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CHEVALLEY COHOMOLOGY FOR AERIAL
KONTSEVICH GRAPHS

WALID ALOULOU, DIDIER ARNAL and RIDHA CHATBOURI

(communicated by Johannes Huebschmann)

Abstract
Let Tpoly(Rd) denote the space of skew-symmetric polyvec-

tor fields on Rd, turned into a graded Lie algebra by means of
the Schouten bracket. Our aim is to explore the cohomology of
this Lie algebra, with coefficients in the adjoint representation,
arising from cochains defined by linear combination of aerial
Kontsevich graphs. We prove that this cohomology is localized
at the space of graphs without any isolated vertex, any “hand”
or any “foot”. As an application, we explicitly compute the
cohomology of the “ascending graphs” quotient complex.

1. Introduction

Let Tpoly(Rd) denote the space of skew-symmetric polyvector fields on Rd, regraded
down by 1; thus an ordinary vector field has degree 0 and a homogeneous polyvector
field arising as the exterior product of k > 1 ordinary vector fields has degree k − 1.
With this grading, the standard Schouten bracket turns Tpoly(Rd) into a graded
Lie algebra. As in [AGM], we will study the Chevalley cohomology of this graded
algebra with coefficients in the adjoint representation. This cohomology is an impor-
tant tool in the construction of formalities, i.e., quasi isomorphisms between this Lie
algebra, and the Lie algebra of polydifferential operators, when these Lie algebras are
viewed as algebras up to homotopy (see [AGM, K2]). See also [K1], where the stable
(co)homology of various naturally arising subalgebras of Tpoly(Rd) was computed.

As in [AGM], we restrict attention to cochains C∆ defined by “aerial” admissible
graphs ∆. The graphs under consideration do not have multiple edges but small loops,
i.e., loops starting and ending at the same vertex are admitted.

Let ∆ be an “aerial” admissible graph. Given a vertex A, we denote by Star(A)
the collection of edges starting at A and by End(A) that of edges ending at A. We
will say that A is a hand of ∆ if #Star(A) = 1 and #End(A) = 0 and, likewise, we
will say that A is a foot of ∆ if #Star(A) = 0 and #End(A) = 1.
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The collection C∆ of cochains constitutes a subcomplex; in particular, it is closed
under the coboundary operator. Furthermore, the coboundary operator corresponds
to a series of blow-ups for vertices of ∆ followed by the addition of an edge. The
resulting cohomology vanishes in small degrees (see, for instance, [AGM], where it
is proved that the cohomology is zero in degrees 6 3).

In [AAC1] and [AAC2] we considered only small subalgebras of Tpoly(Rd), where
“small”means that we restricted attention to particular classes of graphs ∆.

Here we explore Tpoly(Rd) itself (i.e., we consider all the admissible graphs ∆).

We first note that each connected component of an admissible graph cannot be
trivial, i.e., such a connected component is neither the graph with a single vertex and
no edge nor the graph with two vertices and one edge.

Then, using an explicit homotopy, we localize the cohomology at the space of
cochains defined by linear combinations of graphs without any hand or foot.

In the last section, we study a certain quotient complex of graphs, more precisely,
the space of ascending graphs on which another homotopy can be defined. We then
compute the corresponding cohomology completely. As in [AAC1, AAC2], the coho-
mology is freely generated by odd wheels products.

We thank the referee for his valuable suggestions, which led to a better result in
Proposition 6.3 and to better proofs in Section 7.

2. Definitions and notations

Let us first recall the Schouten bracket of two polyvector fields in Tpoly(Rd). Con-
sider the polyvector α =

∑
i1···ik α

i1···ik∂i1 ∧ · · · ∧ ∂ik , with degree deg(α) = k − 1,

and β =
∑

j1···j` β
j1···j`∂j1 ∧ · · · ∧ ∂j` , with degree `− 1.

As in [AAC1], we put

∇αβ =
k∑

r=1

(−1)r−1
∑

i1,...,ik
j1,...,j`

αi1···ik
(
∂irβ

j1···j`
)
∂i1 ∧ · · · ∂̂ir · · · ∧ ∂ik ∧ ∂j1 ∧ · · · ∧ ∂j` .

Then the Schouten bracket of α and β is

[α, β]S = (−1)deg(α)∇αβ − (−1)(deg(α)+1) deg(β)∇βα.

Let C ′ :
∧n

Tpoly(Rd) −→ Tpoly(Rd) be a skew-symmetric (for deg) mapping with
degree deg(C ′). If ∂′ is the usual Chevalley coboundary operator, then ∂′C ′ is, by
definition,

(∂′C ′)(α0, . . . , αn)

=

n∑
i=0

(−1)iεdeg(α)(i, 0 . . . î . . . n)(−1)deg(C
′) deg(αi) [αi, C

′(α0, . . . α̂i . . . , αn)]S

−
∑
i<j

εdeg(α)(i, j, 0, . . . î . . . ĵ . . . n)(−1)i+j−1C ′ ([αi, αj ]S , α0, . . . α̂i . . . α̂j . . . , αn) ,

where the sign εdeg(α)(σ) is the sign of the permutation σ acting on (α0, . . . , αn) in
the graded sense.
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However, if we change the graduation by putting |α| = deg(α) + 1, then each
n-linear skew-symmetric mapping becomes a n-linear symmetric mapping. With this
shift of degree, Tpoly(Rd) becomes a Lie{1} algebra, and the Chevalley cohomology
operator becomes ∂, acting on symmetrized mappings as follows (see [AAC1]):

Proposition 2.1 (Symmetrized cohomology). If C is a n-linear, | |-symmetric map-
ping, then its coboundary ∂C is

(∂C)(α0, . . . , αn) =

n∑
i=0

(
ε|α|(i, 0 . . . î . . . n)(−1)|C|(|αi|−1)∇αiC(α0, . . . α̂i . . . , αn)

+ (−1)|C|ε|α|(0 . . . î . . . n, i)∇C(α0,...α̂i...,αn)αi

)
−
∑
i 6=j

ε|α|(i, j, 0, . . . î . . . ĵ . . . n)C (∇αiαj , α0, . . . α̂i . . . α̂j . . . , αn) .

