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ÉTALE HOMOTOPY TYPES AND
BISIMPLICIAL HYPERCOVERS

MICHAEL D. MISAMORE

(communicated by Gunnar Carlsson)

Abstract
Suppose (C, x) is a pointed locally connected small

Grothendieck site, and let (X, z) denote any connected locally
fibrant simplicial sheaf X equipped with a “geometric” point
z. Following Artin-Mazur, an étale homotopy type of X may
then be defined via the geometrically pointed hypercovers of
X to yield a pro-object of the homotopy category, but this is
not the only possible definition. In Étale homotopy of simpli-
cial schemes, Friedlander defined another étale homotopy type
of a simplicial scheme X by taking diagonals of geometrically
pointed bisimplicial hypercovers. In this paper, these two types
are shown to be pro-isomorphic by means of a direct comparison
of the associated cocycle categories. Friedlander’s construction
of étale homotopy types as actual pro-simplicial sets relies on
a rigidity property of the étale topology that may not always
be available for arbitrary sites; the cocycle methods employed
here do not have this limitation. By consequence, the associated
homotopy types constructed from hypercovers and bisimplicial
hypercovers are shown to be pro-isomorphic on any locally con-
nected small Grothendieck site, and the comparison at the level
of cocycles shows, in particular, that both abelian and non-
abelian sheaf cohomology may be computed via bisimplicial
hypercovers on arbitrary small Grothendieck sites.

1. Introduction

In classical étale homotopy theory, the étale homotopy type of a geometrically
pointed connected locally noetherian scheme (X, z) is defined by taking objectwise
connected components Π(U, u) of the system of all pointed hypercovers (U, u)→ X
of X and pointed simplicial homotopy classes of maps between them. This system is
cofiltered and thus results in a pro-object of Ho(sSet∗), the homotopy category of
pointed path-connected simplicial sets. This is the classical étale homotopy type of
Artin-Mazur [1]. On the other hand, if one starts with a geometrically pointed con-
nected locally noetherian simplicial scheme X, then one has to make a choice about
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what types of hypercovers of X to consider. The choice taken by Friedlander was to
define his étale topological type via the system of (rigid) pointed bisimplicial hyper-
covers (U, u)→ X of X and fibrewise (over X) pointed simplicial homotopy classes of
maps between them, where a bisimplicial hypercover U → X is a map of bisimplicial
schemes such that each degreewise map Un → Xn is a hypercover of the scheme Xn

for n > 0. There one must take diagonals d(U, u) followed by connected components
in order to produce a pro-object of Ho(sSet∗), and it is obvious that this specializes to
the Artin-Mazur definition for geometrically pointed schemes X regarded as constant
simplicial schemes. In [5], Isaksen introduced another model for this homotopy type
by taking the “realization” of the diagram of (rigid) étale homotopy types Ét(Xn) of
the constituent schemes and showed, in particular, that his model (also taking values
in pro-simplicial sets) is weakly equivalent to Friedlander’s. Regardless of the model
in pro-simplicial sets, the resulting homotopy type of interest may be taken to be
the pro-object Tb(X, z) of Ho(sSet∗) defined by means of connected components of
diagonals of geometrically pointed bisimplicial hypercovers of X.

There is another possible choice for a system of geometrically pointed hypercovers
of a geometrically pointed simplicial scheme: one knows (for various reasons) that
a pointed hypercover (U, u)→ (X, z) should be defined as a pointed local trivial
fibration on the relevant site, so one may simply take these instead of the bisimplicial
hypercovers. These were apparently first considered for the purpose of defining a
homotopy type by Schmidt in [12]. From this point of view it is natural to drop the
requirement that X be representable by a simplicial scheme and instead consider the
system of geometrically pointed hypercovers of X and pointed simplicial homotopy
classes of maps between them for any geometrically pointed connected locally fibrant
simplicial sheaf (X, z), where the words “geometrically pointed” are suitably defined.
One way or another, it has been known for some time that this also results in a
pro-object T (X, z) of Ho(sSet∗); the underlying ideas go back to Brown’s thesis [2].

Unfortunately, the rigidity techniques of [3] do not automatically extend to arbi-
trary small Grothendieck sites; in particular, there are Grothendieck toposes that
do not possess any points at all, and one does not know a priori that the required
rigidity property of covers is automatically satisfied when one is not using the usual
étale topology. However, the homotopy types T (X, z) and Tb(X, z) (and unpointed
analogues) still exist, and one may ask how to compare them.

Here this comparison is achieved by working at the level of cocycle categories in
the sense of [10]: it is shown here (Theorem 4.18) that there are bijections

π0Hhyp(x, y) ∼= π0Hbihyp(x, y) ∼= [x, y]

between the path components of the cocycle categories for ordinary and bisimplicial
hypercovers for any locally fibrant pointed simplicial sheaf y on the ambient small
Grothendieck site C. For these bijections one only requires that the site C be pointed
(and only if one desires to speak about pointed hypercovers). They do not depend
on “having enough points” or rigidity properties of the ambient small Grothendieck
site, and therefore constitute the correct general argument.

As this is a foundational result about a comparison of pro-homotopy types, its
applications are limited to the transfer of facts about the first type to the second. For
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the sake of example, the identifications

Hn(X,H) ∼= lim−→
p : d(U)→X

Hn(dU,H)

for sheaves of groups H are established in Proposition 5.2. These results are proven
without spectral sequence arguments and work equally well for nonabelianH1 ([3, 3.8]
only addressed the abelian case). This identification is usually given for hypercovers
using the ordinary Verdier hypercovering theorem; the fact that it also works for
bisimplicial hypercovers is an immediate application of the comparison given above,
and again it is true for arbitrary small Grothendieck sites, not just étale sites.

Finally, it is shown here in Theorem 5.3 that Tb(X, z) is indeed pro-isomorphic
to T (X, z) whenever (X, z) is a pointed connected locally fibrant simplicial sheaf on
a pointed locally connected site where the distinguished “point” is determined by
some object Ω representing a sheaf (such as a geometric point). The resulting invari-
ance of Tb(X, z) up to pro-isomorphism under (pointed) local weak equivalences is
the subject of Corollary 5.5. The Ex∞ functor is employed in Lemma 5.4 to demon-
strate that this invariance holds without any fibrancy assumptions on (X, z). One
recovers, in particular, the fact that a bisimplicial hypercover U → X determines a
pro-isomorphism Tb(dU) ∼= Tb(X) of bisimplicial étale homotopy types (cf. [3, 8.1]);
the proof here is elementary and does not make use of the pro-Whitehead theorem
from [1, §4].

2. Hypercovers and bisimplicial hypercovers

A map U → X of simplicial (pre)sheaves on a small Grothendieck site C is called a
hypercover if it is a local fibration and a local weak equivalence (cf. [6] for a definition
and discussion of the local right lifting property defining local fibrations), and it is
well known that when X = K(X, 0) is the discrete or “constant” simplicial (pre)sheaf
associated to an object X of C, the map U → X as above is a hypercover in this sense
exactly when the maps

U0 → X0

Un → coskn−1Un

are local epimorphisms of (pre)sheaves on C for n > 1, which may be taken as
the “classical” definition. The fact that these definitions correspond follows from ([7,
1.12]) in the case where X is locally fibrant, or by a Boolean localization argument
in the general case, following Jardine [9].

