, . . . , v

I
2m to form v2,

and so on. Note that the definition allows loops and multiple edges, but there

will not be many. The reason for choosing exactly this definition is that it has a

very useful equivalent form, described in Section 4.

From now on, we shall take vi = i, so G
(t)
m is a graph on [t] = {1, 2, . . . , t}.

Most of the time we shall consider not the whole process, but the random graph

G
(n)
m on [n] resulting at some particular time n, which will tend to infinity. Note

that G
(n)
m is an undirected graph, but has a very natural orientation: Direct each

edge ij with i > j from i to j.

Having described the model, we now turn to the measurement of robustness

and vulnerability.
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For robustness, we consider the graph Gp obtained from G
(n)
m by deleting

vertices independently of each other, and of the graph itself, keeping each vertex

with probability p. Here p will be a constant between 0 and 1, and we consider

the following question: For which p does the “damaged graph” Gp have with

high probability a giant component, i.e., a component of order Θ(n), as n→∞
with m fixed?

For vulnerability to attack, one would perhaps like to consider deleting cn

vertices from G
(n)
m so as to cause the most damage, i.e., so as to minimize the

size of the largest component in the graph that remains. However, such an attack

seems very hard to analyze precisely. Also, such an attack can in practice not be

carried out; the attacker would need to know the complete graph and perform an

intractable calculation to decide which vertices to knock out. In G
(n)
m , an enemy

who knows the general properties but not the details of the graph can still direct

an attack in a sensible way; earlier vertices tend to have higher degrees, and

are likely to be more important in “holding the graph together.” The attack

we shall consider is to delete the first cn vertices of G
(n)
m , obtaining a graph Gc,

where 0 < c < 1 is a constant; given the model but not the random realization,

it is easy to see that this is the best attack. We are interested in the following

question: For which c is the graph Gc likely to have a giant component as n→∞
with m fixed?

3. Results

Let us write L1(G) for the order of the largest component of a graph G, and

L2(G) for the order of the second largest component (or 0 if G is connected). In

the following results, the graphs Gp = Gp(m,n) and Gc = Gc(m,n) are defined

by deleting vertices from G
(n)
m as described in the previous section. Note that

in line with standard random graphs notation, we keep vertices with probability

p, whereas some authors delete vertices with probability p. On the other hand,

c is a cutoff. Thus as p increases the graph Gp grows, while as c increases Gc
shrinks.

Theorem 3.1. Let m ≥ 2 be fixed. For 0 < p ≤ 1, there is a function λ(p) > 0 such
that with probability 1−o(1) we have L1(Gp) = (λ(p)+o(1))n and L2(Gp) = o(n).

Although our main interest is the absence of a critical probability, i.e., the

existence of a giant component for any p > 0, we shall also obtain bounds on the

size of the giant component, showing that as p→ 0 we have

exp(−Θ(1/p2)) ≤ λ(p) ≤ exp(−Θ(1/p)). (3.1)
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Here the lower bound is what we happen to obtain from our proof of Theorem 3.1;

from a theoretical point of view, the main thing is that it is positive. From a

more practical point of view, the upper bound is more important; this shows

that while for any positive p a theoretical “giant” component exists, for even

moderately small p this component might as well not be there for practical

purposes. Numerical calculations suggest that the upper bound is the truth.

For Gc, the situation is very different: There is a threshold.

Theorem 3.2. Let m ≥ 2 and 0 < c < 1 be constant. If c ≥ m−1
m+1 , then with

probability 1− o(1) we have L1(Gc) = o(n). If c < m−1
m+1 , then there is a positive

constant θ(c) such that with probability 1−o(1) we have L1(Gc) = (θ(c)+o(1))n
and L2(Gc) = o(n).

The restriction to m ≥ 2 is important; let us note the following simple result
for m = 1, for later comparison with heuristics.

Theorem 3.3. Set m = 1. For any constant p < 1, we have L1(Gp) = o(n). Also,

for any constant c > 0 we have L1(Gc) = o(n).

Proof. When m = 1, the graph G
(n)
m is a forest with loops; in this case, other

variants of the model are more natural, leading to trees. The key observation

is that there is at most one path between any pair of vertices. It is easy to

check that the length of the path between a random pair of vertices is typically

Θ(log n); to be more precise, but much more crude, for any constant K the

number of pairs of vertices within distance K is o(n2). If a constant fraction of

the vertices is deleted (either at random or from the start), then almost all long

paths are destroyed; since there are not many short paths to start with, o(n2)

paths remain and there cannot be a giant component.

The result above shows that the case m = 1 is very different, but also rather

uninteresting. For the rest of the paper (except the conclusions), we consider

only the case m ≥ 2.

4. Pairings on [0,1]

One of the most important properties of the precise model introduced in [Bol-

lobás and Riordan to appear] is that the graph G
(n)
m has a static (nonrecursive)

definition which allows the reintroduction of independence to a great extent. As

shown in [Bollobás and Riordan to appear], we can define G
(n)
m as a graph on
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[n] = {1, 2, . . . , n} as described below. By an M2(0, 1) random variable we mean

a [0, 1]-valued random variable with density function 2x, 0 < x < 1, for example,

the maximum of two independent uniform [0, 1]-valued random variables. We

ignore, as we may, probability zero events; in particular, we shall not be careful

or indeed consistent in how we treat the case of equality between continuous

random variables.

Let rk, 1 ≤ k ≤ mn, be iid M2(0, 1) random variables. Sort these into as-

cending order to obtain 0 < R1 < · · · < Rmn, and let Wi = Rmi, 1 ≤ i ≤ n.
Let W0 = 0 and write wi for Wi −Wi−1. The graph G

(n)
m may be formed as

follows: Given the Rk, take mn independent random variables Li,r, 1 ≤ i ≤ n,
1 ≤ r ≤ m, where Li,r is uniform on Rm(i−1)+r. Each vertex i sends out m
edges to vertices ti,r, 1 ≤ r ≤ m, where each ti,r is the unique t such that

Wt−1 < Li,r ≤ Wt. As shown in [Bollobás and Riordan to appear], the random

graph produced this way has exactly the distribution of G
(n)
m .

We shall see below that for our purposes it makes no difference if we take Li,r
uniform on [0,Wi] rather than [0, Rm(i−1)+r]; the bounds Wi−1 ≤ Ri,r ≤Wi (or

indeed much cruder bounds) are sufficient for the approximations we make. Thus

we shall consider the following almost equivalent but slightly simpler description:

Starting from the Wi as above, the random variables ti,r describing to which

vertices vertex i sends it edges are independent, with

Pr(ti,r = t) =
wt/Wi 1 ≤ t ≤ i,
0 otherwise.

(4.1)

Note that in the above descriptions, we think of the edges of G
(n)
m as directed,

but this orientation carries no information as it is always from higher numbered

vertices to lower number vertices. Although throughout we study the properties

of G
(n)
m as an undirected graph, it is sometimes convenient to consider the edges

being directed in this manner.

Let us note some key properties of the Wi and wi we shall use. Here and

later we say that an event holds with very high probability, or wvhp, if it holds

with probability 1− o(n−6) as n→∞, where 6 = 1/1000. Throughout, we keep
m fixed. Given this, all constants in O(.) notation are universal; similarly the

implied functions in o(.) notation depend on n only. Most of the time we shall

write 6 instead of 1/1000, as we shall think of it as a small enough constant

whose numerical value is not important.

Note first that Wi ≤ x if and only if at least mi of the mn variables rk fall in
[0, x]. The number of rk falling in [0, x] has a Binomial Bi(mn, x

2) distribution,

so one can check that wvhp we have

Wi = i/n 1 +O(n−1/4 logn) (4.2)
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holding (uniformly) for all n1/2 ≤ i ≤ n.
Secondly, it is easy to describe the distribution of wi given W1, . . . ,Wi−1. In-

deed, given thatWi−1 = y (and given also any information aboutW1, . . . ,Wi−2),
we see that exactly m(n − i + 1) of the rk exceed y. Furthermore, the val-
ues rI1, . . . , rIm(n−i+1) taken by these variables are independent with density
2x/(1 − y2), y < x < 1, so the conditional distribution of Wi is given by

the mth smallest of m(n − i + 1) iid random variables with this density. As

long as i is not too close to 1 or n and y is such that (4.2) holds, one can

see that near y the values of the rIj resemble a Poisson process with density
m(n − i + 1)2y/(1 − y2) ∼ 2m

√
in, and the distribution of wi given Wi−1 is

similar to
Zm

2m
√
in
, (4.3)

where Zm is given by the sum of m independent exponential random variables,

each with mean 1. We shall not make the meaning of “similar” precise here; a

precise statement is made in Section 6. Note that the unconditional distribution

of wi is also similar to that given above.

5. Continuous Approximation for Neighbourhood Growth

In proving Theorems 3.1 and 3.2 the main idea is to consider a random vertex

of G
(n)
m and look at the early growth of its neighbourhoods, comparing this with

a certain continuous random process. Although we are interested in Gp or Gc,

where vertices of G
(n)
m have been deleted randomly or from the beginning, we

shall state the key approximation result for G
(n)
m itself; the relevant modifications

will be immediate.

