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THE BP -THEORY OF 2-FOLD
PRODUCTS OF REAL PROJECTIVE SPACES

JESÚS GONZÁLEZ and W. STEPHEN WILSON

(communicated by Donald M. Davis)

Abstract
We study the Brown-Peterson (co)homology of a product

of two real projective spaces via the Landweber short exact
sequence. The image of the tensor product is well understood.
Our contribution is to understand those elements not in the
tensor product and to show how they behave under maps. The
results are partially extended to the case where one of the fac-
tors is replaced by a 2e-torsion lens space.

1. Introduction

In [KWa, KWb], the need for the Brown-Peterson cohomology (for p = 2) of a
product of two real projective spaces arose. In particular, they needed to understand
the elements not in the tensor product and how they behaved under maps.

Although quick computations with the Adams spectral sequence or the Atiyah-
Hirzebruch spectral sequence suggest the answer, there seemed to be nothing explicit
enough in the literature, but much of what we do is well known.

Unless otherwise stated, we use reduced cohomology. Recall BP∗ ≈ Z(2)[v1, v2, . . .].
Let x ∈ BP2(RP 2k) denote the standard generator coming from BP∗(CP∞). The
required theorems are as follows:

Theorem 1.1. Let m 6 n; then (in reduced cohomology)

BP∗(RP 2m ∧RP 2n) ≈ BP∗(RP 2m)⊗BP∗ BP∗(RP 2n)⊕ Σ2n−1BP∗(RP 2m)

BP∗(RP 2m ∧ RP2n+1) ≈ BP∗(RP 2m ∧RP 2n)⊕ Σ2n+1BP∗(RP 2m).

Both isomorphisms can be chosen compatible with maps induced by inclusions
RP2m−2k → RP 2m on the first smash-factor.

All of the groups are finite 2-torsion. A 2-adic basis for BP∗(RP 2k) is given by all
vxi with 0 < i 6 k, and where v ranges over a Z(2)-basis of BP∗.

A 2-adic basis for BP∗(RP 2m)⊗BP∗ BP∗(RP 2n) is given by all vxi ⊗ xj with
0 < i 6 m, 0 < j 6 n, and where v ranges over a Z(2)-basis of BP∗ when j = 1 and
over a Z(2)-basis of Z(2)[v2, v3, . . .] when j > 1.
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A variety of comments are in order here. A 2-adic basis of a finite (graded) abelian
group G is a set β ⊂ G such that every element of G can be written as a unique linear
combination of the elements of β using only coefficients 0 and 1. In some cases 2-adic
bases turn out to be closely related to bases of the graded object associated to a
filtration of G for which this associated object happened to be a Z/(2)-vector space1.
In our context, the standard example comes from the usual (unreduced) expression

BP∗(RP 2k) ≈ BP∗[x]/(xk+1, 2x + a1x
2 + a2x

3 + · · · ), ai ∈ BP∗.

The associated graded object A = {Fa/Fa+1}a>0 with respect to the multiplicative
decreasing filtration determined by F (x) = 1 becomes a Z/(2)-vector space if we only
care about the reduced part of BP∗(RP 2k). The set of all classes b̃ ∈ AF (b), with b
ranging over the first 2-adic basis in Theorem 1.1, is a Z/(2)-vector space basis of A.
Considering 2-adic bases gives a clean way for avoiding dealing with group extension
intricacies coming from the main relation 0 = 2x + a1x

2 + a2x
3 + · · · . This has an

even more dramatic (but simplifying) effect when considering the tensor product
BP∗(RP 2m)⊗BP∗ BP∗(RP 2n). In fact, our description manages to avoid the hard
analysis in [Dav84] of the latter group structure, and yet to come up with an answer
useful for the geometric goals in [KWa, KWb].

The first isomorphism in Theorem 1.1 is in fact functorial with respect to inclusions
on the first smash-factor. However this is not quite true for the second isomorphism,
as it is obtained from choosing explicit splittings of BP ∧ RPa

b for odd a or even b.
(RPa

b is the cofiber of the map RPb−1 → RPa.) It is certainly possible to describe
the maps induced by inclusions RP2m−2k → RP 2m on each of the summands in the
isomorphisms in Theorem 1.1. Due to its relevance for [KWa, KWb], this is carefully
indicated in Theorem 1.2 below for the (suspended) summand of the first isomorphism
of Theorem 1.1.