Suppose C is pointed in the sense that there is a geometric morphism

x : Set→ Shv(C)

of toposes. For the purposes of this paper, a pointed simplicial sheaf (X, z) on C will
be a simplicial sheaf X on C together with a choice of section z ∈ x∗(X0), and a
pointed map f : (X, z)→ (Y, z′) of pointed simplicial sheaves will be a map X → Y
of the underlying simplicial sheaves such that x∗(f)(z) = z′. In the usual geometric
setting for étale homotopy theory, such “points” z correspond to geometric points
of X whenever X = K(X, 0) is a discrete representable simplicial sheaf. A pointed
hypercover (U, u)→ (X, z) of a pointed simplicial sheaf (X, z) on a pointed small
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Grothendieck site (C, x) will be a hypercover U → X that is a pointed map (with
respect to x) of simplicial sheaves, and a pointed map of pointed hypercovers of
(X, z) will be a pointed map over X of the underlying simplicial sheaves. It has been
observed as early as [2] that the pointed hypercovers of any locally fibrant pointed
simplicial sheaf (X, z) together with pointed simplicial homotopy classes of maps
between them over (X, z) form a cofiltered category, here denoted HR∗(X, z).

A bisimplicial hypercover f : U → X of a simplicial (pre)sheaf X on a small Groth-
endieck site C is a map of bisimplicial (pre)sheaves f : U → Kv(X, 0), where X is
being regarded as simplicially discrete in the “vertical” direction, such that each of
the constituent maps fm : Um → Xm in “horizontal” degree m > 0 is a hypercover. If
(C, x) is a pointed site, then a pointed bisimplicial hypercover f : (U, u)→ (X, z) of a
pointed simplicial sheaf (X, z) is a bisimplicial hypercover f : U → X in sheaves such
that x∗(f)(u) = z, where u ∈ x∗(U0,0) is the “point” associated to U . A pointed map
f : (V, v)→ (U, u) of pointed bisimplicial hypercovers of a pointed simplicial sheaf
(X, z) is a map of bisimplicial hypercovers f : V → U over X such that x∗(f)(v) = u.
The most significant fact about these objects for the present purposes is given by

Proposition 2.1. If f : (U, u)→ (X, z) is a bisimplicial hypercover of a pointed sim-
plicial sheaf (X, z) on a pointed small Grothendieck site (C, x), then the map (dU, u)→
(X, z) of simplicial sheaves induced by taking diagonals is a local weak equivalence.

Proof. Fixing a Boolean localization p : Shv(B)→ Shv(C), it suffices to show that
the induced map p∗(dU)→ p∗(X) is a sectionwise weak equivalence by techniques
of [9], but this follows from the corresponding fact for simplicial sets ([4, 1.7, IV]).
The pointedness of the induced map is trivial.

This proposition and ([3, 8.1]) serve as motivation for asking whether any local
weak equivalence induces isomorphisms on the étale homotopy pro-groups of the asso-
ciated bisimplicial étale homotopy types. Reader beware: the diagonal of a pointwise
fibration of simplicial sets need not be a fibration in general, so one does not generally
expect the diagonal of a bisimplicial hypercover to be a hypercover. This is a source of
technical problems when comparing the differing definitions of étale homotopy types.

3. The étale homotopy type of a simplicial sheaf

Say that a small Grothendieck site C is locally connected if there exists a functor
Π : Shv(C)→ Set left adjoint to the constant sheaf functor Γ∗ : Set→ Shv(C), and
say that a locally connected site C is connected if Π(∗) = ∗, where ∗ denotes the
terminal sheaf on C. In geometric situations the functor Π is that induced by the
functor which sends any scheme to its set of connected scheme-theoretic components.
A simplicial sheaf X on a connected site C will be called connected if π0Π(X) ∼= ∗; a
quick argument using H0(−,K(Γ∗S, 0)) for variable sets S shows that U is connected
whenever U → X is a hypercover of a connected simplicial sheaf X, and a similar
statement is true for diagonals of bisimplicial hypercovers by the same argument.

Suppose (C, x) is a pointed locally connected small Grothendieck site and that
(X, z) is a pointed (with respect to x) connected locally fibrant simplicial sheaf on
C. Then the pointed hypercovers of (X, z) are cofiltered up to simplicial homotopy
so one may proceed to define an “étale” homotopy type T (X, z) for (X, z): it is the
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pro-object in Ho(sSet∗) given by applying Π to the cofiltered diagram HR∗(X, z)
of pointed hypercovers of (X, z) and pointed simplicial homotopy classes of maps
between them. This definition applies, in particular, to pointed locally fibrant con-
nected simplicial schemes (X, z) on étale sites, and is clearly not the same as the
étale topological type of Friedlander defined by means of diagonals of (rigid) pointed
bisimplicial hypercovers of (X, z). Nevertheless T (X, z) has several good properties:
firstly, it specializes to the classical étale homotopy type for geometrically pointed
connected schemes (this is a matter of checking definitions). Secondly, the fact that
it is defined in terms of not-necessarily-representable hypercovers does not matter:

Proposition 3.1. For any geometrically pointed connected scheme (X, z) on a locally
connected étale site, the étale homotopy type T (X, z) defined here is pro-isomorphic to
the classical étale homotopy type Ét(X, z) of Artin-Mazur defined by means of pointed
representable hypercovers of (X, z).

Proof. The only point is to show that any pointed hypercover (U, u)→ (X, z) of a
scheme X can be refined by a pointed representable hypercover (as then the result
follows by a cofinality argument in HR∗(X, z)). This construction was given by Jardine
in [8] based on the work of Artin-Mazur [1, §8]).

Next, one may show directly that the type T (U, u) is pro-isomorphic to the type
T (X, z) for any pointed hypercover (U, u)→ (X, z) of (X, z). The corresponding
(actually weaker) statement for the étale topological type of Friedlander requires
some work to establish (cf. [3, 8.1]) but is easy to prove for T (−,−):

Lemma 3.2. Suppose (C, x) is a pointed locally connected small Grothendieck site,
(X, z) a pointed connected locally fibrant simplicial sheaf on C, and f : (U, u)→ (X, z)
a pointed hypercover of (X, z). Then f induces a pro-isomorphism T (U, u) ∼= T (X, z).