From now on, we study this operator ∂. As usual, we denote by Zn the space of
n-cocycles and by Bn the space of n-coboundaries. The nth cohomology space is the
quotient Hn(∂) = Zn/Bn.

3. Aerial graphs and cochains

In this article, we are only looking for cochains defined by the use of aerial Kont-
sevich graphs as in [AGM].

An aerial Kontsevich graph ∆ is a graph with vertices and edges. We label the

vertices by capital letters A, . . . , Z, the edges
−−→
MN are oriented:

−−→
MN is starting from

the vertexM and ending at the vertexN . For each vertexM , Star(M) is the collection
of edges starting from M , and End(M) is the collection of edges ending at M . To
define an orientation on the graph ∆, we first put a total ordering nM on Star(M),
for each vertex M , and denote by Star−→

∆
(M) the corresponding list of edges starting

from M . We then equip the set V = V∆ of vertices of ∆ with a total ordering n(V ).
These orderings define the orientation of ∆, and we denote the oriented graph as

−→
∆ = (∆, n) =

(
∆, (n(V ), (nM )M∈V )

)
.

It is therefore a list of edges

E(
−→
∆) =

(
Star−→

∆
(A), . . . ,Star−→

∆
(Z)
)

if (V, nV ) = {A < · · · < Z}.
To build the cochain, we add “terrestrial vertices” and “legs” to ∆.

For all #V -tuple (mA, . . . ,mZ) of natural numbers, we then add m = mA + · · ·
+ mZ new vertices, denoted PM

1 , . . . , PM
mM

(M ∈ V ) and m new edges (the legs),

L = {
−−−−→
MPM

k , M ∈ V, k 6 mM}. We get a new graph ∆L, which is “∆ with some
legs”.

We thus put on ∆L a natural orientation to get
−→
∆L.
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We first extend to V∆L the ordering of V by putting

N < PM
k , PM

k < PM ′

k′ if M < M ′ or M = M ′ and k < k′.

Similarly, we extend the ordering of Star∆(M) to Star∆L(M) by putting

−−→
MN <

−−−−→
MPM

k <
−−−−−→
MPM

k+1.

Now let (x1, . . . , xd) denote the coordinates in Rd. Suppose −→e is any edge of ∆L

and t−→e any index, 1 6 t−→e 6 d. We write ∂t−→e for ∂
∂xt−→e

.

For any vertex M of ∆, if Star∆L
(M) = {−→e1 < · · · < −−→esM } and α is a sM -vector

field, then we denote by αtStar(M) its corresponding component

αtStar(M) = α
t−→e1 ···t−−−→esM .

In the same way, if End(M) = {−→e1 , . . . ,−−→eaM
} (or End(M) = ∅) is the set of arrows

ending at the vertex M of ∆L, then ∂tEnd(M)
is the operator ∂aM

∂t−→e1
...∂t−−−→eaM

(or the

identity).

Finally, if V∆ = {M1 < · · · < Mn} and α1, . . . , αn are n polyvector fields, then we
put, as in [K1], B−→

∆L
(α1, . . . , αn) = 0 except if, for every i, αi is a sMi -polyvector

field. In this case we put

B−→
∆L

(α1, . . . , αn) =
d∑

−→e ,t−→e =1

n∏
i=1

∂tEnd(Mi)
α
tStar(Mi)

i ∂t
End(P

M1
1 )

∧ · · · ∧ ∂t
End

(
P

Mn
mMn

) .
We say that B−→

∆L
is the graph operator associated to

−→
∆L.

Remark 3.1. If we change the ordering inside the lists Star(M), then the operator

B−→
∆L

becomes ε(σ)B−→
∆L

if σ is the permutation of the list E(
−→
∆L) defined by the

change of ordering. We extend the definition of B−→
∆L

to any ordering of the list of

edges in
−→
∆L by putting σ(

−→
∆L) for σ(E(

−→
∆L)) and:

B
σ(

−→
∆L)

= ε−→
∆L

(σ)B−→
∆L

.

Thanks to this remark, we can put the legs at the end of the list ∆L, getting the
new ordering (

Star−→
∆
(M1), . . . ,Star−→∆(Mn),

−−−−−→
M1P

M1
1 , . . . ,

−−−−−−→
MnP

Mn
mMn

)
.

Let us denote by ε(L) the sign of the corresponding permutation of E(
−→
∆L). The

cochain C−→
∆

defined by the oriented aerial graph
−→
∆ = (∆, n) is, by definition,

C∆,n(α1, . . . , αn) =
∑
L

ε(L)B−→
∆L

(α1, . . . , αn).
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We consider here the cochains that are linear combinations of some C∆,n with
constant coefficients

C = C∑
∆,n c∆,n(∆,n) =

∑
∆,n

c∆,nC∆,n.

Due to Remark 3.1, we suppose that, for any ∆, any M ∈ V (∆) and any permuta-
tion τM of Star(M), c∆,n = ε(τM )c∆,nτM , where nτM is the ordering of edges we get
through the action of τM on n.