Since the result is a little awkward to state, we start with some motivation,

considering how the neighbourhoods of a vertex i ∈ V (G(n)m ) = [n] grow. From

(4.1), we see that the distribution of the neighbours of i depends on two parame-

ters. The first is Wi, which itself is essentially determined by i, or, rescaling, by

α(i) = i/n. The second is wi, or, rescaling in a natural way, x(i) = 2m
√
inwi. If

we pick a vertex i uniformly at random, then α(i) is essentially uniform on [0, 1],

while x(i) has essentially the distribution Zm described above, and is essentially

independent of α(i). (Precise statements are postponed until the next section.)

In fact we shall condition on the values of all the Wi, and hence the wi, assum-

ing that they have certain nice properties stated later, including (4.2) and an

assumption about the distribution of the wi; the comment about the distribution

of α(i), x(i) still applies, using only the randomness in the choice of i.

The vertex i has two kinds of neighbours: left-neighbours j < i, to which i
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sends an edge in the oriented version of G
(n)
m , and right-neighbours j > i. (We

ignore loops for the moment.) Considering the rth left-neighbour j = ti,r of i,

we see that for each t ≤ i, we have Pr(j = t) = wt/Wi. Considering only i and j

not too close to 1 or n (say in the range [n1/2, n−n1/2]) we have from (4.2) that

Pr(j = t) = wt/Wi ∼ x(t)

2m
√
it
. (5.1)

We are interested in the chance that the parameters α(j) = j/n and x(j) take

certain values, or rather fall in certain ranges. Let us write α for α(i) and x for

x(i), and fZ(y) = y
m−1e−y/(m−1)!, y > 0, for the density function of Zm. One

can check that, roughly speaking, the chance that α(j) lies in [β,β + dβ] and

x(j) in [y, y + dy] is given by

ndβfZ(y)dy
y

2m
√
αnβn

=
yfZ(y)

2m
√
αβ
dydβ, (5.2)

for β < α not too small and y > 0 not too large. Indeed, there are ndβ vertices t

with α(t) in the required range. From the distribution assumption on the wi we

shall make, based on (4.3), the number of these with x(t) in the required range

is roughly ndβfZ(y)dy, and multiplying by the probability in (5.1) gives (5.2).

Note that the value x = x(i) does not appear in (5.2).

We now turn to the right-neighbours of i, noting that the number of these is

itself a random variable. In suitable ranges, the probability that i has a right-

neighbour j with α(j) ∈ [β,β + dβ] and x(j) ∈ [y, y + dy] is given by

mndβfZ(y)dy
x

2m
√
αnβn

=
xfZ(y)

2
√
αβ

dydβ. (5.3)

To see this, note that there are again ndβfZ(y)dy candidate vertices j. Each of

these sends out m edges. Relation (5.1) shows that each has probability

wi/Wj ∼ x(i)

2m
√
ij

of landing at i, giving (5.3). Provided we take sufficiently small intervals, the

chance of i having two right-neighbours with these parameters will be negligible.

Note that the degree d(i) of vertex i is just m plus the number of its right-

neighbours. It follows that (after conditioning on the W s) we have

E(d(i)) ∼ m+ x(i)
2
√
i

n

j=i

j−1/2 ∼ m+ x(i)( n/i− 1), (5.4)
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for i ≥ n1/2, say. Also, when this expectation is large it is the sum of many small
terms corresponding to independent events. It is thus easy to check that, given

the W s, wvhp every vertex with E(d(i)) ≥ 2n6 has d(i) ≥ n6.
So far we have discussed the neighbours of a single vertex. Of course, as

we work outwards finding the neighbourhoods of a random initial vertex, we

do not have complete independence. We do, however, have almost complete

independence, in a sense we shall now describe.

We use the following standard notation: For a vertex v of a graph G and an

integer k ≥ 0, let Γk(v) be the set of vertices of G at graph distance exactly k

from v. Also, let Nk(v) be the set of vertices at distance at most k. Let the

initial (random) vertex be v0, and set Γk = Γk(v0). Thus Γ0 = {v0}, while for
k = 1, 2, . . . the set Γk consists of those vertices of G

(n)
m \(Γ0∪· · ·∪Γk−1) adjacent

to some vertex of Γk−1. We shall also write Nk for Nk(v0) = Γ0∪ . . .∪Γk. When
determining the distribution of Γk+1 given Γ0, . . . ,Γk, we must remember not

only which vertices are in Γk, and their x(.) values, but also how each vertex

j ∈ Γk was reached–from the left, i.e., as a right-neighbour of some i ∈ Γk−1,
or from the right, as a left-neighbour. Of course, v0 is reached in neither way.

Also, a vertex might be reached both ways (or one way twice or more), but we

shall see later that we can ignore this.

Given Γ0, . . . ,Γk, the corresponding x(.) values and that a vertex j ∈ Γk was
reached from the right, all we know about its left-neighbours tj,r, 1 ≤ r ≤ m,
is that they are not in Nk−1. Provided this set is not too large, tj,r thus has
roughly its unconditioned distribution. Since for each i > j the events that i

sends an edge to j are independent (given theW s), except that no vertex of Nk−1
can be a right-neighbour of j, the set of right-neighbours also has essentially

its unconditioned distribution. If j was reached from the left, the situation

is different for left-neighbours; this time, we know that some particular left-

neighbour of j lies in Nk−1. However, the m− 1 remaining left-neighbours will
have essentially their unconditioned distribution.

Motivated by the above, we define (precisely) a statistical process (Γ̃) =

(Γ̃0, Γ̃1, . . .) as follows. Each generation Γ̃k, k ≥ 0, will consist of a finite num-
ber of points v each of which has an integer l(v) ∈ {m − 1,m} and two real
numbers α(v) ∈ (0, 1) and x(v) > 0 associated with it. We start with Γ̃0
consisting of a single point v0 with α(v0) chosen uniformly from [0, 1]

and x(v0) having the distribution Zm described above. Given Γ̃0, . . . , Γ̃k,

each point v ∈ Γ̃k gives rise independently to children in the next

generation as described below. We write α for α(v) and x for x(v). Firstly,

v gives rise to exactly l(v) “left-children.” Each such left-child w has l(w) = m,

and the values β = α(w), y = x(w) are chosen according to the density (5.2),

independently for each left-child. Secondly, v gives rise to a Poisson number of
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“right-children” w, each with l(w) = m − 1, where the chance that v has such
a right-child w with β = α(w) and y = x(w) in a certain small interval is given

by (5.3).

Putting together the remarks in this section suggests that the first few neigh-

bourhoods Γk of a random vertex of G
(n)
m should behave like the sets Γ̃k, in the

sense that the α and x values are similar. We shall make this precise in the next

section.

6. Proof of the Continuous Approximation

In this section, we prove that the neighbourhoods of a random vertex of G
(n)
m

do grow roughly as given by the continuous process described above. By (Γ),

we shall mean the process (Γ0,Γ1, . . .) defined by first constructing G
(n)
m , then

choosing a random vertex v0 of this graph, setting Γ0 = {v0} and defining
Γk as the k

th neighbourhood of v0 as in the previous section. The process

(Γ̃) = (Γ̃0, Γ̃1, . . .) is defined at the end of the previous section; note that this

latter process does not depend on n.

Theorem 6.1. For each n, the processes (Γ) and (Γ̃) can be coupled so that with
probability 1− o(n−1/1000) we have

|Γk| = |Γ̃k|

for 0 ≤ k ≤ K, and either |ΓK | = |Γ̃K | = 0 or
K+1

k=0

|Γk|,
K+1

k=0

|Γ̃k| ≥ n1/1000.

In other words, unless a certain event of small probability holds, as far as size

is concerned the neighbourhoods behave the same way in the two models until

their total size reaches at least n1/1000 or they die out. We have made no attempt

to optimize the constant 1/1000 in the above result, and indeed will write 6 for

this constant throughout the proof, so as not to be distracted by its numerical

value.

Proof. Throughout, we shall assume that n is larger than some very large constant
n0. Although the proof we present is complete, we shall not dot all the i’s and

cross all the t’s, omitting straightforward but sometimes tedious details at various

points, and giving a somewhat informal presentation where it is clear this can

be made formal.
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The basic method is to construct the coupling inductively. Essentially, we

have to show that, off a certain bad set, the transition probabilities of the two

processes are very close. To do this, we consider not only the size of Γk or Γ̃k, but

also the corresponding values α(v), x(v) for the vertices (points) in these sets,

showing that wvhp these are “the same” for all k in the indicated range. Of

course, they cannot be exactly the same; for example the α(.) values are discrete

in one case and continuous in the other.