Proof. Consider the slice category HR∗(X, z)/f whose objects are the commutative
triangles

(V, v)
g //

h ##HH
HH

HH
HH

H
(U, u)

f{{vvv
vv

vv
vv

(X, z)

over (X, z), where h is a hypercover. The maps g may not be hypercovers themselves,
but as any such V and U are locally fibrant (since X is), any such object has a
functorial refinement up to weak equivalence by an object g′ : (Z, z)→ (U, u) over
(X, z) such that g′ is a pointed hypercover of (U, u): this is determined by the usual
factorization

(Z, z)
k

��

g′

$$HH
HH

HH
HH

H

(V, v)
g //

w

;;wwwwwwwww
(U, u),

where g′ is a local fibration (and local weak equivalence by closed model axiom CM2)
and w is a local weak equivalence that is a section of the local trivial fibration k. This
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determines a full cofinal subcategory

i : (HR∗(X)/f)hyp ↪→ HR∗(X)/f

as one can see by equalizing any two maps of pointed hypercovers over X up to
pointed simplicial homotopy and replacing the resulting equalizer (E, e)→ (U, u) over
X by a hypercover (E′, e′)→ (U, u) by factorization as above. There is an equivalence
f∗ : HR∗(U) ' (HR∗(X)/f)hyp defined by composing with f or likewise forgetting the
maps to X. Further, the functor p : HR∗(X)/f → HR∗(X) defined by forgetting the
maps to f is cofinal since HR∗(X) is cofiltered. It follows that the composite

HR∗(U)
f∗−→ (HR∗(X)/f)hyp

pi−→ HR∗(X)

is cofinal, and this composite induces the desired pro-isomorphism.

This cofinality argument works essentially because T (−,−) treats both the base
simplicial sheaf X and its pointed hypercovers on the same footing; such an argument
therefore fails for bisimplicial hypercovers of simplicial sheaves. It almost immediately
follows that T (X, z) is invariant up to pro-isomorphism under pointed local weak
equivalences:

Proposition 3.3. Suppose (C, x) is a pointed locally connected small Grothendieck
site, (X, z) and (Y, y) pointed connected locally fibrant simplicial sheaves on C, and
f : (Y, y)→ (X, z) a pointed local weak equivalence. Then f induces a pro-isomor-
phism T (Y, y) ∼= T (X, z).

Proof. As Y and X are locally fibrant there is a factorization

(W,w)
g

��

h

$$IIIIIIIII

(Y, y)

i

::vvvvvvvvv
f // (X, z)

of the map f , where g and h are pointed hypercovers and i is right inverse to g. The
induced map i∗ : T (Y, y)→ T (W,w) is right inverse to the induced map g∗, which is a
pro-isomorphism by Lemma 3.2, so i∗ is also left inverse to g∗ and a pro-isomorphism.
The map h∗ is also a pro-isomorphism by the lemma so h∗i∗ = f∗ : T (Y, y)→ T (X, z)
is a pro-isomorphism.

In an earlier work [12], Schmidt observed that this latter fact is implied by an appli-
cation of the generalized Verdier hypercovering theorem; the present proof is included
because it may be of independent interest. To give another comparison with known
results, recall that in ([5, 2]) Isaksen shows this his étale realization functor Reét is
left Quillen for the local projective structure so that it sends local weak equivalences
between local projective cofibrant simplicial presheaves to weak equivalences of pro-
simplicial sets. The type T (−,−) defined here sends pointed local weak equivalences
between pointed connected locally fibrant simplicial sheaves to pro-isomorphisms in
Ho(sSet∗). Obviously the points are only there to make a comparison of homotopy
pro-groups; this general line of argument continues to work in the unpointed case.
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4. Cocycles for bisimplicial sheaves

In what follows C will be an arbitrary small Grothendieck site and Set→ Shv(C)
a point of C (or no point at all in the unpointed situation). Familiarity with the
definitions of [10] and [11] will be assumed. The word “pointed” will always mean
with respect to the chosen point of C rather than with respect to the terminal sheaf.
Pointed (bi)simplicial sheaves on C will be denoted from now on simply with lowercase
letters to reduce the notational burden, and unless otherwise specified any map x→ y
between pointed (bi)simplicial sheaves will be pointed. The underlying site will always
be C.

For any two pointed simplicial sheaves x, z on C, there is a category Hbihyp(x, z)
of cocycles of the form

x
d(f)'←−−−− d(u) p−→ z,

where f : u→ x is a pointed bisimplicial hypercover of x and d is the diagonal functor,
whose morphisms are commutative diagrams

d(u)
d(f)

||zz
zz

zz
z p

""EE
EE

EE
E

d(m)

��

x z,

d(u′),
d(f ′)

bbDDDDDDD p′

<<yyyyyyy

where m : u→ u′ is any pointed map of bisimplicial hypercovers of x.
As these categories turn out to be a bit tricky to study directly, one may also

consider categories Hd(x, z) whose objects are cocycles of the form

x
d(f)'←−−−− d(u) p−→ z,

where f : u→ x is any pointed map of bisimplicial sheaves that is a diagonal local weak
equivalence in the sense that d(f) is a local weak equivalence of simplicial sheaves,
and whose morphisms are similarly defined; it is immediate from the definition that
Hbihyp(x, z) is a full subcategory of Hd(x, z) for any fixed x and z.

Recall the Moerdijk closed model structure for bisimplicial sets: the fibrations
(resp. weak equivalences) are, by definition, the diagonal fibrations (resp. diagonal
weak equivalences), and the cofibrations are defined by the left lifting property with
respect to all trivial fibrations (cf. [4, 3.15, IV]). Every Moerdijk cofibration is a
monomorphism of bisimplicial sets and therefore a diagonal cofibration in particular.

The diagonal functor d has a right adjoint d∗ ([4, 3.13, IV]) so that any object

x
d(f)'←−−−− d(u) p−→ z

of Hd(x, z) is uniquely identified with a diagram

x
f←− u p̃−→ d∗(z),

where f is the underlying map of bisimplicial sheaves and p̃ is the adjoint of p. In
other words any such cocycle (d(f), p) may be identified with a “cocycle” (f, p̃).
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Lemma 4.1. If f : X → Y is a trivial fibration of simplicial sets, then the induced
map d∗(f) : d∗X → d∗Y is a trivial fibration for the Moerdijk closed model structure
on bisimplicial sets.

Proof. It must be shown that d∗(f) has the right lifting property with respect to any
Moerdijk cofibration i : A→ B. By adjointness, this is equivalent to showing that f
has the right lifting property with respect to d(i), but d(i) is a cofibration of simplicial
sets since i : A→ B is, in particular, a monomorphism of bisimplicial sets ([4, 3.15,
IV]). The required lift exists since f is a trivial fibration.

Corollary 4.2. If f : X → Y is a weak equivalence of fibrant simplicial sets, then the
induced map d∗(f) : d∗X → d∗Y is a diagonal weak equivalence of bisimplicial sets.

Proof. Factor the map f as a weak equivalence σ followed by trivial fibration g such
that σ is a section of a trivial fibration h. Then d∗(h) and d∗(g) are trivial fibrations
for the Moerdijk structure by Lemma 4.1, so d∗(f) is a diagonal equivalence.

The “localized” version of this is then given by

Lemma 4.3. If β : z → z′ is a local weak equivalence of pointed locally fibrant sim-
plicial sheaves, then d∗(β) is a pointed diagonal local weak equivalence.