We can, of course, handle the BP (co)homology of any RPa
b ∧ RPc

d for any a > b
and c > d. What we state in the above theorem is precisely what is needed in [KWa,
KWb]. We actually go much further and look at the situation when one of the spaces
is a 2r lens space.

Some of the hard work here was done long ago by Conner and Floyd in Chapter 8 of
[CF64] where they computed the tensor product part of MSO∗(BZ/(p)× BZ/(p)).
They didn’t have BP , and MU wasn’t in common usage yet, so their work is at odd
primes, but it shows the way.

There is more to this than just the tensor product. Peter Landweber set up a
general short exact sequence in [Lan66] that gives, among other things,

BP∗(X)⊗BP∗ BP∗(Y ) −→ BP∗(X ∧ Y ) −→ TorBP∗(BP∗(X),BP∗(Y )) (1)

when X is such that BP∗(X) surjects to H∗(X), in particular, when X is RPn or
a lens space. Our main contribution to the above theorem is to make the Tor term
explicit algebraically (there is no topology involved) and to show how it behaves
under the map we describe. In particular, we show:

1With the exception of the BP -theory of a single lens space of torsion 2e, e > 1, discussed in
Theorem 1.5, this is the case for all situations considered in this paper.
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Theorem 1.2. Let m 6 n; then

TorBP∗(BP∗(RP 2m),BP∗(RP 2n)) ≈ Σ2nBP∗(RP 2m).

This isomorphism is compatible with the inclusion map RP2m−2k → RP 2m. On the
other hand, if m < n, the map RP2n−2 → RP 2n induces the map

Σ2nBP∗(RP 2m) −→ Σ2n−2BP∗(RP 2m)

that takes xi to xi+1.

Note that the map to Tor in the cohomology Landweber short exact sequence
raises degree by 1.

Note that to compute what happens on the Tor term for a map of RP 2k → RP 2n

with k < m < n we use the composition RP 2k → RP 2m → RP 2n and use the second
form of the mapping for RP 2m → RP 2n and the first for the RP 2k → RP 2m.

In [JW85], where a lot of work similar to this is done, credit is given to Bob Stong
for knowing the Tor term when both n and m are infinity in the homology case, so
even this is not entirely new.

However, the applications in [KWa, KWb] are significant and are used to give
new non-immersions of real projective spaces in fairly low dimensions. Since we could
find nothing like the above theorem in the literature we felt it necessary to write this
up to support the applications.

In the first part of Theorem 1.1, the two parts coming from the Landweber short
exact sequence are even and odd degree so there can be no extension problems to
consider. In the second part there could be, and when we look at the general case
of RPa

b ∧ RPc
d for any a > b and c > d there could, in principle, be several possible

extension problems. None of these occur. This next result tells how to compute the
BP cohomology of all such products by combining several known facts. Recall that
since we are using reduced cohomology, BP∗(RPn) = BP∗(RPn

1 ).

Theorem 1.3.
BP∗(RP2a

2b+1) ≈ Σ2bBP∗(RP2(a−b)).
BP∗(RP2a+1

b ) ≈ BP∗(RP2a
b )⊕ Σ2a+1BP∗.

BP∗(RPa
2b) ≈ BP∗(RPa

2b+1)⊕ Σ2bBP∗.
The Landweber short exact sequence

0 −→ BP∗(RPa
b )⊗BP∗ BP∗(RPc

d) −→ BP∗(RPa
b ∧ RPc

d)

−→ TorBP∗(BP∗(RPa
b ),BP∗(RPc

d)) −→ 0

always splits.

Combined, this allows us to compute the BP cohomology of any such product.
Since there is no vi torsion for i > 2 we can really use this for any BP〈n〉∗(−) for
n > 0 and, of course, we can always get E(n)∗(−) from BP∗(−) by just tensoring,
E(n)∗(−) ≈ E(n)∗ ⊗BP∗ BP∗(−), [JW73, Remark 5.13, p. 347]. In particular, what
is used in [KWa, KWb] is the case of E(2). Since there is no vi torsion for i > 2,
we know that BP〈n〉∗(−) injects to E(n)∗(−), n > 1, for these spaces.