Let us write 6 for 1/1000, which we shall think of just as a small constant. Let

δ = δ(n) = n−106. Note that events that occur with probability 1 − O(n6δ1/2)
hold wvhp. Since when “growing” the neighbourhoods Γk from v we do not

need to consider more than n6 vertices, we may ignore events that hold with

probability O(δ) for each neighbour found. For both processes, we shall quantize

the values of α(v) and x(v) within a factor of (1+δ). We shall also only consider

the ranges

α ∈ [δ3, 1] and x ∈ [δ1/2, 206 log n]. (6.1)

As before, let Zm be the sum of m iid exponential random variables each with

mean 1, so Zm has probability density function fZ(x) = xm−1e−x/(m − 1)!,
x > 0. Then we have

Pr(Zm ≤ δ1/2) ≤ (δ1/2)m/m! ≤ δ, (6.2)

and

Pr(Zm ≥ 206 logn) = n−206+o(1) ≤ δ. (6.3)

Let us write s0 for the maximal integer with (1 + δ)s0 < δ1/2, and s1 for the

minimal integer with (1+δ)s1 > 206 logn. It is easy to check that for s0 ≤ s < s1
we have

Pr Zm ∈ [(1 + δ)s, (1 + δ)s+1) = δxfZ(x)(1 +O
∗(δ)) ≥ n−1/4, (6.4)

where x = (1 + δ)s and the O∗(.) notation hides bounded powers of log n.
We consider first the process (Γ). For 0 ≤ r ≤ R, let us write cr = u(1−δ)rnJ,

where R is chosen so that cR = δ3n(1 + O(δ)), so R = Θ(δ−1 logn). Let Ir =
[cr+1 + 1, cr], for 0 ≤ r < R. Note that from (4.2), we have that wvhp

Wcr = (1− δ)r/2(1 +O(δ2)) (6.5)

for each r = 0, 1, . . . , R. It follows that

Wi = (1− δ)r/2(1 +O(δ)) (6.6)

for every i ∈ Ir, for 0 ≤ r < R. It is at this point that we see that in the precise
description of the model no harm is done by taking the Li,j uniform on [0,Wi];

from now on, the only bound on the range of each Li,j we shall use is (6.6).
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For 0 ≤ r < R and s0 ≤ s < s1, let Cr,s be the number of i ∈ Ir with
x(i) ∈ [(1 + δ)s, (1 + δ)s+1). We claim that, wvhp, for all such r and s we have

Cr,s = nδαfZ(x)δx(1 +O
∗(δ)), (6.7)

where α = (1− δ)r and x = (1 + δ)s. Also, let Br be the set of i ∈ Ir for which
x(i) ≤ δ1/2 or x(i) ≥ 206 log n. We also claim that, wvhp, for every 0 ≤ r < R
we have

|Br| = O(δ|Ir|) (6.8)

and

i∈Br
wi = O

∗(δ(Wcr −Wcr+1)). (6.9)

Note that Wcr −Wcr+1 is exactly the sum of all wi for i ∈ Ir.
The claims above are straightforward but tedious to check using (6.2), (6.3),

and (6.4); omitting the details, to check (6.7), (6.8), and (6.9) we condition on

Wcr+1 taking some fixed value consistent with (6.5) and consider examining each

wi, i = cr+1 + 1, . . . , cr, in turn. As indicated in the previous section, until i

is very close to n, unless some highly unlikely bad event occurs, given all the

previous wj , each wi is very close in distribution to Zm/(2m
√
in), so off a certain

bad event the relevant x(i) are well approximated by independent copies of Zm.

(Here the approximation is that the two quantities are within a factor of (1+ δ)

when in the range (δ1/2, 206 logn), and that if one is above/below this range, so

is the other.) Since the last interval has length about δn which is much larger

than n1/2, the breakdown of the approximation when i is close to n does not

affect (6.7), (6.8), or (6.9).

So far, we have only considered the Wi. From now on, we shall condition on

the Wi, assuming only that (6.6)—(6.9) hold. The key point is that, within the

ranges indicated, the number of vertices with α(v) and x(v) taking values in

certain small ranges is close to what it “should” be.

We now turn to the range limitations, showing that we do not need to consider

vertices with α or x values outside these ranges.

Recall that we are considering the neighbourhood process (Γ) in the graph

G
(n)
m . Let us say a vertex i ∈ Γk is bad if one of the following four conditions

holds: (a) α(i) < δ3, (b) x(i) ≥ 206 logn, (c) x(i) ≤ δ1/2, or (d) i has more than

one neighbour in Γk−1.

Claim 6.2. The probability that there is a k ≥ 0 such that |Nk| < n6 and Γk contains
a bad vertex is O(n6δ1/2).
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To establish the claim, consider such a bad vertex i ∈ Γk with k minimal. Note
that we may assume k > 0 as it is immediate from (6.8) that the probability

that the randomly chosen initial vertex v0 is bad is O(δ).

Suppose first that α(i) < δ3. Let j be a neighbour of i in Γk−1, and note that
i < j, so i is a left-neighbour of j. We may assume that j ≤ δ2n because each

left-neighbour of a vertex j with j > δ2n has probability

i≤δ3n
wi/Wj =Wuδ3nJ/Wj ≤ δ3/δ2(1 + o(1)) ∼ δ1/2

of sending an edge to some i ≤ δ3n. Thus, conditioning on Γk−1, the probability
that some such j ∈ Γk−1 sends an edge to some i < δ3n is O(|Γk−1|δ1/2). Since
we only consider k for which |Nk| < n6, this probability is negligible. We may
thus assume that our bad vertex i with α(i) < δ3 was reached from a j ∈ Γk−1
with j < δ2n. But we know that x(j) ≥ δ1/2. From (5.4), any vertex j with

these properties has expected degree Θ( n/jx(j)) = Ω(δ−1/2). As noted earlier,
the probability that there is such a vertex with fewer than n6 neighbours is very

small. Hence we may assume that j has at least n6 neighbours, which contradicts

our assumption on the size of Nk. This establishes that the probability that a

“first” bad vertex i has α(i) < δ3 is very small.

We may now assume that α(i) > δ3n, so i ∈ Ir for some 0 ≤ r < R. It is

now immediate from (6.8) and (6.9) that the probability that there is such a first

bad vertex satisfying (b) or (c) is very small: Consider choosing a left- or right-

neighbour i of a vertex j ∈ Γk−1. We may first decide which of the Ir the vertex
i lies in (noting that with probability 1−O(δ) this is not the interval containing
j), and then exactly where in Ir the vertex i is. For a right-neighbour i, each

vertex of Ir is roughly equally likely to be chosen (the denominator in (5.1) does

not vary much over Ir), and so from (6.8) it is very unlikely that i ∈ Br, i.e.,
that i satisfies (b), or (c). For a left-neighbour we use (6.9) instead, because of

the dependence of the probability of t being chosen on x(t).

Finally it is very easy to check that the chance of Γk−1 sending at least two
edges to a vertex i not satisfying (a), (b), or (c) is very small, establishing

Claim 6.2.

We have now done the groundwork necessary to prove Theorem 6.1. We shall

actually prove a much stronger statement, that one can couple the processes

so that, wvhp, until too many vertices/points are involved they are “almost

identical,” in that corresponding α and x values lie in the same small intervals.

Claim 6.2 shows that we can ignore α or x values outside the ranges given

by (6.1). (Actually, we have shown this for (Γ). A similar but much simpler

argument shows this for (Γ̃).)
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Note that (Γ) consists of sets of vertices, while (Γ̃) consists of sets of “points.”

We have chosen different words to avoid confusion between the two processes.

For 0 ≤ r < R, let Ĩr be the interval ((1−δ)r+1, (1−δ)r], so that for i ∈ [n] we
have i ∈ Ir if and only if α(i) = i/n ∈ Ĩr. For s0 ≤ s < s1, let Js be the interval
[(1+δ)s, (1+δ)s+1). We shall inductively couple (Γ) and (Γ̃) so that wvhp, until

both processes involve more than n6 vertices/points, we have bijections between

Γk and Γ̃k preserving the following information: from which vertex/point of the

previous generation each vertex/point is reached, whether from the left or the

right, which Ĩr its α value lies in, and in which Js its x value lies. (We avoid a

cumbersome formal statement.) All we have to do is show that the transition

probabilities going from generation k to k + 1 are similar for the two processes.

We do this by considering the vertices v ∈ Γk one at a time. Throughout, we
only consider values within the ranges (6.1).

Let us suppose first that v was reached from the right (or was the initial

vertex). Conditioning on the exact values of Γ0, . . . ,Γk, as well as the neigh-

bourhoods of the vertices in Γk we have already examined, all we know about

each tv,a is that it does not lie in Nk−1 = Γ0∪ · · ·∪Γk−1, a set of at most n6 ver-
tices. From (5.1), it follows that for each t /∈ Nk−1, the conditional probability
that tv,a = t is given by

Pr(tv,a = t | . . .) = wt/(Wv −
j≤v, j∈Nk−1

wj).

Now from the bound (6.1), for each j ∈ Nk−1, we have
wj = x(j)/(2m jn) ≤ 106 log n/(δ3/2n) < n−2/3.