Proof. Fix a Boolean localization p : Shv(B)→ Shv(C). Then the map p∗(β) is
a sectionwise weak equivalence of sectionwise fibrant simplicial sheaves on B so
that d∗(p

∗(β)) is a sectionwise diagonal weak equivalence of bisimplicial sheaves
by Lemma 4.2. In bisimplicial degree (m,n) this map is given by the sheaf map
(p∗β)∆

m×∆n

where ∆m ×∆n is the constant sheaf associated to the corresponding
simplicial set. As p∗ is exact one has p∗(∆m ×∆n) = ∆m ×∆n so that the map
(p∗β)∆

m×∆n

is isomorphic to the map p∗(β∆m×∆n

) naturally in m, n > 0. Thus the
map p∗(d∗(β)) is also a sectionwise diagonal weak equivalence. By exactness of d and
p∗, it follows that p∗(d(d∗(β))) is a sectionwise weak equivalence so that d(d∗(β))
must be a local weak equivalence; hence d∗(β) is a diagonal local weak equivalence
as was to be shown.

Here is a first application to cocycles:

Lemma 4.4. If β : z → z′ is a local weak equivalence of pointed locally fibrant sim-
plicial sheaves, then the induced functor

β∗ : BHd(x, z)→ BHd(x, z
′)

is a homotopy equivalence.

Proof. The functor β∗ is defined by composition with β, sending the right-hand map
from p to p′ := βp. The local weak equivalence β determines a diagonal local weak
equivalence d∗(β) by Lemma 4.3, and by adjunction the associated “cocycle” (f, p̃)
is sent to p̃′ := d∗(β)p̃.

Suppose one has a pointed “cocycle” of the form

x
f←− u p̃−→ d∗(z

′),

where f is a diagonal local weak equivalence. Emulating the proof of Lemma 1 of [10],
this is equivalent to giving a map (f, p̃) : u→ x× d∗(z′) which may be factored using
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the Moerdijk structure in sections as

w
(px,p̃z′ )

%%JJJ
JJJ

JJJ
J

u

c

??�������� (f,p̃) // x× d∗(z′),

where c is a sectionwise diagonal equivalence and (px, p̃z′) is a sectionwise diagonal
fibration. Observe that px is a diagonal local weak equivalence since both f and c
are. Pull back along the diagonal equivalence 1× d∗(β) to get a commutative square

w′
(1×d∗(β))∗ //

(p∗
x,p̃

∗
z)

��

w

(px,p̃z′ )

��
x× d∗(z)

1×d∗(β)
// x× d∗(z′)

defining w′. The map (p∗x, p̃
∗
z) is a sectionwise diagonal fibration since (px, p̃z′) was,

and passing to a Boolean localization p∗ preserves pullbacks (and d is exact) so the
map (1× d∗(β))∗ is a diagonal local weak equivalence and therefore so is the map p∗x.
This determines a functor ψ̃ from the category of pointed “cocycles” of the form

x
f←− u p̃−→ d∗(z

′)

to the analogous category of such objects with target d∗(z). The canonical maps

(f, p̃)→ (px, p̃z′)← β∗ψ̃(f, p̃)

and

(g, q̃)→ ψ̃β∗(g, q̃)

determine natural transformations (use that w′ is a pullback for the latter). The
aforementioned categories are therefore homotopy equivalent. These categories are
isomorphic to Hd(x, z) and Hd(x, z

′), respectively, so the result follows.

Corollary 4.5. If β : y → z is a globally fibrant model of a pointed locally fibrant
simplicial sheaf y, then the induced map

π0(β∗) : π0Hd(x, y)→ π0Hd(x, z)

is a bijection.

Proof. Globally fibrant objects are locally fibrant. Apply Lemma 4.4.

In Lemma 4 of [11], Jardine established that if

x
f '←−− u→ z

is any cocycle of pointed simplicial (pre)sheaves with z locally fibrant, then it may
be functorially replaced by a cocycle of the form

x
f ′ '←−−− u′ → z,

where f ′ is a hypercover such that the new cocycle is in the same path component of
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H(x, z) as the original. It follows that the inclusion functor

j : Hhyp(x, z) ↪→ H(x, z)

of the full subcategoryHhyp(x, z) intoH(x, z) induces a bijection on path components
for any locally fibrant simplicial (pre)sheaf z.

To give an analogue for Hd(x, z), let Hd−hyp(x, z) denote the category of cocycles
of the form

x
d(f)'←−−−− d(u)→ z,

where f : u→ x is any map of pointed bisimplicial sheaves to a pointed simplicial sheaf
x such that the induced map d(f) is a hypercover, whose morphisms are given by
maps m : u→ u′ inducing maps of such cocycles in the usual way. Then Hd−hyp(x, z)
is another full subcategory of Hd(x, z) so that the inclusion functor

i′ : Hd−hyp(x, z) ↪→ Hd(x, z)

is injective on path components.

Say that a map f : x→ y of pointed bisimplicial sheaves is a diagonal local fibration
if the induced map d(f) is a local fibration of simplicial sheaves.

Lemma 4.6. If z is a pointed locally fibrant simplicial sheaf on C, then d∗(z)→ ∗ is
a diagonal local fibration.

Proof. Fix a Boolean localization p : Shv(B)→ Shv(C). The map p∗(z)→ ∗ is a
sectionwise fibration since z is locally fibrant, so the induced map d∗(p

∗(z))→ ∗
is a sectionwise diagonal fibration by ([4, 3.14, IV]). By the proof of Lemma 4.3
this implies that the map p∗(d∗(z))→ ∗ is also a sectionwise diagonal fibration, but
by exactness this implies that p∗(d(d∗(z)))→ ∗ is a sectionwise fibration so that
d(d∗(z))→ ∗ is a local fibration; thus d∗(z)→ ∗ is a diagonal local fibration.

Lemma 4.7. If z is locally fibrant, then the induced map π0(i
′) is a bijection.

Proof. As above, identify any object

x
d(f)←−−− u p−→ z

of Hd(x, z) with the corresponding map

(f, p̃) : u→ x× d∗(z)

and factor (f, p̃) as a sectionwise trivial Moerdijk cofibration c : u→ w followed by
a sectionwise Moerdijk fibration (px, p̃z) : w → x× d∗(z). Then c and f are diagonal
local weak equivalences so px is a diagonal local weak equivalence. The map px is the
composite

w
(px,pz)−−−−→ x× d∗(z)

prx−−→ x,

where the first map is a sectionwise diagonal fibration and the second map is a
diagonal local fibration since d∗(z)→ ∗ is a diagonal local fibration. Thus d(px) is a
hypercover, and the result follows by adjunction.
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The category Hd−hyp(x, z) is a (not a priori full) subcategory of Hhyp(x, z), the
full subcategory of H(x, z) whose objects are cocycles of the form

x
f '←−− v → z,

where f is any hypercover. Let

i′′ : Hd−hyp(x, z) ↪→ Hhyp(x, z)

denote the inclusion.

Lemma 4.8. For any pointed locally fibrant simplicial sheaf z the induced map π0(i
′′)

is surjective.

Proof. Let

x
f '←−− v p−→ z

be any object of Hhyp(x, z) and identify it with the map (f, p) : v → x× z. Factor
(f, p) as a sectionwise trivial Moerdijk cofibration c : v → w followed by a sectionwise
Moerdijk fibration (px, pz) : w → x× z. The maps f and c are diagonal local weak
equivalences so px is a diagonal local weak equivalence. The map px is the composite

w
(px,pz)−−−−→ x× z prx−−→ x,

where the first map is a sectionwise diagonal fibration and the second map is a
diagonal local fibration since z is locally fibrant. Thus d(px) is a hypercover, so the
result follows.