BP homology computations can be done independently purely algebraically, mim-
icking the way they are done in cohomology, or, one can just use S-duality where



184 JESÚS GONZÁLEZ and W. STEPHEN WILSON

we have from [Ati61] that the S-dual of RPa
b is RP2k−b−1

2k−a−1
(for some large k). Our

computations for cohomology are immediate for homology.
For BP∗(RP 2n) we have generators βi ∈ BP2i−1(RP 2n) for 0 < i 6 n. The basic

facts for homology are collected as a theorem:

Theorem 1.4. The Landweber short exact sequence (1) for BP∗(RPa
b ∧ RPc

d) always
splits. The map to Tor decreases degree by 1.

Any top and bottom ‘integral’ cells split off in BP homology.
Let m 6 n; then

TorBP∗(BP∗(RP 2m),BP∗(RP 2n)) ≈ ΣBP∗(RP 2m).

A 2-adic basis for BP∗(RP 2k) is given by all vβi with 0 < i 6 k, and where v
ranges over a Z(2)-basis of BP∗.

A 2-adic basis for BP∗(RP 2m)⊗BP∗ BP∗(RP 2n) is given by all vβi ⊗ βj with
0 < i 6 m, 0 < j 6 n, and where v ranges over a Z(2)-basis of BP∗ when j = n and
over a Z(2)-basis of Z(2)[v2, v3, . . .] when j < n.

The splittings associated with the ‘integral’ cells are a consequence of Don Davis’s
result from [Dav78] that proves they really do split off topologically when smashed
with BP .

We can generalize these results to the case of L(e)a
b ∧ RPc

d where L(e)a
b is the trun-

cated lens space for 2e (when e = 1 it is just the case RPa
b we have already described).

Let αi ∈ BP2i−1(L(e)a) to distinguish it from our βi and let xe ∈ BP2(L(e)a) come
from BP∗(CP∞).

Some facts we’ll need (let v0 = 2):

Theorem 1.5. A 2-adic basis for BP∗(L(e)2k) is given by all vj
0vxi

e with 0 6 j < e,
0 < i 6 k, and where v ranges over a Z(2)-basis of BP∗.

Let n > m + e− 1 and m > 1; then a 2-adic basis for BP∗(L(e)2m)⊗BP∗

BP∗(RP 2n) is given by all vxi
e ⊗ xj with 0 < i 6 m, 0 < j 6 e, and where v ranges

over a Z(2)-basis of BP∗, together with all v`
1vxi

e ⊗ xj with 0 < i 6 m, e < j 6 n,
0 6 ` < e, and where v ranges over a Z(2)-basis of Z(2)[v2, v3, . . .].

A 2-adic basis for BP∗(L(e)2k) is given by all vj
0vαi with 0 6 j < e, 0 < i 6 k, and

where v ranges over a Z(2)-basis of BP∗.
Let n > m + e− 1 and m > 1; then a 2-adic basis for BP∗(L(e)2m)⊗BP∗

BP∗(RP 2n) is given by all vαi ⊗ βj with 0 < i 6 m, n− e < j 6 n, and where v
ranges over a Z(2)-basis of BP∗, together with all v`

1vαi ⊗ βj with 0 < i 6 m, 0 < j 6
n− e, 0 6 ` < e, and where v ranges over a Z(2)-basis of Z(2)[v2, v3, . . .].

The Landweber short exact sequence (1) for L(e)a
b ∧ RPc

d always splits.
Similar identities to those in Theorem 1.3 hold for BP∗(L(e)a

b ) and BP∗(L(e)a
b ).

Remark 1.6. When m = 1, this is just the mod 2e BP -(co)homology of RP 2n. The
proof works here for n > e as well and the result is as stated. The case of n 6 e is
even easier.