We consider here only symmetric C, i.e., the linear combinations δ =
∑

c∆,n(∆, n)
satisfying, for any ∆, any vertex M and any permutation σ ∈ S(V∆), or
σ ∈ S(Star(M)), c∆,nσ = ε∆(σ)c∆,n, where nσ is the ordering obtained by the per-
mutation of the vertices by σ, without modifying the ordering in the Star(N) (resp.
the permutation of edges in each Star(M)), and ε∆(σ) the sign of the corresponding

permutation of E(
−→
∆).

The naturally acting symmetry group is therefore the family of permutations ρ of

E(
−→
∆), where ρ = σ ◦

∏
M∈V∆

τM , with σ ∈ S(V∆), τM ∈ S(Star(M)) and the sym-
metrization of the graph (∆, n) is

Sym(∆, n) =
∑
ρ

ε∆(ρ)(∆, nρ) =
∑
σ,τM

ε∆(σ)
∏

M∈V∆

ε(τM )
(
∆, (nσV , (n

τM
M ))

)
.

Example 3.2. The symmetrization of the wheel W3 =
(−−→
AB,

−−→
BC,

−→
CA
)

is thus

Sym(W3) = 3W3 − 3W ′
3, where W

′
3 is the aerial oriented graph W ′

3 =
(−→
AC,

−−→
BA,

−−→
CB

)
.

The corresponding operator CSym(W3) is an infinite sum of BW3L
and BW ′

3L
.

4. Coboundary operator for aerial graphs

Let (∆, n) be an oriented aerial graph; the value of the coboundary operator on
(∆, n) is a sum of blow-ups (called proper blow-ups in [AAC2]) of the vertices P of
∆. For P ∈ V∆, let us now define this blow-up ∂P (∆, n).

We first add a new vertex Q in V∆: we put ∂PQ(V∆) = V∆ t {Q}. With this set of
vertices, we then build some new graphs ∂P,Q,I,j∆ as follows:

If, in
−→
∆, Star(P ) = {−→e1 < · · · < −→esP }, then fix a subset I of End(P ) and an index

0 6 j 6 sP .

(a) If M 6= P and N 6= P , then we keep the ∆ arrows
−−→
MN in ∂P,Q,I,j∆.

(b) The ∆ arrows
−−→
MP become, in ∂P,Q,I,j∆, either

−−→
MP if

−−→
MP was in I or

−−→
MQ if

it was not the case.

(c) The ∆ arrows
−−→
PM = −→e k become, in ∂P,Q,I,j∆, either

−−→
PM if k 6 j, or

−−→
QM if

k > j.

(d) Finally, we add the arrow
−−→
PQ in ∂P,Q,I,j∆.

Denote by Star′(M), Star′(P ) and Star′(Q) the star of the vertices in the new
graphs.

For any t, 1 6 t 6 sP + 1, we fix an orientation ntP,Q on ∂P,Q,I,j∆ by keeping the
ordering on V∆ and putting Q somewhere before or after P and the new arrow just
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after −→e t−1 in Star′(P ). Then, if p < Q, we get

(∂P,Q,I,j∆, ntP,Q)

=
(
Star′(A), . . . , (−→e 1, . . . ,

−→e t−1,
−−→
PQ, . . . ,−→e j), . . . , (

−→e ′
j+1, . . . ,

−→e ′
sP ), . . . ,Star

′(Z)
)
,

and, if Q < P ,

(∂P,Q,I,j∆, ntP,Q)

=
(
Star′(A), . . . , (−→e ′

j+1, . . . ,
−→e ′

sP ), . . . , (
−→e 1, . . . ,

−→e t−1,
−−→
PQ, . . . ,−→e sP ), . . . ,Star

′(Z)
)
.

We multiply (∂P,Q,I,j∆, ntP,Q) by a sign εtP,Q,I,j . These signs, which are computed
in [AAC2], are:

εtP,Q,I,j = (−1)t−1(−1)
∑

M<P sM (−1)
∑

P<M<Q(sP−j)sM if P < Q,

respectively,

εtP,Q,I,j = (−1)t−1(−1)
∑

M<P sM (−1)
∑

Q<M<P jsM (−1)(sP−j)(j+1) if Q < P.

Definition 4.1 (The blow-up of the vertex P ). We call (proper) blow-up of the vertex
P in (∆, n) the sum

∂P (∆, n) =
∑
Q

∑
0<i+j<aP+sP
or aP+sP=0

∑
I⊂End(P )

#I=i

j+1∑
t=1

εtP,Q,I,j(∂P,Q,I,j∆, ntP,Q).

Example 4.2. Let us consider the following aerial graph, where the numbers
(1), . . . , (3) give the edges ordering:

(∆ ,n) =

.A

?
(1)

.B

	 R.
D

(2)

.
E.

(3)

We add the new vertex C and get

∂B(∆, n) = ∂
B,C,{

−−→
AB},1(∆) + ∂

B,C,{
−→
AC},1(∆) + ∂

B,C,{
−→
AC},2(∆).

Suppose, for instance, we put C between B and D (A < B < C < D < E). We
then get the following graphs:

(a) In ∂
B,C,{

−−→
AB},1(∆),

.A

?
(1)

.B

	.
C

	 R

(2)

.D .E
(3) (4)

−

.A

?
(1)

.B

	.
C

	

R
(2)

.E

.
D

(3)

(4)

+

.A

?
(1)

.B

	.
C

	

R
(3)

.E

.
D

(2)

(4)
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(b) In ∂
B,C,{

−→
AC},1(∆),

.A

?
(1)

.C

	.
E

� .B

	.
D

(3)

(2)(4)

−

.A

?
(1)

.C

	.
E

� .B

	.
D

(2)

(3)(4)

(c) In ∂
B,C,{

−→
AC},2(∆),

.A

?
(1)

.C

R.
E

� .B

	.
D

(3)

(2) (4)

−

.A

?
(1)

.C

R.
E

� .B

	.
D

(2)

(3) (4)

−

.A

?
(1)

.C

R.
E

� .B

	.
D

(4)

(2) (3)

and similarly for each possible position of C.