Recall that the diagonal functor d also has a left adjoint d∗ (3.3, IV, [4]). To show
injectivity of π0(i

′′) one may use a roundabout argument beginning with

Lemma 4.9. For any simplicial set X, the unit map η : X → dd∗(X) is a weak equiv-
alence.

Proof. Any Moerdijk cofibration c is a monomorphism [4, 3.15, IV], so d(c) is a
monomorphism and hence a cofibration of simplicial sets. If e is any Moerdijk weak
equivalence, then d(e) is a weak equivalence of simplicial sets by definition; thus d
preserves cofibrations, weak equivalences, and colimits (it is left adjoint to a functor
d∗: cf. [4]). Its right adjoint d∗ preserves trivial fibrations, hence pointwise trivial
fibrations of diagrams of simplicial sets.

The left adjoint d∗ of d preserves colimits by definition, and if c : A ↪→ B is any
trivial cofibration of simplicial sets, then d∗(c) is a trivial Moerdijk cofibration by
adjointness and CM4 for the Moerdijk closed model structure. Any weak equivalence
e : X → Y of simplicial sets factors as

Z
p

��?
??

??
??

X
e //

c

??��������
Y,

c′
mm

where c is a trivial cofibration and p is left inverse to a trivial cofibration c′, thus
d∗ sends weak equivalences of simplicial sets to Moerdijk weak equivalences (also, d∗
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sends cofibrations to Moerdijk cofibrations by another adjointness plus CM4 argu-
ment). The right adjoint d of d∗ preserves trivial fibrations by definition of the
Moerdijk structure, so it preserves pointwise trivial fibrations of diagrams of bisim-
plicial sets.

The composite dd∗ therefore preserves pointwise trivial fibrations of diagrams of
simplicial sets, so its left adjoint dd∗ preserves projective cofibrations. As d and d∗

both preserve weak equivalences and colimits, dd∗ preserves projective cofibrant mod-
els of diagrams of simplicial sets and therefore homotopy colimits.

Observe that

dd∗(∆n) = d∆n,n = ∆n ×∆n ' ∗

for n > 0 so that the canonical maps η : ∆n → dd∗(∆n) are weak equivalences for
n > 0. For any simplicial set X there is a canonical weak equivalence

holim−−−→∆/X
∆n ' X

(cf. [4, 5.2, IV]). Consider the commutative square

holim−−−→∆/X
∆n ' //

η

��

X

η

��
dd∗holim−−−→∆/X

∆n ' // dd∗(X).

The top and bottom maps are weak equivalences, and the left-hand map is a weak
equivalence as it is weakly equivalent to the map holim−−−→∆/X

ηn where the

ηn : ∆
n → dd∗(∆n)

are the unit maps for (d∗, d) applied to ∆n for n > 0.

Corollary 4.10. The adjunction (d∗, d) is a Quillen equivalence between the standard
closed model structure on simplicial sets, and the Moerdijk closed model structure on
bisimplicial sets.

Proof. The functor d∗ preserves cofibrations and weak equivalences by the proof of the
previous lemma, and d preserves fibrations and weak equivalences by definition of the
Moerdijk closed model structure; hence (d∗, d) is a Quillen adjunction. If f : X → dY
is a weak equivalence of simplicial sets, then the adjoint map f̃ : d∗X → Y defined
by the adjunction diagram

X
η //

f ""FFFFFFFF dd∗X

d(f̃)

��
dY

is a diagonal weak equivalence since η is a weak equivalence. Conversely, suppose
f̃ : d∗X → Y is a diagonal weak equivalence. Then d(f̃) is a weak equivalence so the
composite f = d(f̃)η is a weak equivalence, as was to be shown.
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Let i′′′ denote the inclusion functor

i′′′ : Hd(x, z) ↪→ H(x, z).

Again, Hd(x, z) is not a priori a full subcategory of H(x, z).

Lemma 4.11. For any two pointed simplicial sheaves x and z, the induced map
π0(i

′′′) is injective.

Proof. Supposem : (f, p)→ (g, q) is any morphism of H(x, z). Then x× z = d(x× z)
so that the map (f, p) : u→ x× z uniquely factors as

dd∗(u)

d(f̃ ,p̃)

��
u

η
<<yyyyyyyyy

(f,p)
// x× z

for some maps f̃ , p̃ from d∗(u) to x, z by adjointness, and similarly (g, q) : v → x× z
factors as η followed by a uniquely determined pair (g̃, q̃) from d∗(v) to x× z. There
is then a commutative diagram

u
η //

m

��

dd∗(u)
d(f̃ ,p̃)

$$IIIIIIIII

dd∗(m)

��

x× z,

v
η // dd∗(v)

d(g̃,q̃)

::uuuuuuuuu

where both maps η and the map m are local weak equivalences (for η use Lemma 4.9
in sections), so dd∗(m) is a local weak equivalence. Further, d(f̃) is a local weak
equivalence since f and η are local weak equivalences, so f̃ is a diagonal local weak,
and equivalence and similarly for g̃. The zigzag

(f, p)
η−→ (d(f̃), d(p̃))

dd∗(m)−−−−−→ (d(g̃), d(q̃))
η←− (g, q)

in H(x, z) shows that the original map m is in the same path component as dd∗(m),
thus any morphism m of objects in H(x, z) naturally lifts to a morphism dd∗(m) in
Hd(x, z). It follows that any zigzag of maps in H(x, z) naturally lifts to a zigzag of
maps in Hd(x, z), so the result follows.

Corollary 4.12. Suppose x and z are two pointed simplicial sheaves as above such
that z is locally fibrant. Then the induced maps

π0(i
′′′) : π0Hd(x, z)→ π0H(x, z)

and

π0(i
′′) : π0Hd−hyp(x, z)→ π0Hhyp(x, z)

are bijections.
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Proof. The map π0(i
′′′) is injective by the previous lemma. Consider the commutative

square

π0Hd−hyp(x, z)
π0(i

′) //

π0(i
′′)

��

π0Hd(x, z)

π0(i
′′′)

��
π0Hhyp(x, z)

π0(j) // π0H(x, z)

induced by the corresponding inclusions. The top and bottom maps are bijections
and the left-hand vertical map is surjective, so π0(i

′′′) is surjective, hence bijective by
the previous lemma. But then the composite π0(i

′′′)π0(i
′) is bijective so π0(i

′′) must
also be injective, hence bijective.

Recall as above that Hbihyp(x, y) is a full subcategory of Hd(x, y) for any fixed
choice of pointed simplicial sheaves x and y. Letting

i : Hbihyp(x, y) ↪→ Hd(x, y)

denote the inclusion functor, one therefore knows that the induced map π0(i) on path
components is injective. To move towards bijectivity one begins with an analogue of
Corollary 4.2:

Lemma 4.13. If f : X → Y is a weak equivalence of fibrant simplicial sets, then the
induced map d∗(f) : d∗X → d∗Y is a degreewise weak equivalence of bisimplicial sets.