This allows us to compute the BP (co)homology of L(e)a
b ∧ RPc

d with some restric-
tions just as we did in the e = 1 case with one significant difference: we have lost our
elegance when describing our Tor term. Consequently we bury our description in
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the section with the proofs. We will also describe why we need the extra bit in our
inequality.

In order to prove this we rely on the result of G. Nakos [Nak85], see also [Col85,
Gon03], that says that the annihilator ideal for the bottom class α1 ⊗ β1 in
BP∗(BZ/(2e) ∧ BZ/(2)) is (2, ve

1). The BP cohomology has been understood for a
long time [Lan70].

We also compute BP∗(L(e)2m ∧ RP2). RP2 is just the mod 2 Moore space, and
when m > 2e, we get an annihilator ideal of (2, v2e−1

1 ). As n goes from 1 to m + e− 1,
this annihilator ideal must grow from (2, v2e−1

1 ) to (2, ve
1). Things get quite complex

in this range.
Part of this work was completed during a sabbatical visit of the first author to the

University of Rochester. The visit was financially supported by a grant of Professor
Douglas C. Ravenel and CONACyT grant 54987-E. It is a pleasure to thank Professor
Ravenel for his kind help and academic motivation during this visit.

2. Proofs of Theorems 1.1 and 1.2

We recall the formal group law for Brown-Peterson cohomology, x +F y and the
corresponding 2-series (where v0 = 2):

x +F x = [2](x) =
∑

i>0

aix
i+1 =

∑

n>0

F vnx2n

.

Note that this immediately implies that a0 = 2 and a1 = v1 (for a general reference
see [Wil80]; we are using Araki’s generators here [Ara73]).

The maps

RP∞ −→ CP∞ 2−→ CP∞

give us a short exact sequence

BP∗(RP∞)←− BP∗(CP∞) 2∗←− BP∗(CP∞).

In terms of unreduced cohomology, this corresponds to the short exact sequence of
algebras

BP∗[[x]]/([2](x))←− BP∗[[x]] 2∗←− BP∗[[x]].

The Atiyah-Hirzebruch spectral sequence for BP∗(RP∞) collapses because it is
even degree and the 2-series shows how to solve all the extension problems. The same
is true for BP∗(RP 2n) and now we inherit, from CP∞ and CPn,

BP∗(RP 2n) ≈ BP∗[x]/([2](x), xn+1).

The Atiyah-Hirzebruch spectral sequence gives our 2-adic basis for BP∗(RP 2n)
and we see that our relations are given by

∑
i>0 aix

j+i. (In homology they are given
by

∑
i>0 aiβj−i.)

We can show how to reduce any element in the tensor product, BP∗(RP 2m)⊗BP∗

BP∗(RP 2n), with m 6 n to the 2-adic basis of the Theorem 1.1. We need to filter
the tensor product to make this easy. First we filter on the sum, i + j, for xi ⊗ xj .
Next, if xa ⊗ xb has a + b = i + j, we let it have higher filtration if b < j. We set up
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an algorithm for reduction. If we have an element that is divisible by 2, i.e. if we have
a 2xi ⊗ xj , we replace the 2x in 2xxi−1 using the 2-series. All terms are of a higher
filtration. If we have a v1x

i ⊗ xj with j > 1, we replace the v1x
2 = a1x

2 in v1x
2xj−2

using the 2-series. All of the terms with ai, i > 1 will be of higher filtration, but we
will be left with −2xi ⊗ xj−1. We can now replace the 2x in 2xxi−1 using the 2-series,
and all of our terms will be of higher filtration.

This shows that we can reduce all terms in the tensor product to the 2-adic basis
in our first theorem. It does not prove they form a basis, though, so beware. The
tensor product could be smaller than this until we prove otherwise. We have proven
that this is the largest the tensor product could possibly be, though.

The Landweber short exact sequence applies to any X and Y where BP∗(X)→
H∗(X) is surjective, or, in other words, the Atiyah-Hirzebruch spectral sequence
collapses. In such a case there is a free BP∗ resolution:

0 −→ A1 −→ A0 −→ BP∗(X) −→ 0.