Let us remark that, if δ is a symmetric combination of graphs ∆, then by con-
struction ∂P δ is symmetric under permutation of vertices. Moreover, ∂P δ satisfies
τM∂P δ = ε(τM )∂P δ, for any M ∈ V∂P δ and any permutation τM of Star(M). There-

fore, if some ∆ appearing in δ contains the “small loop”
−−→
PP , then some graphs

happening in ∂P δ contain double edges
−−→
PQ, but, by the preceding remark, these

graphs disappear in ∂P δ.
As in [AAC2], the following description for the coboundary holds:

Proposition 4.3 (The coboundary ∂ on the aerial graphs). Let δ =
∑

∆,n c∆,n(∆, n)
be a symmetric combination of aerial graphs. Then ∂Cδ =

∑
∆,n c∆,nC∂(∆,n) = C∂δ,

where

∂(∆, n) = −
∑

P∈V∆

∂P (∆, n).

As usual, we define the cohomology groups on the space AG of linear combinations
δ of aerial graphs. The nth cohomology group Hn(AG) is the quotient Zn/Bn.

5. Trivial connected components and degree

Let us consider a connected component of a graph ∆. If it contains only one vertex

(without any edge), or two vertices A, B with only one edge
−−→
AB, then we say it is a

trivial component.

Proposition 5.1 (Suppression of trivial components). Up to a coboundary, any cocy-
cle δ can be written δ =

∑
c∆,n(∆, n), where each ∆ is a graph without any trivial

component.
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Proof. Let us write ∆ = ∆N t∆T , where ∆T is the union of the trivial components
of ∆, and ∆N is the union of the non-trivial components. Denote by vN the number of
vertices in ∆N , p∆ the number of “point” components (components with one vertex)
and q∆ the number of “arrows” components (trivial components with two vertices).
Remark that, if q∆ > 1, then the symmetrization of ∆ vanishes. Thus we can write
our cocycle δ as (omitting to mention the ordering):

δ =
∑
p>0

δ(p,0) + δ(p,1)

=
∑
p>0

( ∑
∆,p∆=p,q∆=0

c∆(∆N t∆T ) +
∑

∆,p∆=p,q∆=1

c∆(∆N t∆T )

)
.

By the definition of ∂, we can separate the blow-up of vertices P in V∆N
with the

blow-up of P in V∆T . Using symmetry, we only look for ordering on V∆ such that all
the vertices in V∆T

are put down after the vertices in V∆N
. For such a graph ∆,

∂(∆N t∆T ) = (∂∆N ) t∆T + (−1)
∑

M∈V∆N
sM

∆N t (∂∆T ).

Suppose first that ∆ is in δ(p,1), then Sym(∂∆T ) = 0. Indeed, if p = 0, ∂∆T = 0, else
∂∆T contains two isolated arrows.

Now, if ∆ is in δ(p,0), then ∂∆T = p∆′
T , where ∆′

T contains one arrow and p− 1
isolated points. Thus, after symmetrization,

0 = ∂δ =
∑
p>0

∂δ(p,0) + ∂δ(p,1)

=
∑
p>0

∑
∆,p∆=p, q∆=0

c∆
1

(vN + 1)!p!
Sym(∂∆N t∆T + (−1)

∑
sM p∆N t∆′

T )

+
∑

∆,p∆=p, q∆=1

1

vN !(p+ 1)!
c∆ Sym(∂∆N t∆T ).

For any ∆ in δ(p,1), define g(∆) as the graph ∆N t g(∆T ), g(∆T ) being the graph
with p+ 1 isolated vertices and no edge (since there is no edge, the ordering of vertices
is unessential). Then

∂
( 1

p+ 1
g(∆)

)
=

1

p+ 1
∂∆N t g(∆T ) + (−1)

∑
M∈V∆N

sM
∆.

Put

β =
∑
p>0

∑
∆,p∆=p, q∆=1

(−1)
∑

M∈V∆N
sM 1

vN !(p+ 1)!
c∆ Sym(g(∆)).

Then (δ − ∂β)(p,1) = 0 for any p. Put δ′ = δ − ∂β =
∑

c′∆
1

vN !p! Sym(∆). We then get
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0 = ∂δ′ =
∑
p>0

∂(δ′)(p,0)

=
∑
p>0

∑
∆,p∆=p

1

(vN + 1)!p!
c′∆ Sym (∂∆N t∆T )

+ (−1)
∑

M∈∆N
sM p

vN !(p+ 1)!
c′∆ Sym (∆N t∆′

T ) .

Thus, for any p > 0,

0 =
∑

∆,p∆=p

(−1)
∑

M∈V∆N
sM p

vN !(p+ 1)!
c′∆ Sym (∆N t∆′

T ) .

Looking for ordering of edges for which the trivial arrow is at the end, we get, for any
p > 0,

0 =
∑

∆,p∆=p

(−1)
∑

M∈V∆N
sM

c′∆ Sym (∆N ) t∆′
T .