Proof. By Brown’s factorization lemma it suffices to show that d∗ sends trivial fibra-
tions of simplicial sets to degreewise trivial fibrations of bisimplicial sets. The induced
map d∗(f) is a degreewise trivial fibration if and only if it has the right lifting property
with respect to all Bousfield-Kan cofibrations c : A→ B. By adjunction such lifting
problems correspond to lifting problems

d(A) //

d(c)

��

X

f

��
d(B) //

==

Y.

These all have solutions since c is, in particular, a pointwise cofibration, hence d(c)
is a cofibration and the lift exists since f was a trivial fibration by assumption.

Here is the local version:

Lemma 4.14. If β : z → z′ is a pointed local weak equivalence of pointed locally
fibrant simplicial sheaves, then d∗(β) is a pointed degreewise local weak equivalence of
bisimplicial sheaves.

Proof. Fix a Boolean localization p : Shv(B)→ Shv(C). Then p∗(β) is a sectionwise
weak equivalence of sectionwise fibrant simplicial sheaves on B so d∗(p

∗(β)) is a
degreewise weak equivalence in each section by Lemma 4.13. By the argument of
Lemma 4.3 it follows that p∗(d∗(β)) is also a degreewise weak equivalence in each
section, or equivalently a sectionwise weak equivalence in each degree, so d∗(β) is a
local weak equivalence in each degree. The map d∗(β) is automatically pointed so the
result follows.
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Lemma 4.15. If f : x→ y is a pointed local fibration of simplicial sheaves, then d∗(f)
is a pointed degreewise local fibration of bisimplicial sheaves.

Proof. Fix a Boolean localization p : Shv(B)→ Shv(C). Then p∗(f) is a sectionwise
fibration of simplicial sheaves on B. An adjunction argument (starting from the fact
that the diagonal of a degreewise trivial cofibration is a trivial cofibration) shows
that d∗(p

∗(f)) is a degreewise fibration in each section, or alternatively a sectionwise
fibration in each degree. Thus p∗(d∗(f)) is a sectionwise fibration in each degree so
d∗(f) is a local fibration in each degree, as was to be shown.

One has the following analogue of Lemma 4.4:

Lemma 4.16. If β : z → z′ is a local weak equivalence of pointed locally fibrant sim-
plicial sheaves, then the induced functor

β∗ : BHbihyp(x, z)→ BHbihyp(x, z
′)

is a homotopy equivalence.

Proof. The proof is analogous to that of Lemma 4.4: the functor β∗ is defined by
composition with β, and the induced map d∗(β) is a degreewise local weak equivalence
by Lemma 4.14. Supposing one has a “cocycle” of the form

x
f←− u p̃−→ d∗(z

′),

where f is a bisimplicial hypercover, one factors the map (f, p̃) as a sectionwise
degreewise weak equivalence c followed by a sectionwise degreewise fibration (px, p̃z′).
The map px is a degreewise local weak equivalence since c and f are and is a degreewise
local fibration since it equals the composite

w
(px,p̃z′ )−−−−−→ x× d∗(z′)

prL−−→ x,

where the former map is a sectionwise fibration in each degree and the latter map
is a degreewise local fibration by Lemma 4.15; thus px is again a bisimplicial hyper-
cover. The map 1x × d∗(β) is a degreewise local weak equivalence so its pullback
(1x × d∗(β))∗ along (px, p̃z′) is also a degreewise local weak equivalence by a Boolean
localization argument. The other pullback map (p∗x, p̃

∗
z) is a sectionwise degreewise

fibration since (px, p̃z′) was, so p∗x is also a degreewise local fibration. The map p∗x is
also a degreewise local weak equivalence since px, 1x × d∗(β), and (1x × d∗(β))∗ are,
so p∗x is also a bisimplicial hypercover. This construction determines the functor ψ̃,
and the remainder of the argument follows the proof of Lemma 4.4 verbatim.

Lemma 4.17. Suppose x and y are pointed simplicial sheaves on a pointed small
Grothendieck site C with y locally fibrant. Then the map

π0(i) : π0Hbihyp(x, y)→ π0Hd(x, y)

induced by inclusion is a bijection.

Proof. First assume that y is globally fibrant. Starting with any “cocycle”

x
f←− u p̃−→ d∗(y)

corresponding to an object ofHd(x, y), factor f as a sectionwise degreewise cofibration
c followed by a sectionwise degreewise trivial fibration h. Then h is a bisimplicial
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hypercover, and one has an induced map of cocycles

d(u)
d(f)

}}||
||

||
|| p

!!CC
CC

CC
CC

d(c)

��

x y,

d(v)

d(h)

aaBBBBBBBB

==

where d(f) and d(h) are local weak equivalences so d(c) is a local weak equivalence
as well as a cofibration and the lift therefore exists since y was globally fibrant by
assumption.

More generally, suppose y is locally fibrant and fix a pointed globally fibrant
replacement β : y → z for y. Then there is a commutative square

π0Hbihyp(x, y)
π0(i) //

β∗

��

π0Hd(x, y)

β∗

��
π0Hbihyp(x, z)

π0(i) // π0Hd(x, z),

where both vertical maps β∗ are induced by composition with β so they are bijections
by Lemmas 4.16 and 4.4, and the bottom map is a bijection by the previous paragraph
so the top map is a bijection as well, as was to be shown.

The results above may be summarized as follows:

Theorem 4.18. Suppose x and y are pointed simplicial sheaves on a pointed small
Grothendieck site C, where y is locally fibrant. Then there are canonical bijections

π0Hbihyp(x, y) ∼= π0Hd−hyp(x, y) ∼= π0Hd(x, y) ∼= π0Hhyp(x, y) ∼= π0H(x, y) ∼= [x, y].

Proof. The latter bijection is a consequence of Theorem 1 of [10]. The remaining
bijections have already been established.

Corollary 4.19. With the hypotheses of Theorem 4.18, there are canonical bijections

π0Hbihyp(x, y)
∼=−→ π0Hbihyp(x

′, y′)

induced by any two local weak equivalences α : x→ x′, β : y → y′ of pointed locally
fibrant simplicial sheaves on C.

Proof. Use the analogous property for H(x, y), proven in Lemma 1 of [10].

5. Applications to étale homotopy theory

Étale homotopy types are constructed using hypercovers and simplicial homotopy
classes of maps between them, so it becomes necessary to consider some cocycle
categories that use these classes of maps in their definitions.
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Inspired by [11], consider the cocycle category Hh′

bihyp(x, y) whose objects are cocy-
cles of the form

x
d(f)←−−− d(u) [p]−→ y

for pointed bisimplicial hypercovers u of x and whose morphisms are diagrams

d(u)
d(f)

}}{{
{{

{{
{ [p]

""DD
DD

DD
D

d([m])

��

x y,

d(u′)
d(f ′)

aaCCCCCCC [p′]

<<zzzzzzz

where square brackets indicate simplicial homotopy classes of maps, the middle maps
are induced by fibrewise simplicial homotopy classes [m] : u→ u′ of maps of pointed
bisimplicial hypercovers of x, and [p′][d(m)] = [p] as pointed simplicial homotopy
classes. The set of path components π0H

h′

bihyp(x, y) is given by the colimit

lim−→
d(f) : d(u)→x

π(d(u), y)

whose index category is that of pointed bisimplicial hypercovers of x and pointed fibre-
wise simplicial homotopy classes of maps between them. The functor ω : Hbihyp(x, y)

→ Hh′

bihyp(x, y) defined on objects by (d(f), p) 7→ (d(f), [p]) is obviously surjective on
path components.