As |Nk−1| ≤ n6, while v ≥ δ3n, so Wv = v/n(1 + O(δ)) ≥ n−1/3, say, we see
that the sum above is negligible compared to Wv, so

Pr(tv,a = t | . . .) = wt n/v(1 +O(δ)) =
x(t)

2m
√
vt
(1 +O(δ)).

Let us suppose that v ∈ Ir (or equivalently that α(v) ∈ Ĩr), and that x(v) ∈ Js.
Set α = (1−δ)r and x = (1+δ)s, so α(v) = α(1+O(δ)) and x(v) = x(1+O(δ)).

Let us consider t ∈ IrI with x(t) ∈ JsI , setting β = (1 − δ)r
I
and y = (1 + δ)s

I
.

Then we see that

Pr(tv,a = t | . . .) = y

2mn
√
αβ
(1 +O(δ)).

Finally, summing over the CrI,sI such points t, we see from (6.7) that

Pr(α(tv,a) ∈ ĨrI , x(tv,a) ∈ JsI | . . .) = nδβfZ(y)δy y

2mn
√
αβ
(1 +O∗(δ)).
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Noting that δβ is the width of ĨrI and δy that of JsI , we see that this is within

a factor 1 + O∗(δ) of the corresponding probability for (Γ̃), given essentially by
(5.2). (The density (5.2) does not change by more than a factor 1 +O∗(δ) over
the relevant intervals for α, β, x and y.) Thus we may couple the left-neighbours

of v with those of the corresponding point in Γ̃k as required, with probability

1 − O∗(δ). Note that we do not mind accumulating such error probabilities as
we stop after finding n6 neighbours.

The case where v was reached from the left is almost identical, except that

this time we already know one of the left-neighbours of v, and consider only the

m− 1 others. The definition of Γ̃ ensures that the corresponding point has only
m− 1 left-neighbours in the next generation.
For the right-neighbours, there is a slight complication as their number is

not fixed, but this is easy to deal with. Let us enumerate as (ri, si)
N
i=1 the

possible pairs (rI, sI) for which v may have a right-neighbour w with α(w) ∈ IrI ,
x(w) ∈ JsI . We shall ignore the event that v has two or more neighbours with
the same rI, sI values; if this has non-negligible probability then the expected
number of neighbours of v is very large, and as noted below we are done. Let pi
be the probability that v has a right-neighbour w with α(w) ∈ Iri , x(w) ∈ Jsi .
Then since the events that two vertices send edges to v are independent, for (Γ)

the transition probabilities we wish to consider are of the form

pS =
i∈S

pi
i∈[N ]\S

(1− pi)

for S ⊂ [N ]. Let pIi be the probabilities corresponding to pi but for (Γ̃), given
by (5.3), up to a factor 1 +O∗(δ), which is how much the density can vary over
the relevant intervals. Then by the independence in the definition of (Γ̃), the

corresponding transition probability is of the form

pIS =
i∈S

pIi
i∈[N ]\S

(1− pIi).

Arguing as for left-neighbours, we see that for each i, we have pi = p
I
i(1+O

∗(δ)).
For small p, we have (1− p)/(1− p(1 + η)) = 1 +O(pη), so

pS/p
I
S = (1 +O

∗(δ))|S| exp(O∗(δ)
i∈[N ]

pi).

Now the first term above may be neglected, as we accumulate a factor 1+O∗(δ)
for each right-neighbour we find, but we may stop once we find n6. We may

neglect the second factor unless i∈[N ] pi is at least n
26 < δ−1/3, say. However,

this sum is just the expected number of right-neighbours of v. If this expectation
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is at least n26 then, as noted after (5.4), wvhp the actual number of right-

neighbours is at least n6. Also, in this case the expected number i∈[N] p
I
i of

neighbours in (Γ̃) is also very large (as pIi ∼ pi), and wvhp we have many

neighbours in (Γ̃) also. This means that we can abandon the construction of the

coupling at this point. Put together with the argument for left-neighbours, this

completes the inductive proof of the existence of the required coupling, proving

Theorem 6.1.

7. General Analysis of the Continuous Process

In order to deduce results about G
(n)
m from Theorem 6.1, we need first to analyze

the process (Γ̃). In fact, we are interested in the graphs Gp and Gc obtained

from G
(n)
m , respectively, by deleting vertices independently with probability 1−p

(keeping them with probability p) and by deleting all vertices i with i ≤ cn.

To study these, we shall need a corresponding generalization of (Γ̃). We shall

also note that (Γ̃) is essentially “one-dimensional” rather than two-dimensional,

in that the variables x(.) can be eliminated. This will be convenient when it

comes to analyzing (Γ̃). As we shall modify (Γ̃) in several ways, we describe the

modifications informally separately, and then give a formal definition of the new

process.

Throughout this section, we fix 0 ≤ c < 1 and 0 < p ≤ 1. We shall always
take either c = 0, p < 1, corresponding to Gp, or c > 0, p = 1, corresponding

to Gc. Corresponding to deleting all vertices i of G
(n)
m with i ≤ cn, we shall

modify the density (5.2) by replacing it with zero when β ≤ c. We no longer
have a probability density–in the modified process each point now has at most

l(v) left-children rather than exactly l(v). Also, we replace Γ̃0 by ∅ if α(v0) ≤ c.
Corresponding to deleting vertices of G

(n)
m at random with probability 1 − p,

we change the process (Γ̃) as follows: For each v ∈ Γ̃k, use the “old” rules to
construct a set of potential children of v. The actual children of v in Γ̃k+1 are

obtained by selecting the potential children independently, each with probability

p. Before starting, we also replace Γ̃0 by ∅ with probability 1− p.
Turning to the final modification, let us note that in (Γ̃) the distribution of

x(v) for some v ∈ Γ̃k is very simple. We condition on Γ̃k−1, and on how v

was reached (as a left- or right-child). If v was a right-child, then from (5.3)

we see that x(v) has the distribution Zm, with density fZ(x), independently of

α(v). Similarly, if v was a left-child, then from (5.2) x(v) is distributed as the

size-biased version of Zm, with density xfZ(x)/m. We may thus construct a

process equivalent to (Γ̃) as follows: For each point, we record only l(v), and
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hence whether v was reached from the left or the right, except that v0 must be

treated differently, and α(v). The rule for obtaining children is to first pick a

value x according to the distribution Zm or its size-biased version as appropriate,

and then construct children according to versions of (5.2) and (5.3) where the y

part has been integrated out.

Putting the above together, we define a process (Γ̃)p,c = (Γ̃0, Γ̃1, . . .) as follows:

Each Γ̃k will consist of a finite number of points v each of which has integers

l(v) ∈ {m − 1,m} and s(v) ∈ {0, 1} and a real number α(v) ∈ (0, 1) associated
with it. (s(v) records whether or not to used size-biased selection as described

above.) Let Γ̃I0 = {v0}, where l(v0) = m, s(v0) = 0 and α(v0) is chosen uniformly
from [0, 1]. (We ignore probability zero events, so we can assume all α values

actually lie in (0, 1).) If α(v0) ≤ c, set Γ̃0 = ∅, otherwise with probability p set
Γ̃0 = Γ̃

I
0, and with probability 1− p set Γ̃0 = ∅.

Given Γ̃k, construct Γ̃k+1 as follows: For each v ∈ Γ̃k, we construct indepen-
dently l(v) potential left-children of v. Each potential left-child is an actual left-

child w ∈ Γ̃k+1 with probability the integral of (7.1) below, and has l(w) = m,
s(w) = 1, and β = α(w) distributed according to the (normalized version of) the

density

p

2
√
αβ
dβ, c < β < α, (7.1)

where α = α(v). For the right-children of v, first construct a random variable

x = x(v) with the distribution Zm, if s(v) = 0, or the size-biased version of Zm,

if s(v) = 1. Then construct a Poisson number of right-children w ∈ Γ̃k+1 all
with l(w) = m− 1 and s(w) = 0, so that the probability density that such a w
is created with β = α(w) in a small interval is given by

px

2
√
αβ
dβ. (7.2)

We state without proof the equivalent of Theorem 6.1 for (Γ̃)p,c; the proof is

exactly the same. The process (Γ)p,c is defined exactly as (Γ), except that we

delete from G
(n)
m all vertices i with i ≤ cn, and all other vertices independently

with probability 1 − p. In particular, in (Γ)p,c we have Γ0 = ∅ if the uniformly
chosen initial vertex was deleted. Recall that 6 = 1/1000.

Theorem 7.1. Let 0 < p ≤ 1 and 0 ≤ c < 1 be fixed. For each n, the processes

(Γ)p,c = (Γ0,Γ1, . . .) and (Γ̃)
p,c = (Γ̃0, Γ̃1, . . .) can be coupled so that with proba-

bility 1− o(n−6) we have
|Γk| = |Γ̃k|
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for 0 ≤ k ≤ K, and either |ΓK | = |Γ̃K | = 0 or
K+1

k=0

|Γk|,
K+1

k=0

|Γ̃k| ≥ n6.