To see much more of this type of thing, go to [CS69].
The Landweber short exact sequence now comes from this resolution by tensoring

with BP∗(Y ). The tensor product is just the cokernel of

A1 ⊗BP∗ BP∗(Y ) −→ A0 ⊗BP∗ BP∗(Y )

and the Tor term is the kernel.
For finite complexes, Spanier-Whitehead duality allows us to switch to cohomology

(a Künneth Spectral Sequence argument can alternatively be used, observing that in
either homology or cohomology, the factors we are interested in have homological
dimension 1, so the whole spectral sequence collapses to the standard short exact
sequence) and, in the case of RP 2m, we can write down the resolution explicitly. We
let A0 be free on generators di, 0 < i 6 m of degree 2i. The map A0 → BP∗(RP 2m)
is given by di → xi. A1 is free on ci, 0 < i 6 m of degree 2i and the map ∂ : A1 → A0

is given by ∂(ci) =
∑

j>0 ajdi+j .
Our Tor of interest is the kernel of:

A1 ⊗BP∗ BP∗(RP 2n) −→ A0 ⊗BP∗ BP∗(RP 2n).

We start by finding an injection

Σ2nBP∗(RP 2m) −→ A1 ⊗BP∗ BP∗(RP 2n).

Let
Σ2nxj −→

∑

i>0

ci+j ⊗ xn−i.

First we have to show this is well defined by showing that the relations go to zero:

Σ2n(
∑

j>0

ajx
k+j) −→

∑

j>0

aj

∑

i>0

ci+j+k ⊗ xn−i.

Fix i + j = b and look at the coefficient of cb+k. We have

∑

i+j=b

ajx
n−i =

b∑

j=0

ajx
n−b+j = 0.
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To see that this map is an injection, all we have to do is map to the quotient of
A1 ⊗ BP∗(RP 2n) obtained by setting all ci = 0 except for cm. This gives us a map

Σ2nBP∗(RP 2m) −→ Σ2mBP∗(RP 2n)

that takes Σ2nxj to Σ2mxn−m+j . This injects on the 2-adic basis.
Our next step is to show our image is in the kernel. We have:

Σ2nxj −→
∑

i>0

ci+j ⊗ xn−i −→
∑

i>0

∑

k>0

akdi+j+k ⊗ xn−i.

Again, fix i + k = b and find the coefficient of db+j :

∑

i+k=b

akxn−i =
b∑

k=0

akxn−b+k = 0.

So far we have shown that the tensor product can be no bigger than Theorem 1.1
states and that the Tor term in Theorem 1.2 can be no smaller than what we have
already found is in the kernel.

Each of the Ai ⊗ BP∗(RP 2n) is a finite abelian 2-group. Furthermore, the i = 0
and 1 groups are isomorphic. Thus the kernel and the cokernel must be exactly the
same size in each degree. Thus if the elements we have found so far in the kernel are
exactly the same size as our proposed tensor product, then we are done because our
tensor product cannot be smaller than what we already know is in the kernel. This
is now just a simple counting argument.

The 2-adic bases for both what we have already in the kernel and what we propose
for the tensor product have vn injective modulo (vn+1, vn+2, . . .) for n > 1, so we can
ignore all of the vi, i > 1 in our counting argument. We just give a 1-1 correspondence
for what is left. For 0 < j 6 m, map Σ2nvi

1x
j to xj ⊗ xn−i for 0 6 i < n and to

vi−n+1
1 xj ⊗ x for i > n.

We must take care of the naturality, since that is one of the motivating factors for
this paper. If k < m and we have RP 2k → RP 2m, we get the obvious surjection of
resolutions Am

i → Ak
i and the map of Σ2nxj is preserved except that it is zero when

j > k. This shows the first part of the naturality.
If m < n and we map RP2n−2 to RP 2n, the map of Σ2nxj to A1 ⊗ BP∗(RP 2n) to

A1 ⊗ BP∗(RP2n−2) goes

Σ2nxj −→
m−j∑

i=0

ci+j ⊗ xn−i −→
m−j∑

i=1

ci+j ⊗ xn−i (xn = 0 here).

If we go

Σ2nxj −→ Σ2n−2xj+1 −→
m−j−1∑

i=0

ci+j+1 ⊗ xn−1−i,

we see we have the same thing and this shows the second part of the naturality on
Tor.