Introduce another cocycle category Hh
bihyp(x, y) whose objects are of the form

x
[d(f)]←−−− d(u) [p]−→ y

and whose morphisms are commutative diagrams

d(u)
[d(f)]

}}{{
{{

{{
{ [p]

""DD
DD

DD
D

[d(m)]

��

x y,

d(u′)
[d(f ′)]

aaCCCCCCC [p′]

<<zzzzzzz

where the middle maps are induced by maps m : u→ u′ of pointed bisimplicial hyper-
covers of x. One readily verifies that the maps (d(f), [p]) 7→ ([d(f)], [p]) on objects and
d([m]) 7→ [d(m)] on morphisms determine a functor ω′ : Hh′

bihyp(x, y)→ Hh
bihyp(x, y)

which again is obviously surjective on path components.
To relate these observations back to a homotopy category, suppose that the point

x : Set→ Shv(C) comes from an object Ω of C representing a sheaf in the sense that
the inverse image functor x∗ is given by a composite

Shv(C)
?|Ω−−→ Shv(C/Ω) Γ∗−→ Set

defined by first restricting to the site C/Ω and then taking global sections. This is
exactly the situation in étale homotopy theory when one works on a “big” étale site



44 MICHAEL D. MISAMORE

containing the separably closed field Ω := SpecΩ which is used to give the geometric
point x of the base scheme or DM stack S. A pointed (bi)simplicial sheaf (X, z) on
such a site (C, x) then corresponds exactly to a section

Ω
z−→ X,

where Ω = Ω
x−→ S is the object of C corresponding to the point x, and a pointed

map (X, z)→ (Y, z′) corresponds exactly to a map X → Y respecting the sections
z and z′. By general nonsense there is a closed model structure on the category
Ω/sShv(C) of pointed simplicial sheaves, where the fibrations (resp. cofibrations, resp.
weak equivalences) are those maps (X, z)→ (Y, z′) under Ω such that the underlying
maps X → Y are fibrations (resp. cofibrations, resp. weak equivalences). Lemma 1
of [11] then says that the canonical map

π0H(x, y)→ [x, y]

defined by sending any pointed cocycle (f, g) to the composite gf−1 is a bijection,
where [x, y] denotes morphisms in Ho(Ω/sShv(C)).
Lemma 5.1. Suppose (C, x) is a pointed small Grothendieck site such that the point
x : Set→ Shv(C) is determined by an object Ω of C as above which represents a sheaf
(or suppose Ω = ∅). Then for any two pointed simplicial sheaves x and y on C with
y locally fibrant there are canonical bijections

π0Hbihyp(x, y)
π0(ω)−−−→ π0H

h′

bihyp(x, y)
π0(ω

′)−−−−→ π0H
h
bihyp(x, y)

p−→ [x, y].

Proof. The displayed composite c = pπ0(ω
′)π0(ω) factors as

π0Hbihyp(x, y)
π0(j

′)−−−−→ π0H(x, y)
∼=−→ [x, y],

where j′ : Hbihyp(x, y)→ H(x, y) is the inclusion functor and the second arrow is the
canonical map sending any cocycle (f, g) to the composite gf−1 in the homotopy
category. As j′ = i′′′i, π0(j

′) is a bijection by Corollary 4.12 and Lemma 4.17 so
that c is also a bijection. This implies that the canonical map p is a surjection and
that π0(ω) is an injection, hence a bijection. But then pπ0(ω

′) is also a bijection, so
π0(ω

′) is an injection, hence a bijection, and thus p is also a bijection, as was to be
shown.

Here is an immediate application:

Proposition 5.2. Suppose C is a small Grothendieck site, H a sheaf of groups on C,
n > 0 if H is abelian or 0 6 n 6 1 otherwise, and X a simplicial sheaf on C. Then
there are canonical bijections

Hn(X,H) ∼= lim−→
p : d(U)→X

Hn(dU,H),

where the colimit is indexed over the category of bisimplicial hypercovers of X and
fibrewise simplicial homotopy classes of maps between them. If X is representable,
then these extend to bijections

Hn(C/X,H|X) ∼= lim−→
p : d(U)→X

Hn(dU,H),

where H|X is defined by H|?(U → Xn) := H(U).



ÉTALE HOMOTOPY TYPES AND BISIMPLICIAL HYPERCOVERS 45

Proof. There is a series of identifications

Hn(X,H) := [X,K(H,n)]
∼= lim−→

p : d(U)→X

π(dU,GK(H,n))

∼= lim−→
p : d(U)→X

[dU,GK(H,n)]

= lim−→
p : d(U)→X

Hn(dU,H),

where GK(H,n) is a globally fibrant model for K(H,n), the first isomorphism is by
Lemma 5.1 and the identification of π0H

h′

bihyp(X,GK(H,n)), and the final identifica-
tion is, by definition, of cohomology of dU with coefficients in H. The latter statement
follows from the proof of Theorem 3.10 of [7].

One may compare this with the statement ([3, 3.8]), keeping in mind that the bisim-
plicial hypercovers U → X here are not assumed to be representable. This argument
works even for nonabelian cohomology ([3, 3.8] only addressed the abelian case).

5.1. Étale homotopy types from bisimplicial hypercovers

To return to the étale homotopy type T (X, z) defined in Section 2, one is motivated
by the above results to consider the diagram Tb(X, z) for any pointed connected
simplicial sheaf x = (X, z) on a pointed locally connected small Grothendieck site C
given by the simplicial sets Πd(u) for pointed bisimplicial hypercovers u→ x, with
maps induced by the pointed fibrewise simplicial homotopy classes of maps between
the bisimplicial hypercovers over x. That this determines a pro-object in Ho(sSet∗)
is a consequence of the functoriality of the construction of equalizers for simplicial
homotopy classes of maps after noting that the sheaves Xm are globally, hence locally,
fibrant.

The following result, which is the main point of this work, gives the relationship
between T (X, z) and Tb(X, z) for locally fibrant X:

Theorem 5.3. Suppose C is a pointed locally connected small Grothendieck site such
that the point Set→ Shv(C) is determined by some object Ω representing a sheaf,
and x = (X, z) a pointed connected locally fibrant simplicial sheaf on C. Then the pro-
object T (X, z) of Ho(sSet∗) is canonically pro-isomorphic to the pro-object Tb(X, z),
and similarly for the unpointed variants in Ho(sSet). Furthermore, these pro-isomor-
phisms T (X, z) ∼= Tb(X, z) are functorial in (X, z), and similarly for the unpointed
case.