We shall be interested in the probability that the process (Γ̃)p,c never dies

out, i.e., that Γ̃k W= ∅ for all k ≥ 0. Let us say that v ∈ Γ̃k propagates if v has
descendants in all later generations. With p and c fixed, the probability that v

propagates is a function P (α, l, s) of α(v), l(v) and s(v). Since v propagates if

and only if at least one of its left- or right-children does so, it makes sense to

consider separately survival in each of these ways.

For c < α ≤ 1, let L(α) be the chance that a particular potential left-child
of some v with α(v) = α is actual, and propagates. From the form of (7.1), we

see that this probability depends only on α. The chance that no left-child of v

propagates is then

(1− L(α))l(v). (7.3)

For c < α ≤ 1 and x > 0, let r(α, x) be the conditional probability that some

right-child of v propagates, where α(v) = α and we condition on x(v) = x. Then

the chance that no right-child of v propagates is

∞

0

(1− r(α, x))f(x)dx,

where f(x) is the probability density function of Zm or its size-biased version,

according to s(v), so

f(x) =
xm−1+s(x)e−x

(m− 1 + s(x))! .

From the Poisson nature of the process and the fact that (7.2) is proportional

to x, it is easy to see that

1− r(α, x) = exp(−xR(α))
for some function R(α). Hence the probability that no right-child of v propagates

is given by

∞

0

e−xR(α)
xm−1+s(x)e−x

(m− 1 + s(x))!dx = (1 +R(α))
−m−s(x), (7.4)

using
∞
0
xae−bxdx = a!/ba+1.

Combining (7.3) and (7.4), recalling that v fails to propagate if and only if all

its left- and right-children so fail, we have

P (α, l, s) = 1− (1− L(α))l(v)
(1 +R(α))m+s(x)

. (7.5)
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Note that the overall probability σ(p, c) that (Γ̃)p,c does not die out is given by

σ(p, c) = p
1

α=c

1− (1− L(α))
m

(1 +R(α))m
dα, (7.6)

since the initial point has l(v0) = m, s(v0) = 0 and α(v0) chosen uniformly from

[0, 1], but this point is kept only if α(v0) > c, and then only with probability p.

Returning to the definition of L(α), we see that L(α) is given by integrating

P (β,m, 1) times the density (7.1), so

L(α) =
p

2
√
α

α

β=c

1√
β

1− (1− L(β))m
(1 +R(β))m+1

dβ. (7.7)

Similarly, after a moment’s thought we see from the definition of R(α), (7.2) and

(7.5) that

R(α) =
p

2
√
α

1

β=α

1√
β

1− (1− L(β))
m−1

(1 +R(β))m
dβ. (7.8)

Let us write the two equations above as

(L,R) = F((L,R)) (7.9)

where F is the functional (on functions from (c, 1] to R2) given by the right hand
sides of (7.7) and (7.8). Note that F is monotonic with respect to pointwise

comparison: If LI(α) ≥ L(α) and RI(α) ≥ R(α) for all α, then the same inequal-
ities hold for F(LI, RI) and F(L,R). Standard probability theory tells us that
the propagation probabilities L(α) and R(α) are given by the maximum solution

to (7.9). Note that this makes sense as the supremum of all solutions gives a

solution (there are easy pointwise upper bounds on any solution to (7.9)).

In the next two sections, we apply Theorem 7.1 to Gp and Gc, for which we

need to solve, or bound solutions to, (7.9) in two different cases.

8. Robustness

In this section, we fix p > 0 and use Theorem 7.1 with c = 0 to analyze Gp,

the graph obtained from G
(n)
m by deleting vertices independently with probability

1−p, keeping them with probability p. Our aim is to prove Theorem 3.1, showing
that, whatever the value of p, the size of the giant component is Θ(n).

The first step is to show that in this case the process (Γ̃)p,0 has positive

probability of never dying out. From (7.6), this is equivalent to showing that

L(α) and R(α) are not (almost everywhere) zero. As long as we do not want the

best possible bound, this is easy.
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Let us consider “trial functions” L0(α) = 0,

R0(α) =
1, 0 < α < α0,
0, α0 < α ≤ 1,

for some small α0 to be chosen later. Let (L1, R1) = F((L0, R0)). Then, very

crudely, for α > α0 we see from (7.7) that L1(α) ≥ 7p/8 α0/α: The part of the

integrand in brackets is at least 7/8 for α ≤ α0, and
α0
0

β−1/2dβ = 2
√
α0. For

the rest of the range, we use only L1(α) ≥ 0. Now set (L2, R2) = F((L1, R1)).
From monotonicity of (7.8), our lower bound on L1, and R1 ≥ 0 we have, for
α ≤ α0,

R2(α) ≥ p

2
√
α

1

β=α0

1√
β

1− 1− 7p
√
α0

8
√
β

m−1
dβ.

Now as m ≥ 2, the quantity in the large brackets is at least 7p√α0/(8
√
β), so,

for α < α0,

R2(α) ≥ p

2
√
α0

1

β=α0

7p
√
α0

8β
dβ =

7p2

16
log(1/α0).

Setting α0 = exp(−16p−2/7), we see that, for 0 < α ≤ α0, we have R2(α) ≥
1 = R0(α), and hence we have (L2, R2) ≥ (L0, R0) pointwise. It follows immedi-
ately that (L,R) ≥ (L0, R0): We can keep iterating the monotone functional F,
obtaining a sequence (Li, Ri) with (Li, Ri) ≥ (Li−2, Ri−2) for each i. Since we
have local upper bounds on the functions L, R, the even and odd terms of this

sequence each converge pointwise. Using monotonicity again, we see that these

limits are the same, and are a solution of (7.9) at least as large as (L0, R0). But

(L,R) is the maximum solution to (7.9). Plugging back in to (7.6), we see that

the probability σ(p, 0) that (Γ̃)p,0 does not die out is always positive, and in fact

that

σ(p, 0) ≥ exp(−Θ(p−2)) (8.1)

as p→ 0.

We can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Fix 0 < p ≤ 1 and set c = 0. For 0 ≤ k ≤ n, let us write
Nk for the number of vertices of Gp in components of order k, counting deleted

vertices as being in components of order 0, so N0 has a Binomial Bi(n, (1 − p))
distribution.

For 0 ≤ k < ∞, let us write µk for the probability that in the process (Γ̃)p,0
we have |∪∞t=0 Γ̃t| = k, so ∞

k=0 µk = 1−σ(p, 0). From the approximation result,
Theorem 7.1, we have

E(Nk) = nµk + o(n1−6)
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for 0 ≤ k < n6. It is easy to check that Nk is concentrated about its mean.

An outline proof is as follows: Recall that in the proof of Theorem 7.1 we fixed

W = (W1,W2, . . . ,Wn), assuming only certain conditions about the distribution

of wi values for i in certain intervals, which hold wvhp. Thus, the proof actually

shows that wvhp we have E(Nk |W) = nµk + o(n
1−6). Let us write X ⊂ [n]

for the vertex set of Gp. Then it is easy to see that wvhp we have

E(Nk |W, X) = nµk + o(n
1−6).

The proof proceeds as before assuming that among vertices i in certain intervals

with w(i) in certain intervals, roughly the right proportion (p) lie in X . Now,

having fixed W and X, the graph G
(n)
m and thus Gp is determined by the mn

choices of the variables ti,r. Changing one such choice affects only one edge of

G
(n)
m . The effect on Gp is to delete at most one edge and then add at most one,

changing Nk by at most 4. Applying a suitable martingale inequality, wvhp Nk
is within O(n2/3) of its expectation given W and X, which is wvhp close to

nµk.

Thus, wvhp we have

Nk = E(Nk) +O(n2/3) = nµk + o(n1−6) (8.2)

for all k in the range 0 ≤ k < n6. Noting that µk does not depend on n, and

that since k µk converges we have µk → 0, it follows that wvhp in Gp there

are σ(p, 0)n + o(n) vertices in large components. It only remains to show that

nearly all such vertices are in a unique giant component.

The uniqueness of the giant component can be established using the methods

in the next section, or, more directly, as follows. Let us note that once the

neighbourhood expansion considered in [Bollobás and Riordan to appear] takes

off, it keeps going. In particular, denoting by i0 the vertex of Gp with smallest

index, the argument there easily shows that with probability 1− o(1) the graph
Gp is such that every vertex v with |Γk(v)| ≥ (log n)10 for some k is connected
to i0. To complete the proof, it only remains to show that it is unlikely that for

a fixed vertex v we have | ∪∞k=0 Γk(v)| large (at least (log n)20, say) but |Γk(v)|
small for every k. We can do this without further calculation using Theorem 7.1

and basic properties of the process (Γ̃)p,0.