It is elementary that BP∗(RP2n+1) ≈ BP∗(RP 2n)⊕ BP∗(S2n+1), so the tensor
product and Tor can be computed from this fact.
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The only thing left to do is show that there can be no extension problems, i.e. that
Landweber’s short exact sequence splits. This problem is solved in BP homology
using the result from [Dav78] that says

BP ∧ RP2a+1
b ' BP ∧ RP2a

b ∨ Σ2a+1BP

and
BP ∧ RPa

2b ' BP ∧ RPa
2b+1 ∨ Σ2bBP .

Since this splits topologically, there can be no algebra extensions. By S-duality the
same is true for cohomology.

It should be noted that the above splittings are proved in [Dav78] for spaces with
only one integral cell, but having one at each end presents no serious problem: Davis’
topological argument relies solely on knowing the surjectivity in BP -homology of the
pinch map RP2a+1

2b → S2a+1. But this is assured by the corresponding situation for
RP2a+1

2b−1 → S2a+1.

3. Proof of Theorem 1.5

To describe BP∗(L(e)2k), we need to take the formal group sum of xe 2e times to
get

[2e](xe) =
∑

i>0

ai,ex
i+1
e .

We need some facts about these elements:

Lemma 3.1 ([Gon01]). as,e is divisible by 2µ(s), where

µ(s) =
∑

06i<e

bi(e− i)

and s + 1 =
∑

2ibi is the 2-adic expression of s + 1.

All we need is the fact that 2e−s+1 divides as,e for 1 < s 6 e + 1. Notice however
that this is not the case for s ∈ {0, 1} : a0,e = 2e and, up to units, a1,e = 2e−1v1

(precisely, a1,e = 2e−1(2e − 1)v1).
With diagrams similar to those in the e = 1 case, we have

BP∗(L(e)2n) ≈ BP∗[xe]/([2e](xe), xn+1
e ).

The Atiyah-Hirzebruch spectral sequence for BP∗(L(e)) collapses because it is even
degree and the 2e-series shows how to solve all the extension problems. The same is
true for BP∗(L(e)2n).

The Atiyah-Hirzebruch spectral sequence gives our 2-adic basis for BP∗(L(e)2k)
and we see that our relations are given by

∑
i>0 ai,ex

j+i
e . (In homology they are given

by
∑

i>0 ai,eαj−i.)
It does not matter whether we work with homology or cohomology, as they are

really equivalent. This time we will work with homology.
We begin with our Landweber short exact sequence just as before, but this time

we resolve BP∗(L(e)2m). As before, we take free Ae
i on the same generators with a
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shift of degree by 1, but now the maps are different: The map Ae
0 → BP∗(L(e)2m) is

given by di → αi and the map ∂ : Ae
1 → Ae

0 is given by ∂(ci) =
∑

j>0 aj,edi−j .
Our Tor is the kernel of

Ae
1 ⊗BP∗ BP∗(RP 2n) −→ Ae

0 ⊗BP∗ BP∗(RP 2n)

and the tensor product is the cokernel.
Computing this kernel and cokernel is significantly different from what was done

before. We can’t do it directly but need to set up a spectral sequence to help us do
it. This is because we have no analogue to the explicit computation of the kernel that
we had before.

We define a decreasing filtration on our short chain complex: For z = c or d:

F (zi ⊗ βj) = 2i + j, and F (BP∗) = 0. (2)

A 2-adic basis for our spectral sequence is given as a free BP∗/(2) module on
generators zi ⊗ βj with 0 < i 6 m and 0 < j 6 n.

We compute the first differential using:

∂(ci ⊗ βj) = 2edi ⊗ βj + a1,edi−1 ⊗ βj + a2,edi−2 ⊗ βj + · · · .
All terms with 2 in them can be eliminated by using the 2-series on the right hand
factor. We see that the summand as,edi−s ⊗ βj has filtration

• at most 2(i− 1) + j − e + 1, when s = 1;
• at most 2(i− s) + j − e + s− 1, when 1 < s 6 e + 1;
• at most 2(i− e− 2) + j, when s > e + 2.