Therefore,
∑

∆,p∆=p,
∑

sM=k c
′
∆ Sym (∆N ) t∆T = 0, and δ′ =

∑
∆,p∆=0 c

′
∆∆N has no

trivial component.

From now on, we suppose there is no trivial component in each ∆.
For such a graph ∆, it is natural to call hand a vertexM such that sM = 1, aM = 0

and foot a vertex M such that sM = 0 and aM = 1.

Definition 5.2 (The fh-degree of an aerial graph). The “feet and hands” degree
(fh-degree) of ∆, denoted fh deg(∆), is the number

fh deg(∆) = #{M ∈ V∆, M is a foot} −#{M ∈ V∆, M is a hand}.

Let us remark that, for any graph,
∑

P∈V∆
sP − aP = 0. Thus,

0 =
∑

P∈V∆
aP+sP=1

(sP − aP ) +
∑

P∈V∆
aP+sP>1

(sP − aP ),

and

fh deg(∆) =
∑

P∈V∆
aP+sP=1

(aP − sP ) =
∑

P∈V∆
aP+sP>1

(sP − aP ).

If δ =
∑

c∆,n(∆, n) is a linear combination of graphs, then we say that δ is homo-
geneous with fh-degree b if fh deg(∆) = b for any ∆ such that c∆,n 6= 0.

Denote by AG the space of linear combinations δ, graded by AG = ⊕b∈ZAGb, if
AGb is the space of δ homogeneous with fh-degree b.

Suppose each ∆ has no trivial component. Then for any P in V∆, the hands and
feet of each graph in ∂P (∆, n) are exactly the hands and feet of ∆. Therefore,

Proposition 5.3 (∂ is homogeneous with fg-degree 0). For any b, if δ belongs to
AGb, then ∂δ is in AGb, or

H∗(AG) =
⊕
b∈Z

H∗(AGb).

The first result of this paper will now be H∗(AGb) = 0, if b 6= 0.
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6. Homotopy

Let (∆, n) be a graph without any trivial component, a vertex N in V∆ such

that (aN , sN ) 6= (1, 1) or Star(N) = End(N) = {
−−→
NN} is said to be non-simple. Thus,

if N is simple, then there are vertices M and R such that N 6= M , N 6= R and

End(N) = {
−−→
MN}, Star(N) = {

−−→
NR}.

Definition 6.1 (Homotopy). For any vertex N if N is not simple, define hN (∆, n)
= 0.

If N is simple, then

1. Put N in the first place, multiplying by εN (n) = (−1)
∑

M<N sM ,

2. Suppress the vertex N and the edge
−−→
NR,

3. Replace the arrow
−−→
MN by

−−→
MR, keeping its position in Star(M).

The resulting oriented graph is

hN (∆, n) = εN (n)(hN (∆), hN (n)).

The homotopy h is the map defined by

h(∆, n) =
∑

N∈V∆

hN (∆, n),

which is linearly extended to linear combinations δ of graphs.

Example 6.2. Let us consider the following aerial graph:

(∆, n) =

.A

?
(1)

.B

	.C

	 R

(2)

.D .E.

(3) (4)

Then hA(∆, n) = hC(∆, n) = hD(∆, n) = hE(∆, n) = 0 and

hB(∆, n) = −

.A

?
(1)

.C

	 R.D .E

(3) (4)

= h(∆, n).

By construction, for any graph (∆, n) and any vertex N ,

Sym(hN (∆, n)) = hN (Sym(∆, n)).

Let us remark that the homotopy h is homogeneous with fh-degree 0:

h(AGb) ⊂ AGb.
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Proposition 6.3 (h is a homotopy). For any homogeneous δ ∈ AGb, the following
holds:

(h ◦ ∂ + ∂ ◦ h)(δ) = bδ.

Proof. Let us recall our notation:

(a) When computing ∂P (∆, n), we add a new vertex, Q: V∂P∆ = V∆ t {Q}.
(b) When computing hN (∆, n), the vertex N disappears: VhN (∆) = V∆ \ {N}.
Thus,

(h ◦ ∂ + ∂ ◦ h)(∆, n)

=
∑

N, P∈V∆

N 6=P

(hN ◦ ∂P + ∂P ◦ hN )(∆, n) +
∑

P∈V∆

(hP ◦ ∂P + hQ ◦ ∂P )(∆, n).

If N 6= P is not simple in V∆, then (hN ◦ ∂P + ∂P ◦ hN )(∆, n) = 0.
If N is simple, since δ is symmetric, then we can choose n such that

V∆ = {N < P < A < · · · < Z}.

Moreover, since Γ = (hN ◦ ∂P + ∂P ◦ hN )(∆, n) is symmetric under the position of Q,
we only look for Q such that VΓ = {P < Q < A < · · · < Z}.

In this case, there is no sign in hN (∆, n) and, for any t, I and j, the sign εtP,Q,I,j

is (−1)t−1. Moreover,

(∂P,Q,I,j hN (∆), ntP,Q)

=
(
(−→e 1, . . . ,

−→e t−1,
−−→
PQ, . . . ,−→e j), (

−→e ′
j+1, . . . ,

−→e ′
sP ),Star

′(A), . . . ,Star′(Z)
)
,

where Star′(M) is Star(M) except that the edge
−−→
MN is replaced by

−−→
MR.

Let us remark that this computation holds even if M = P or R = P .
Computing the corresponding term in hN ◦ ∂P , we put P in the first place, creating

the sign (−1)sP , then proceed to the blow-up of P , creating the sign εtP,Q,I,j , then put
P and Q in their positions, passing through N , and finally, as above, the homotopy
has no sign. We thus get the above signs multiplied by

(−1)sP (−1)j+1(−1)sP−j = −1.