It is easy to check that P (α, l, s) decreases with α but is nonzero at α = 1, and

hence is uniformly bounded away from zero. Also, for m ≥ 3, the probability
given α(v), l(v), and s(v) that v has at least two children is bounded below

(by p2), so the probability that v has at least two children which propagate is

bounded below. (For m = 2 we must look two steps ahead–we shall ignore

this complication.) In particular, the (larger) probability that v has at least two
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children which propagate, given that v propagates, is bounded below by some

p0, say. It follows that, conditioning on v0 propagating, the process formed by

taking only those descendants of v0 which themselves propagate dominates a

branching process in which each point has either one or two children, having

two with probability p0. Such a process diverges exponentially, so given that v0
propagates, with probability 1− o(1) we have |Γ̃log n| ≥ (logn)10, say. It follows
that the probability that |Γ̃k| < (log n)10 for every k for which | ∪kj=0 Γ̃j | < n6
is o(1). Thus, using Theorem 7.1 and the remarks above, the expected number

of vertices of Gp in large components but not the giant component is o(n),

completing the proof.

With a little work, the o(1) error probability above may be replaced by o(n−6).
Note also that together with (8.1), the argument above proves the lower bound

given in (3.1).

We have now proved our main result, Theorem 7.1, showing that for any p > 0

the graph Gp has a giant component, and given a (very small) lower bound on

its size. We now turn to the upper bound on the size of this component.

Note that from (8.2), since k µk = 1 − σ(p, 0), to get an upper bound on

L1(Gp) it suffices to obtain an upper bound for σ(p, 0). For this, it turns out to

be convenient to go back to the definition of (Γ̃)p,0 itself, rather than using (7.7),

(7.8). The basic method is as follows: We consider a small α0, and call a point v

with α ≤ α0 or α > α0 good or bad, respectively. We note that if v0 survives, then

with probability 1 it has a good descendant; loosely speaking, infinitely many

of its descendants each has positive probability of having a good left-child. We

shall show that v0 is unlikely to have a good descendant by showing that when

iterated in the right way the neighbourhoods of bad vertices tend to shrink.

For a set V of points of (Γ̃)p,c, let us write R(V ) for the set of right-children
of points in V . Let Rk(V ) = R(Rk−1(V )), let R∞(V ) = ∪∞k=0Rk(V ), and let

R+
∞(V ) = R∞(R(V )) = ∪∞k=1Rk(V ). Suppose that α(v) = α. Then from (7.2)

and the fact that Zm has mean m and its size-biased version mean m + 1, the

probability density ρ1(α,β)dβ that R({v}) contains a point w with β = α(w) in

a small interval is given by

ρ1(α,β) =
p(m+ s(v))

2
√
αβ

dβ,

for α < β < 1. Since each point w of R({v}) has s(w) = 0, it follows by

induction that for k ≥ 1, the corresponding probability density ρk(α,β) for

Rk({v}) is given by

ρk(α,β) =
α<β1<···<βk−1<β

pk(m+ s(v))mk−1

2k
√
αββ1 · · ·βk−1

dβ1 · · · dβk−1,
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for α < β < 1. The integral above is just 1/(k− 1)! times a product of indepen-
dent integrals, so we obtain

ρk(α,β) =
pk(m+ s(v))mk−1(log(β/α))k−1

2k(k − 1)!√αβ .

Summing over k, the corresponding density for R+∞(V ) is

k≥1
ρk(α,β) =

p(m+ s(v))

2
√
αβ

exp (mp log(β/α)/2) .

Let α0 = exp(−1/(2mp)). Then we have

k≥1
ρk(α,β) ≤ pm√

αβ
(8.3)

whenever α > α0, using only β ≤ 1 to bound the exponential term.
Corresponding to the definition for vertices of G

(n)
m in [Bollobás and Riordan

to appear], let us define the weight w(v) of a point v of (Γ̃)p,c as 1/ α(v), and

the weight of a set as the sum of the weights of its points. Then, provided v is

bad, i.e., α = α(v) > α0, from (8.3) we have

E(w(R+
∞({v}))) =

1

β=α

1√
β
k≥1

ρk(α,β)dβ

≤
1

β=α

pm

β
√
α
≤ pm log(1/α)w(v) ≤ w(v)/2.

Since R∞({v}) = {v} ∪ R+
∞({v}) it follows that E(w(R∞({v}))) ≤ 3w(v)/2.

Thus for any set V of bad vertices we have E(w(R∞(V ))) ≤ 3w(V )/2. In

particular, writing B(V ) for the event that a random set V consists only of bad

vertices, and IB(V ) for its indicator function, we have

E(IB(R∞(V ))w(R∞(V )) | V ) ≤ 3IB(V )w(V )/2. (8.4)

Let us write L(V ) for the set of left-children of points of V . Note first that,
integrating (7.1) from 0 to α0, the probability that a particular left-child of a

point v is good is exactly p α0/α(v) = p
√
α0w(v). From this, it follows that

Pr(L(v) contains a good point) ≤ mp√α0w(V ). (8.5)

Considering now bad points in L(V ), integrating 1/√β times (7.1) over the

relevant range for each of the l(v) left-children of a point v with α(v) = α > α0,
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we see that

E(IB(L({v}))w(L({v}))) ≤ l(v)
α

β=α0

1√
β

p

2
√
αβ
dβ

= l(v)
p log(α/α0)

2
√
α

(8.6)

≤ mp log(1/α0)w(v)/2 = w(v)/4.

All the pieces are now in place. Let us note that the probability that v0 is

good is exactly α0. Let S0 = R∞({v0}) and for k ≥ 1 set Sk = R∞(L(Sk−1)),
so the union of the Sk is all the descendants of v0. If v0 is bad but one of its

descendants is good, then for some k there is a good point in L(Sk), as to reach a
good point from a bad point we must take a left-child. Considering the minimum

such k we may assume that S0, . . . , Sk consist only of bad points. Using (8.5),

Pr(Sk is bad but L(Sk) is not | Sk) ≤ mp√α0IB(Sk)w(Sk),
so

Pr(S0 ∪ · · · ∪ Sk is bad but L(Sk) is not) ≤ mp√α0 E(IB(S0∪···∪Sk)w(Sk)).
Hence σ(p, 0), which, as noted above is the same as the probability that v0 has

a good descendant, can be bounded as follows:

σ(p, 0) ≤ α0 +

∞

k=0

mp
√
α0 E(IB(S0∪···∪Sk)w(Sk)). (8.7)

But from (8.4) we have

E(IB(S0)w(S0)) ≤
3

2
E(IB({v0})w(v0)) =

3

2

1

β=α0

1√
β
dβ = 3

√
α0.

From (8.4) and (8.6) and the inductive definition of Sk, we have for k ≥ 1 that

E(IB(S0∪···∪Sk)w(Sk)) ≤
3

8
E(IB(S0∪···∪Sk−1)w(Sk−1)).

Returning to (8.7), it follows that

σ(p, 0) ≤ α0 +mp
√
α03

∞

k=0

√
α0(3/8)

k

≤ (1 + 5mp)α0 = (1 + 5mp) exp(−1/(2mp)).
As noted earlier, (σ(p, 0) + o(1))n is an upper bound on the size L1(Gp) of the

giant component in Gp with high probability, proving the upper bound in (3.1).
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9. Vulnerability

In this section, we turn to the question of the vulnerability of G
(n)
m to malicious

attack, considering the graph Gc obtained from G(n)m by deleting all vertices i

with i ≤ cn. It turns out that using the approximation result Theorem 7.1 we

can prove Theorem 3.2 with very little actual calculation, for the most part using

only very general properties of the process (Γ̃)p,c.

Throughout this section, we take p = 1, and consider the process (Γ̃)1,c for

0 ≤ c ≤ 1. At the very end, we translate our results back to Gc.
Let us write θ(c) = σ(1, c) for the probability that the initial vertex v0 of (Γ̃)

1,c

propagates, i.e., the process (Γ̃)1,c consists of infinitely many points. Let us write

µk,c for the probability that (Γ̃)
1,c consists of exactly k points, emphasizing the

dependence on c. Note that, by definition,

∞

k=0

µk,c = 1− θ(c). (9.1)

Now, for c1 < c2 we can couple the processes (Γ̃)
1,c1 and (Γ̃)1,c2 so that they are

nested in the obvious sense, with (Γ̃)1,c1 containing (Γ̃)1,c2 . Indeed, we can think

of (Γ̃)1,c2 as obtained from (Γ̃)1,c1 by deleting all points v with c1 < α(v) ≤ c2.
It follows that, unsurprisingly, θ(c) decreases with c.

We claim that θ(c) is continuous. Left-continuity is fairly easy to check: fix

c > 0 and consider an arbitrary η > 0. From (9.1), we see that there is a K with

K

k=0

µk,c ≥ 1− θ(c)− η/2. (9.2)

For 0 < δ < c, let us couple (Γ̃)1,0, (Γ̃)1,c−δ, and (Γ̃)1,c so that they are nested,
thinking of (Γ̃)1,c and (Γ̃)1,c−δ as obtained from (Γ̃)1,0 by deleting points as

above. We condition on the entire process (Γ̃)1,c, showing that adding a few

more points by passing to (Γ̃)1,c−δ does not increase the chance of v0 propagating
by much.