Proof. For the first part it suffices to give a canonical natural isomorphism between
the functors that these pro-objects pro-represent. On the one hand one has canonical
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isomorphisms

[Tb(X, z), y] := lim−→
p : d(u)→x

[Πd(u), y]

∼= lim−→
p : d(u)→x

π(Πd(u), y)

∼= lim−→
p : d(u)→x

π(d(u),Γ∗y)

∼= π0H(x,Γ∗y)
∼= [x,Γ∗y]

natural in y by Theorem 4.18 and Lemma 5.1, where one may assume y is fibrant by
applying the Ex∞ functor. By a similar calculation one has [T (X, z), y] ∼= [x,Γ∗y] nat-
urally in y. Therefore there are canonical natural bijections [Tb(X, z), y] ∼= [T (X, z), y],
so the functors [Tb(X, z),−] and [T (X, z),−] are canonically naturally isomorphic and
thus the representing pro-objects are canonically pro-isomorphic, as was to be shown.
Forgetting the points yields the analogous statement for the unpointed case.

For functoriality, observe that the cocycle categories

Hbihyp(x,Γ
∗y) and Hhyp(x,Γ

∗y)

determine contravariant functors f∗ in x by sending any cocycle of the form

x
d(p)←−− d(u) q−→ Γ∗y

to the cocycle (d(p∗), q · d(pru)) : d(u′)→ x′ × Γ∗y induced by pulling back p to p∗
along any pointed map f : x′ → x of pointed simplicial sheaves, and similarly for
Hhyp. Consider the diagram

[Tb(x), y]

∼=

��

∼=

((QQQQQQQQQQ
f∗

// [Tb(x′), y]
∼=

((QQQQQQQQQQQ

∼=
��

π0Hbihyp(x,Γ
∗y) //

∼=

vvmmmmmmmmmm
π0Hbihyp(x

′,Γ∗y)

∼=vvmmmmmmmmmmm

[x,Γ∗y]
f∗

// [x′,Γ∗y],

where the two triangles on either end are canonical factorizations of the canonical
natural isomorphisms above. The back square commutes if the top and the front
squares commute. Any element of the set

lim−→
p : d(u)→x

π(d(u),Γ∗y)

is represented by some pair (p : u→ x, [q] : d(u)→ Γ∗y), where p is a pointed bisim-
plicial hypercover, and f∗ (precomposition with f) on [Tb(x), y] induces a map f∗

sending such a pair to the element of

lim−→
p : d(u)→x′

π(d(u),Γ∗y)

represented by the pair (p∗ : u
′ → x′, [q · d(pru)]); clearly this is compatible with the
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functor π0Hbihyp(−,Γ∗y) so the top square commutes. Chasing the cocycle (d(p), q)
around the front square gives

(d(p), q) 7→ [qd(p)−1] 7→ [qd(p)−1f ]

on the left side and

(d(p), q) 7→ (d(p∗), q · d(pru)) 7→ [qd(pru)d(p∗)
−1]

on the other, but these are equal since d(p)d(pru) = fd(p∗) by definition of p∗. Thus
the front square also commutes, so the back square commutes. A similar compu-
tation with π0Hhyp(−,Γ∗y) shows that the analogous square commutes, giving the
functoriality in x. The unpointed case follows by the same argument.

To move towards a statement about the invariance of Tb(X, z) under local weak
equivalences, there is

Lemma 5.4. Under the same assumptions on C as in Theorem 5.3, the pro-object
Tb(X, z) associated to any pointed connected simplicial sheaf x = (X, z) on C is canon-
ically pro-isomorphic to the pro-object Tb(Ex

∞ (X), z′) in Ho(sSet∗) where z′ is
induced by the canonical sectionwise weak equivalence ηX : X → Ex∞ (X), and sim-
ilarly for the unpointed variants in Ho(sSet). Furthermore, these pro-isomorphisms
Tb(X, z) ∼= Tb(Ex

∞ (X), z′) are functorial in (X, z), and similarly for the unpointed
case.

Proof. For the first statement, observe that there are canonical bijections

[Tb(Ex
∞ (X), z′), y] := lim−→

p : d(u)→Ex∞ (X)

[Πd(u), y]

∼= π0H
h′

bihyp(Ex
∞ (X, z′),Γ∗y)

∼= π0H(Ex∞ (X, z′),Γ∗y)
∼= [Ex∞ (X, z′),Γ∗y]
∼= [x,Γ∗y]
∼= [Tb(X, z), y]

natural in y for any fibrant simplicial set y by Lemma 5.1, Theorem 4.18,
Lemma 1 of [10], and Theorem 1 of [10]. These naturally extend to canonical bijec-
tions for arbitrary y via Ex∞. After the proof of Theorem 5.3, establishing functori-
ality in x reduces to verifying that the square

π0Hbihyp(Ex
∞ (x),Γ∗y)

f∗
//

∼=
��

π0Hbihyp(Ex
∞ (x′),Γ∗y)

∼=
��

[x,Γ∗y]
f∗

// [x′,Γ∗y]

commutes. Chasing a cocycle (d(p), q) : d(u)→ Ex∞ (x)× Γ∗y around this square
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gives

(d(p), q) 7→ [qd(p)−1ηx] 7→ [qd(p)−1ηxf ]

on the left side and

(d(p), q) 7→ (d(p∗), q · d(pru)) 7→ [q · d(pru)d(p∗)−1ηx′ ]

on the right side, but these are equal by the definition of p∗ and the fact that Ex∞

is a functor.

The key point here is that Tb(X, z) exists without the requirement thatX be locally
fibrant, and the cocycle category techniques of [10] make no fibrancy assumptions on
X. Here is the major consequence:

Corollary 5.5. With the same hypotheses as Theorem 5.3 on C, suppose x = (X, z)
and y = (Y, y) are pointed connected simplicial sheaves on C, and f : (Y, y)→ (X, z) a
pointed local weak equivalence. Then the strict morphism of pro-objects f∗ : Tb(Y, y)→
Tb(X, z) induced from f by pulling back bisimplicial hypercovers along f is a pro-
isomorphism, and similarly for the unpointed setting.

Proof. The pointed map f induces a pointed map ηf : Ex
∞ (Y )→ Ex∞ (X) by func-

toriality of Ex∞. As Ex∞ (X) and Ex∞ (Y ) are locally fibrant and connected there
are canonical natural isomorphisms

[Tb(Ex
∞ (X)),−] ∼= [T (Ex∞ (X)),−]

and similarly for Ex∞ (Y ) by Theorem 5.3. Then there is a commutative diagram

[Tb(X),−]

f∗

��

[Tb(Ex
∞ (X)),−]

η∗
xoo ∼= //

f∗

��

[T (Ex∞ (X)),−]

η∗
f

��
[Tb(Y ),−] [Tb(Ex

∞ (Y )),−]
η∗
y

oo
∼=

// [T (Ex∞ (Y )),−],

where η∗f is a natural isomorphism by Proposition 3.3. The right-hand square is
commutative by the functoriality in Theorem 5.3 so the middle f∗ is also a natural
isomorphism. The left-hand square commutes by the functoriality in Lemma 5.4,
and the maps η∗x and η∗y are natural isomorphisms since ηx and ηy are local weak
equivalences, so the map f∗ on the left is a natural isomorphism. This map f∗ was
induced by precomposition with the map f∗ : Tb(Y, y)→ Tb(X, z) induced by f itself,
so f∗ is a pro-isomorphism, as was to be shown.
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