Therefore, ∑
N, P∈V∆

N 6=P

(hN ◦ ∂P + ∂P ◦ hN )(∆, n) = 0.

Let us compute hP (∂P,Q,I,j∆, ntP,Q). This term is not vanishing only if P is simple,
thus j = 0, t = 1 and #I = 1.

In this case, (∂P,Q,{−→e },0∆, n1P,Q) is a sum of graphs for each possible position of
Q. By symmetry, it is enough to consider the graph where the vertices are

{P < Q < A < · · · < Z}.

Then there is no sign in front of hP (∂P,Q,{−→e },0∆, n1P,Q) = (∆, n), with the change of
labelling P 7→ Q for the first vertex.
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There is exactly aP such terms corresponding to the choice of the arrow −→e in
End(P ). Thus, ∑

I

hP (∂P,Q,I={−→e },0∆, n1P,Q) = aP (∆, n).

Let us now compute hQ(∂P,Q,I,j∆, ntP,Q). This term is not vanishing only if Q is
simple, or j = sP − 1 and I = ∅. In this case, 1 6 t 6 sP .

Remark that (∂P,Q,∅,sP−1∆, ntP,Q) is a sum of graphs, with all possible positions
for Q. By symmetry, we only consider the graph where the vertices are {P < Q <
A < · · · < Z}. Then,

hQ(∂P,Q,∅,sP−1∆, ntP,Q) = (−1)t−1(−1)sP (∆, n(t)),

where n(t) is obtained from n, just by pushing the tth arrow in Star(P ) at the end of
Star(P ).

Replacing this arrow to its original place creates a sign (−1)sP−t. Thus, since there
is sP such choices, we get∑

t

hQ(∂P,Q,∅,sP−1∆, ntP,Q) = −sP (∆, n).

This proves the proposition.

Corollary 6.4 (Restriction to fh-degree 0 graphs). Let δ be a symmetric combination
of aerial graphs. If δ is a cocycle, then there is a coboundary ∂β such that δ − ∂β is
a cocycle homogeneous of fh-degree 0:

H∗(AG) = H∗(AG0).

There is a more precise localization of the cohomology given in the next section.

7. Cutting the hands

The arguments of this section were suggested by our referee.
Since the hands and feet of graphs in ∂P (∆, n) are the same as those of ∆ (with

the same labelling), we now consider the subcomplex (AGb
k, ∂) of all combinations of

graphs ∆ with fh-degree b and having k hands. Let us now suppose that k > 0.

Now, denote by ÃG
b

k the space of aerial graphs with fh-degree b and having k
hands, with some extra labels 1, . . . , N on the hand or foot vertices (it is clear that
N = b+ 2k). To come back to AGb

k, we have to forget this extra labelling, which

means we restrict ourselves to SN -invariant linear combinations of graphs in ÃG
b

k,
where SN is the symmetric group, acting by permuting the extra labels. Indeed, there
is a complex isomorphism

AGb
k
∼= (ÃG

b

k)
SN .

Moreover, for each subset K in {1, . . . , N}, with #K = k, we put

ÃG
b

K = Span
{
∆ ∈ ÃG

b

k, the extra labels on hands belong to K
}
.

It is clear that, as complexes, ÃG
b

k =
⊕

#K=k ÃG
b

K , and each subcomplex ÃG
b

K is

isomorphic to ÃG
b

[1,k] ([1, k] denotes the subset {1, . . . , k}).
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Define now a mapping Φ from ÃG
b

[1,k] to ÃG
b−2

[1,k−1] by replacing the hand with
extra label k by a foot as follows:

Since we consider symmetric combination, we choose the labelling of vertices such

that A is the hand with extra label k and Star(A) = {
−−→
AB}. We define the mapping

Φ as follows:
We change the arrow

−−→
AB into

−−→
BA and put this last arrow at the place u in the

new Star(B), multiplying the obtained graph, denoted (Φ(∆), n(u)), by the sign ηu

of the vertices permutation placing A, B in the two first places, and then replacing
the vertices at their place. Explicitly,

ηu =

{
(−1)u−1(−1)

∑
A<M<B sM if A < B,

(−1)u−1(−1)sB (−1)
∑

B<M<A sM if B < A.

Finally, Φ(∆, n) =
∑sB+1

u=1 ηu(Φ(∆), n(u)). Remark that if δ is a symmetric linear
combination of graphs, then Φ(δ) is also symmetric.

Proposition 7.1 (Φ is a complex morphism). Φ is a bijection from ÃG
b

[1,k] onto

ÃG
b−2

[1,k−1]. Moreover, Φ is an isomorphism of complexes. As a consequence,

ÃG
b

k
∼= ÃG

−N

0 ⊗ R
(
N
k

)
.

Proof. First Φ is clearly a bijective map, and the inverse map (∆, n) 7→ Φ−1(∆, n) is

the following: In the graph ∆, change the arrow
−−→
BA into

−−→
AB. Then, in the ordering,

place this last arrow at the place corresponding to the vertex A and multiply by ηu

if u is the place of
−−→
BA in Star(B), in n.

Up to a symmetry on hands and feet, we can restrict ourselves to graphs (∆, n)
where the ordering of vertices is A < B < · · · . Let us compare Φ ◦ ∂P (∆, n) and ∂P ◦
Φ(∆, n), if P > B.

Thanks to the symmetry property, we choose Q just after P , let us fix I ⊂ End(P )
and j 6 sP , 1 6 t 6 j + 1; this choice defines a graph εtP,Q,I,j(∂P,Q,I,j∆, ntP,Q) in
∂P (∆, n).