Let us condition on (Γ̃)1,c, supposing that the process consists of exactly k

points v0, . . . , vk−1, k ≤ K. Each vi has at most l(vi) left-children in (Γ̃)
1,c;

the “missing” left-children w have α(w) distributed on [0, c] in proportion to the

density (7.1). Thus each of the, at most, mk missing left-children has probability

c

c−δ
β−1/2dβ /

c

0

β−1/2dβ = O(δ)

of being added back when we pass to (Γ̃)1,c−δ. In particular, for each k the
probability that (Γ̃)1,c−δ = (Γ̃)1,c, given that (Γ̃)1,c consists of exactly k points,
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tends to 1. Hence, for each k, we have µk,c−δ ≥ µk,c−η/(2K+2) for δ sufficiently
small. Since the sum involved has finitely many terms, it follows that if δ is small

enough, then

1− θ(c− δ) ≥
K

k=0

µk,c−δ ≥
K

k=0

µk,c − η/2 ≥ 1− θ(c)− η,

where the last step is from (9.2). In other words, if δ > 0 is small enough, then

θ(c − δ) < θ(c) − η. As θ(.) is decreasing and η was arbitrary, this establishes

continuity of θ(c) from the left.

The argument for right-continuity is slightly more involved and we give only

an outline. Note first that if θ(c) = 0, then θ is automatically right-continuous

at c, as θ is decreasing and non-negative. Thus we may suppose θ(c) > 0. Now

it is easy to see from the fact that (7.1) and (7.2) are uniformly bounded below

that the same holds for the propagation probability P (α, l, s). Arguing along the

same lines as in Section 8, we see that conditioning on v0 propagating, with high

probability the process (Γ̃)1,c grows exponentially at some positive rate. From

this, it follows that when passing to (Γ̃)1,c+δ, for v0 to now fail to propagate,

with high probability we must delete at least a certain positive fraction of points

in some Γk. But the probability that we do this tends to zero as δ → 0, implying

right-continuity of θ(c).

We have now shown that θ(c) is decreasing and continuous. As θ(0) = 1 and

θ(1) = 0 the critical value c0 = inf{c : θ(c) = 0} satisfies 0 < c0 < 1, and we

have θ(c0) = 0.

For for 0 < c < c0, we have θ(c) > 0, so the left and right propagation

probabilities Lc(α) and Rc(α) given by the largest solution to equations (7.7)

and (7.8) are nonzero. Since as c → c0 we have θ(c) → 0, it follows that Lc
and Rc tend to zero uniformly as c increases to c0. Here we again use the fact

that the densities (7.1) and (7.2) are bounded below. It follows that suitable

“normalized limits” L̃, R̃ of Lc and Rc satisfy the linearized versions of (7.7),

(7.8):

L̃(α) =
1

2
√
α

α

β=c

1√
β

mL̃(β) + (m+ 1)R̃(β) dβ,

R̃(α) =
1

2
√
α

1

β=α

1√
β
(m− 1)L̃(β) +mR̃(β) dβ.

Converting these equations to differential form after multiplying through by
√
α,

it is easy to solve the equations explicitly (we omit the tedious details), and we

find that they have a nonzero solution if and only if c = m−1
m+1 . As shown above,

these equations have a nonzero solution if c = c0, so we have c0 =
m−1
m+1 .
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At this point, we have shown that θ(c) = σ(1, c) is zero if c ≥ m−1
m+1 and positive

if c < m−1
m+1 . Let us say that a component is small if it has fewer than n

6/2 vertices,

and large otherwise. Arguing as in the previous section, from Theorem 7.1 it is

easy to deduce the analogue of (8.2), namely that wvhp we have

Nk,c = µk,cn+ o(n
1−6) (9.3)

for 0 ≤ k < n6, where Nk,c = Nk,c(n) is the number of vertices of Gc in

components of order k. In particular, we see that wvhp the graph Gc has

(1− θ(c) + o(1))n vertices in small components and hence θ(c) + o(1) vertices in
large components. If c ≥ c0 = m−1

m+1 , so θ(c) = 0, it follows that L1(Gc) = o(n)

as required. For c < c0, it remains to show that most of the vertices in large

components are, in fact, in a single component. We can do this with very little

extra calculation by considering the graphs G
(n)
m for different values of n.

Proof of Theorem 3.2. Let us now suppose that c < c0 =
m−1
m+1 is constant; as

noted above we have already dealt with the case c ≥ c0. Let γ = γ(n) be

some function tending to zero sufficiently slowly; for definiteness we shall take

γ = n−6/3. Set nI = u(1− γ)nJ. Returning to the original process defining G(n)m ,

let us consider the nested sequence of graphs G
(t)
m , t = nI, nI+1, . . . , n, and their

truncated versions Ht, where Ht is obtained from G
(t)
m by deleting all vertices i

with i ≤ cn, so in particular, Hn = Gc, the graph we are interested in.
Since γ → 0, for n sufficiently large we have cI = cn/nI < c0. Applying (9.3)

with n, c replaced by nI, cI we see that wvhp the graph HnI has (θ(cI)+ o(1))nI

vertices in large components. (We use n rather than nI in the definition of large.)
As θ is continuous, this quantity is (θ(c)+ o(1))n. Let us call a vertex 1 ≤ i ≤ n
important if it is in a large component of HnI ; note that there are (θ(c) + o(1))n

important vertices. Also, let us call a component of Ht, n
I ≤ t ≤ n, important

if it contains an important vertex. Note that the set of important vertices is

fixed as t varies, while passing from Ht to Ht+1 no new important components

are created, and one or more pairs (or larger groups) of important components

may unite to form important components in Ht+1. In particular, the number

of important components decreases with t. Our aim is to show that Hn = Gc
has a single important component; this suffices to complete the proof as this

component then contains all (θ(c) + o(1))n important vertices, which is within

o(n) of the total number of vertices of Gc in large components.

Let A and B be distinct components of some Ht with a and b vertices, re-

spectively. Let d(A) be the sum over i ∈ A of the degree of i in the graph G(t)m .
Then when we pass to G

(t+1)
m , from the general m version of (2.1) we see that

the probability that the first edge from the new vertex lands in A is exactly

d(A)/(2mt + 1). Given this, the probability that the second edge lands in B
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is d(B)/(2mt+ 3). Hence, the probability that in Ht+1 the components A and

B have been united is at least d(A)d(B)/(2mt + 1)/(2mt + 3). Now d(A) ≥ a,
d(B) ≥ b, while t ∼ n, so this probability is at least κab/n2 for some positive
constant κ. For nI ≤ t ≤ n, let S2(t) be the sum of |A||B| over all unordered
pairs {A,B} of distinct important components of Ht. If S2(t) ≥ (θ(c)n)2/5, then
with probability κI = θ(c)2κ/5 two important components of Ht become united

in Ht+1, so Ht+1 has fewer important components than Ht. As HnI has at most

n1−6/2 important components, this can happen for at most n1−6/2 values of t.
It follows from basic properties of the binomial distribution that wvhp we have

S2(t0) < (θ(c)n)2/5 for some t0 with t0 ≤ nI + 2n1−6/2/κI. As S2 is at least
the number of important vertices choose 2 minus the sum over each important

component of its size choose 2, it follows that Ht0 has an important component

C of order at least θ(c)n/2. For a fixed other important component A of Ht0 , we

see that at each remaining step t0 < t ≤ n, the chance that A (or the component
containing it) becomes united with C (or the component containing it) is at

least κ|A||C|/n2 ≥ κII|A|/n ≥ κIIn6/2−1 for some constant κII > 0. As there are
n − t ∼ n1−6/3 steps remaining, the probability that A and C eventually unite

is at least 1 − o(n−2), say. Hence, wvhp all important components of Ht are
united in Hn. As noted above, this completes the proof of Theorem 3.2.

10. Comparisons and Conclusions

We finish by comparing the results presented here on the robustness and vulner-

ability of the LCD model G
(n)
m with those for other random graph models. We

start with some classical examples.

The simplest classical random graph models are G(n,M), introduced by Erdős
and Rényi [Erdős and Rényi 59], where the graph is chosen uniformly at random

from all graphs on n vertices with exactly M edges, and the closely related

model G(n,π), introduced by Gilbert [Gilbert 59], where pairs of vertices are
joined independently with probability π. Since G

(n)
m has mn edges and average

degree 2m, it is natural to takeM = mn and π = 2m/(n−1); from now on, these
are the values we shall take for M and π. For the graphs G(n,M) and G(n,π)
the notion of malicious attack used here does not make sense, so we consider

deleting vertices independently at random, keeping them with some constant

probability 0 < p < 1, and ask for the threshold probability pc above which

a giant component appears. We shall refer to graphs obtained in this way as

damaged graphs. Standard methods tell us that the threshold probability is the

same for G(n,M) and G(n,π), and that there is a giant component if and only
if the neighbourhood growth from a vertex “takes off” with positive probability.
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In G(n,π), his happens if and only if the expected degree in the damaged graph
is greater than one, showing that pc = 1/(n − 1)π = 1/(2m). For G

(n)
m the

corresponding threshold given by Theorem 3.1 is zero, so we see that G
(n)
m is

much less vulnerable to random attack than G(n,M) or G(n,π). On the other
hand, when G

(n)
m is attacked, we see from Theorem 3.2 that we need to keep a

fraction 2/(m+1) of the vertices to have a giant component, so by this measure

G
(n)
m is roughly four times more vulnerable to attack.

Although we are treating G
(n)
m as an undirected graph, in the definition each

vertex sends out m edges, so, for example, the minimum degree of G
(n)
m is (at

least) m. Thus a more natural classical model to use for comparison is Gm-out,
where each vertex sends out m edges independently to other vertices chosen

uniformly at random, again considered as an undirected graph. (The usual

definition of Gm-out disallows multiple edges; this makes no difference here.)
In this case, to find the critical probability is very slightly more complicated:

Again, standard methods tell us that what matters is whether neighbourhoods

initially expand, but this time there are two ways we can follow an edge, with

or against its orientation in the original directed graph. Not counting the edge

we have just followed, in the first case the vertex reached has m outgoing edges

in Gm-out, and in the second only m − 1 other outgoing edges. In either case,
the expected number of (other) incoming edges is m. It follows that pc is given

by the reciprocal of the largest eigenvalue of the matrix

m m
m− 1 m

,

so pc = 1/(m + m(m− 1)) = 1/(2m− 1/2) + O(m−3), which is close enough
to the value for G(n,M) not to affect the comparison with G(n)m significantly.

We could also compare with a random 2m-regular graph, although this is less

natural. Again, it makes little difference; this time pc = 1/(2m− 1).
The conclusion that scale-free random graphs are more robust than classical

random graphs but also more vulnerable was reached on the basis of experimental

results by Albert, Jeong, and Barabási [Albert et al. 00]. Detailed comparison

with their results is rather difficult, as [Albert et al. 00] is mainly concerned

with smaller deletion probabilities, and the results concerning thresholds are

rather unclear. However, it is stated that for the scale-free model the data

“are consistent with an extremely delayed percolation transition” (at p = 0.25

in our notation, for m = 2) and “indicate the existence of a critical point.”

Heuristic results of Cohen, Erez, ben-Avraham, and Havlin [Cohen et al. 00], and

Callaway, Newman, Strogatz, andWatts [Callaway et al. 00] (see also [Albert and

Barabási 02]) suggest that, as shown here, no such transition occurs (for p > 0

constant); the apparent transition noted in [Albert et al. 00] is presumably due
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to the small network sizes considered (n up to 20,000). Note, however, that these

heuristics only take account of the degree distribution, not the structure of the

graph. A modest example of their failure is for Gm-out, where for fixed m the

threshold predicted is off by a small constant factor. A more striking example

is G
(n)
m with m = 1, for which the heuristics again predict pc = 0. As shown in

Theorem 3.3, the truth is as far from this as possible; in fact pc = 1. While such

heuristics are informative, in general a lot of work is needed to tell whether they

apply to any given model.

Having noted that G
(n)
m is more robust but also more vulnerable than classical

random graphs, the natural question is “Why”? There are two main differences

in the model; that the graph grows one vertex at a time, with edges sent only to

earlier vertices, and “preferential attachment,” that new edges are more likely

to connect to vertices whose degree is already high. Both of these seem likely

to account for some part of the observed difference. To see how important each

factor is, let us consider a model H
(n)
m defined exactly as G

(n)
m is, except with

uniform rather than preferential attachment. For definiteness, we may take each

vertex i to send out independently m edges, each of which lands at a vertex

chosen uniformly from 1 to i, although the details turn out not to matter. The

graph H
(n)
m is much easier to analyze that G

(n)
m , due to the independence built

into the definition.

One can consider a continuous model for neighbourhood growth in H
(n)
m anal-

ogous to (Γ̃)p,c; now instead of (7.1), (7.2), we have the simpler densities

p

α
dβ, c < β < α,

for each of the l(v) outgoing edges from a vertex v with α(v) = α, and

mp

β
dβ, α < β ≤ 1,

for incoming edges. From these, arguing as in Section 7 , we obtain simultaneous

equations

L(α) =
p

α

α

β=c

1− (1− L(β))me−R(β) dβ,

R(α) = mp
1

β=α

1

β
1− (1− L(β))m−1e−R(β) dβ,

for suitably defined survival probabilities L(α), R(α), and the question is when

these equations have a positive solution. Again, we consider the linearized form
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of the equations:

L̃(α) =
p

α

α

β=c

mL̃(β) + R̃(β) dβ,

(10.1)

R̃(α) = mp
1

β=α

1

β
(m− 1)L̃(β) + R̃(β) dβ.

These are easy to solve by setting S̃ = αL̃, multiplying through by α and differ-

entiating.

For vulnerability, we can argue as in Section 9; taking p = 1, the equations

above have a solution if and only if c = c0 =
m−1
m . Hence, under malicious

attack we must keep a fraction greater than 1/m of the vertices of H
(n)
m to have

a giant component. Note that this threshold is (geometrically) roughly half way

between the value for G
(n)
m and those for classical random graphs.

For robustness, when c = 0, the situation is rather different, as there is a

problem with the continuous model near α = 0. Although H
(n)
m is not our

main focus, we include a brief discussion of this as a cautionary tale about

the limitations of heuristic arguments when used without rigorous justification.

Allowing p < 1 but, for the moment, keeping c > 0, the arguments used here

give an equivalent form of Theorem 7.1. Setting

pu =
1

2
1− m− 1

m
=

1

4m
+O(m−2)

and arguing as in Section 9, we see that for p > pu, there is a giant component if

and only if c < c0(p) for a certain function c0(p) that can be obtained explicitly

by solving the linearized equations. In particular, with c = 0 and p > pu, there

is a giant component. Also, we see that c0(p)→ 0 as p tends to pu from above,

strongly suggesting that the critical probability pc is equal to pu, which we believe

to be the case. Unfortunately, it is not so easy to analyze the continuous model

when c = 0.

Returning to the original graph H
(n)
m , the expected number of edges between

vertices i and j in H
(n)
m is m/max{i, j}. (We ignore complications due to loops,

which make very little difference.) Let A = A(n) be an n by n matrix with

entries aij = 1/max{i, j}. If we had complete independence between different
steps in the walk, then the entries of (mA)r would give the expected numbers of

walks of length r between each pair of vertices H
(n)
m . In fact, if we only consider

paths, the only dependence is negative, so the entries of (mA)r are upper bounds

on the expected number of paths. It follows (we omit the details) that in the

damaged graph, where we keep vertices independently with constant probability
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p, there can be a giant component only if mpλmax > 1, where λmax is the limit

as n → ∞ of λmax(n), the maximum eigenvalue of A(n). Now it is easy to

see from standard results (e.g., comparison with a Hilbert matrix with entries

1/(i + j)) that λmax(n) is bounded by 2π. In fact, with some work one can

check that λmax = 4, and it follows that for p ≤ pl = 1
4m , the damaged version

of H
(n)
m has no giant component. Together with the result for p > pu in the

preceding paragraph, this shows that pc =
1
4m +O(m

−2).
One would expect that the continuous version of the eigenvalue problem above

has maximum eigenvalue λmax, but this turns out not to be the case; the con-

tinuous problem has arbitrarily large eigenvalues. This does not contradict the

corresponding continuous Hilbert inequality as the eigenfunctions are not square-

integrable. The linearized equations (10.1), although obtained in a different way,

correspond to this eigenvalue problem when more of the structure ofH
(n)
m is taken

into account, where c = 0 and the eigenvalue is 1/p. In particular, if these equa-

tions have a solution for a certain p, then for all larger p there is an eigenvalue

greater than 1, and one would expect a giant component. In fact the equations

(10.1) have solutions for all p > 0, but, as shown above, the damaged graph can

only have a giant component if p > 1/(4m).

Returning to our topic, recall that, in terms of vulnerability, H
(n)
m lies roughly

half way between G
(n)
m and the classical random graphs. Although we have not

found the precise threshold for a giant component to remain after random dele-

tion of vertices from H
(n)
m , this threshold is positive, in fact around 1/(4m).

Thus H
(n)
m is more robust than G(n,M), by roughly a factor of two in the crit-

ical probability. This contrasts sharply with G
(n)
m , which is much more robust,

with critical probability zero. Heuristically, this last difference is not surpris-

ing: There is a close connection between robustness and diameter, as suggested

by considering expanding neighbourhoods. Ignoring complications, one can say

that the reason G
(n)
m is so robust is that its “neighbourhood expansion factor”

tends to infinity as n → ∞. Again ignoring complications, this is generally
speaking the condition giving sublogarithmic diameter. In contrast, H

(n)
m has

a bounded neighbourhood expansion factor, and, as one can check by counting

paths, logarithmic diameter.
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Béla Bollobás, Department of Mathematical Sciences, University of Memphis, Mem-

phis, TN 38152 (bollobas@msci.memphis.edu)

Oliver Riordan, Royal Society Research Fellow, Department of Pure Mathematics and

Mathematical Statistics, University of Cambridge, UK (o.m.riordan@dpmms.cam.ac.uk)

Received November 5, 2002; accepted December 11, 2002