Applying Φ on this graph we get, for each 1 6 u 6 sB + 1, a graph

Γ = ηuεtP,Q,I,j(Φ(∂P,Q,I,j∆), ntP,Q(u)).

With the same Q, I, j ,t and u, we have the graph

Γ′ = ηuε′
t
P,Q,I,j(∂P,Q,I,j(Φ(∆)), n(u)tP,Q).

Up to the sign, these two graphs coincide. But, by definition,

εtP,Q,I,j = (−1)t−1(−1)1+sB+
∑

B<M<P sM

= (−1)t−1(−1)(sB+1)+
∑

B<M<P sM = ε′
t
P,Q,I,j .

Consider now the case P = B. In any graph in Φ ◦ ∂B or ∂B ◦ Φ, there is no edge−−→
AB, but two new arrows

−−→
BQ and either

−−→
BA or

−→
QA.

Suppose there is
−→
QA at the place u in Star(Q) and

−−→
BQ at the place t in Star(B).

The corresponding graph appears



96 WALID ALOULOU, DIDIER ARNAL and RIDHA CHATBOURI

(a) in (Φ(∂B,Q,I,j(∆)), nt(u)), only if
−−→
AB /∈ I, with the sign

(−1)j+1ηuεtB,Q,I,j = (−1)j+1(−1)u−1(−1)t−1(−1)sA = (−1)t+u+j ,

(b) in (∂B,Q,I,j(Φ(∆)), n(j + u)t) with the sign

ηj+u−1εtB,Q,I,j = (−1)j+u−1(−1)t−1 = (−1)j+u+t.

Similarly, suppose there is
−−→
BA at the place u in Star(B) and

−−→
BQ at the place t in

Star(B).

1. The corresponding graph appears in (Φ(∂B,Q,I,j(∆)), nt
′
(u)), only if

−−→
AB ∈ I,

(a) if t < u, with t′ = t and the sign

ηuεtB,Q,I,j = (−1)u−1(−1)t−1(−1)sA = (−1)t+u+1,

(b) if t > u with t′ = t− 1, and the sign

ηuεt−1
B,Q,I,j = (−1)u−1(−1)t−2(−1)sA = (−1)t+u.

2. The corresponding graph also appears

(a) if t < u, in (∂
B,Q,I\{−−→AB},j+1

(Φ(∆)), n(u− 1)t), with the sign

ηu−1εt
B,Q,I\{−−→AB},j+1

= (−1)u−2(−1)t−1 = (−1)u+t+1,

(b) if t > u, in (∂
B,Q,I\{

−−→
AB},j+1

(Φ(∆)), n(u)t), with the sign

ηuεt
B,Q,I\{

−−→
AB},j+1

= (−1)u−1(−1)t−1 = (−1)u+t.

This finally proves

Φ ◦ ∂ = ∂ ◦ Φ.

By iteration of this construction, we get the following isomorphisms for each subset
K in {1, . . . , N}, with #K = k:

ÃG
b

K
∼= ÃG

b

[1,k]
∼= ÃG

−N

∅ = ÃG
−N

0 .

This proves the proposition.

The homotopy is defined on ÃG
−N

0 as well. Therefore, if N > 0, then ÃG
−N

0 is

acyclic, thus ÃG
b

k is acyclic.
Since taking invariants of a finite group action commutes with taking cohomology,

we get, if N > 0,

H∗(AGb
k) = H∗((ÃGb

k)
SN
)
= H∗((ÃG

b

k)
)SN

= 0.

Summarizing, we finally get the following localization of the Chevalley cohomology
H∗(AG).

Theorem 7.2 (Localization of the cohomology). Let AGb
k be the space of graphs

with fh-degree b and k hands. Then for any b 6= 0 or k > 0, H∗(AGb
k) = 0. Thus the

cohomology is localized into the space of graphs without trivial component and without
any foot or hand:

H∗(AG) = H∗(AG0
0).



CHEVALLEY COHOMOLOGY FOR AERIAL GRAPHS 97

8. Application to some quotient complexes

In this section, we consider the space T hom
poly (Rd) of strongly homogeneous polyvector

fields α, i.e., polyvector fields:

α =
∑

16i1,...,ik6d

αi1···ik(x)∂xi1
∧ · · · ∧ ∂xik

,

where αi1···ik(x) is a homogeneous polynomial with degree k.
This space is a subalgebra of

(
Tpoly(Rd), [ , ]S

)
. Let us look to its cohomology with

value in the trivial module.
Let us say that a graph ∆ is strongly homogeneous if sM = aM for any vertex M .
Denote by HG the space of symmetric linear combination of strongly homogeneous

graphs and by NHG the space of symmetric linear combination of non-homogeneous
graphs.

In fact, the space HG naturally appears in the computation of the cohomology:
the linear combinations δ of strongly homogeneous aerial graphs define cochains Cδ

on T hom
poly (Rd) with value in the base field R.

Lemma 8.1 (HG is a quotient complex with a homotopy). The space NHG is a
subcomplex of AG, and HG ∼= AG/NHG is a quotient complex. More precisely,

∂(NHG) ⊂ NHG, and h(NHG) ⊂ NHG.

Proof. Suppose ∆ is non-homogeneous, sP 6= aP for some vertex P in ∆; then the
only point to verify is the existence of a non-homogeneous vertex in ∂P∆ =∑

±∂P,Q,I,j∆. But in this last graph, either P or Q is non-homogeneous.
By definition of the homotopy, h =

∑
hN , we only look to simple vertices N in ∆,

clearly the non-homogeneous vertex P in ∆ remains non-homogeneous in hN (∆).

Let H∗
hom(HG) denote the cohomology of the quotient complex. For instance, each

odd wheel is a cocycle.

Definition 8.2 (Wheels). A simple wheel is a graph ∆p with p vertices A1, . . . , Ap

and p edges
−−−→
A1A2, . . . ,

−−−−−→
Ap−1Ap, and

−−−→
ApA1. Denote its symmetrization by Wp =

Sym(∆p).

We can represent ∆p by the following:

∆p =

�

	

?

-R

6

I
. . . . . .

�
1

2

p

p− 1

3.

Remark 8.3. The symmetric even wheels vanish: W2p = 0.

An easy computation proves that each odd wheel W2p+1 is a cocycle in HG. For
instance,
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Example 8.4.

∂

( )
= 3




]
- -

�

6

?
±3 = ±3 ∈ NHG.

-

� ??

-

� ??

Now, if W2p+1 is a coboundary in HG, it would be the coboundary of a strongly
homogeneous connected graph with 2p edges and 2p vertices, that is of the wheel
W2p, but this wheel vanishes. Therefore,

H∗
hom(HG) 6= H∗(AG0

0) = H∗(AG)

since, for instance, H3(AG) = 0 (see [K1, AGM]).
Recall that the odd wheels freely generate the cohomology of linear and vectorial

graphs; see [AAC1, AAC2]. In order to generalize the linear case, we now consider
a new quotient complex of graphs, the space of ascending graphs.

A graph ∆ is ascending if, for each vertex M , with sM arrows coming out from M
and aM arrows coming in to M , we have{

either (aM , sM ) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)},
or (aM , sM ) ∈ {(a, s), such that a < s, and 1 < s}.

In the first case, we shall say that M is type 1, and in the second case, we say M
is type 2.

Let us denote the space of these graphs by ASC, and the space of non-ascending
graphs by NASC.

Example 8.5. The following graph is an ascending graph:

∆ = � *

6

A

C

B

because (aA, sA) = (1, 2), (aB , sB) = (1, 1) and (aC , sC) = (1, 0).
Conversely, the following graph is non-ascending:

∆ = � *?A

C

B

since (aA, sA) = (2, 1), and the vertex A is neither type 1 nor type 2.

Lemma 8.6 (ASC is a quotient complex with a homotopy). The space NASC is a
subcomplex of AG, and ASC ∼= AG/NASC is a quotient complex. More precisely,

∂(NASC) ⊂ NASC and h(NASC) ⊂ NASC.
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Proof. Let ∆ be a non-ascending graph; there is a vertex P in ∆ that does not satisfy
the conditions of the definition. This means aP > sP and ap > 2.

IfM 6= P , then each graph in ∂M∆ is still non-ascending in P . In ∂P∆, the quantity
(aM , sM ) changes only for M = P or M = Q. Denote by s′P , s

′
Q (resp. a′P , a

′
Q) the

number of edges starting from P , Q (resp. incoming in P , Q) for a graph in ∂P∆.
We have:

a′P + a′Q = aP + 1, s′P + s′Q = sP + 1, a′P + s′P > 2, a′Q + s′Q > 2.

Suppose that the vertex P is ascending. Then

(a) either (a′P , s
′
P ) = (1, 1) thus (a′Q, s

′
Q) = (aP , sP ),

(b) or a′P < s′P thus a′Q − s′Q > aP − sP > 0.

In both cases, due to its new vertex Q, ∂P∆ is non-ascending.

By definition of the homotopy, h =
∑

hN , where the sum is on the simple vertices
N in ∆, clearly, if ∆ is non-ascending with its vertex P , then hN (∆) remains a
non-ascending due to the same vertex P .

Definition 8.7 (Lines). A simple line ∆r is a graph with r + 1 vertices A1, . . . , Ar+1

and r edges
−−−−−→
Ar+1Ar,

−−−−−→
ArAr−1, . . . ,

−−−→
A2A1. We denote by Lr the symmetrization of

∆r.

Let us now consider a connected ascending graph ∆ with only type 1 vertices.
Then ∆ is either a wheel or a line. These graphs and their cohomology were studied,
for instance, in [AAC1].

The ascending graphs complex has the same cohomology as the complex of linear
or vectorial graphs:

Corollary 8.8 (Cohomology of ascending graphs). The cohomology of the quotient
complex H∗(ASC) is freely generated by the products of odd wheels:

H∗(ASC) = 〈W2k1+1 ∧W2k2+1 ∧ · · · ∧W2kp+1, 0 < k1 < · · · < kp〉.

Proof. Denote by k the number of hands and by ` the number of feet of the graphs in
ASC. Let ASCk,` the vector space generated by such graphs. Since, for each graph,∑

P aP =
∑

P sP , we can write

ASC = ASCType 1 ⊕
∑
k<`

ASCk,`,

where ASCType 1 is the space generated by graphs having only type 1 vertices, that
is, the product of lines and wheels.

Since the homotopy is defined on the quotient, we get H∗(ASCk,`) = 0 if k < `
and H∗(ASC) = H∗(ASCType 1).

In [AAC1], it is proved that the cohomology of lines vanishes and the cohomology
of wheels is the space generated by the products W2k1+1 ∧W2k2+1 ∧ · · · ∧W2kp+1,
with 0 < k1 < · · · < kp.
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Remark 8.9. Similarly, we can study the space of descending graphs where the vertices
M are type (aM , sM ), with {

aM > sM if aM > 1,

sM 6 1 if aM 6 1.

As above, the cohomology is freely generated by the product of odd wheels W2p+1.
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