However, the leading-filtration term from the case s = 0 is given by ve
1di ⊗ βj−e, which

has a larger filtration than that observed in any of the three cases above. We have
thus proved:

Proposition 3.2. For n > e, the first non-trivial differential in the spectral sequence
under consideration is δe(ci ⊗ βj) = ve

1di ⊗ βj−e.

Corollary 3.3. For any n > 0, the Ee+1 term of our spectral sequence is described
as follows:

1. In homological degree 1, it is a free BP∗/(2)-module on generators ci ⊗ βj sat-
isfying 0 < i 6 m and 0 < j 6 min{n, e}.

2. In homological degree 0, it is free over BP∗/(2) on di ⊗ βj with n− e < j 6 n,
and over BP∗/(2, ve

1) on di ⊗ βj with 0 < j 6 n− e.

Proposition 3.4. For n > m + e− 1 and m > 1 the spectral sequence collapses after
the δe-differential in Proposition 3.2. In particular, Corollary 3.3 describes a filtered
version of tensor, Tor, and BP∗(L(e)2m ∧RP 2n).

Remark 3.5. The same description and proof work when m = 1, provided n > e. On
the other hand, when n 6 e, multiplication by 2e is trivial on the BP -(co)homology of
RP 2n, so that the considerations above Proposition 3.2 show that the first non-trivial
differential δt (if any) will hold for t > e. As an extreme case of this situation, we note
that the whole spectral sequence collapses for m = 1 and n 6 e.
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In our proof we will need to use the Smith homomorphism κ : Ae
i → Ae

i determined
by κ(zi) = zi−1. Since this works on the quotient BP∗(L(e)2m) and also for e = 1, we
have κr,s = κr ⊗ κs : Ae

i ⊗ BP∗P 2n → Ae
i ⊗ BP∗P 2n is compatible with the filtered

chain complex giving our spectral sequence and therefore produces a spectral sequence
(graded) endomorphism.

Proof. We proceed by contradiction. Assume that one of the generators ci ⊗ βj in
Corollary 3.3 (1) supports a non-trivial differential

δm(ci ⊗ βj) = cdr ⊗ βs + · · · . (3)

Choose m minimal with cdr ⊗ βs non-zero. Of all the possible (r, s) pairs in this
filtration, we choose the one with r + s maximal; i.e. with s maximal. Using the
spectral sequence morphism κr−1,s−1, we can pull down (3) to a differential

δm(ci−r+1 ⊗ βj−s+1) = cd1 ⊗ β1.

From [Nak85, Col85, Gon03], we know that c must be zero in BP∗/(2, ve
1) because

the annihilator ideal of α1 ⊗ β1 cannot be bigger than (2, ve
1).

We know that the only elements left that could have a differential are the ci ⊗ βj

with 0 < j 6 e and we know that the target must be some cdr ⊗ βs + · · · with n− e <
s 6 n and c = ve

1a. Thus the degree of the target must be at least 2e + 2r − 1 +
2(n− e) + 1 = 2n + 2r. The degree of the source is at most 2i− 1 + 2e− 1. There
can be no differential if the maximum possible degree of a potential source is less
than the minimum possible degree of a potential target; i.e. i + e− 1 < n + r. Since
i− r must be less than or equal to m− 1, this follows from m + e− 2 < n, which was
our assumption.

The only thing left to do is show that there can be no tensor-Tor extension problems
in a general product L(e)a

b ∧ RPc
d involving integral cells; i.e. that Landweber’s short

exact sequence splits. As in Section 2, this problem is solved in BP homology using
the same techniques for lens spaces that [Dav78] uses for truncated projective spaces.
The BP cohomology situation is handled using the fact that truncated lens spaces
have S-duals just like the real projective spaces [Kob94, Lemma 2.2]. Of course we
have plenty of unsolved extension problems anyway.

4. Two examples

Example 4.1. BP∗(RP2) = BP∗/(2) on β1. The first term of the [2e](xe) series that
is non-zero mod 2 is a2e−1,e and it is v2e−1

1 mod 2 (see [Gon01]). The first and only
differential in our spectral sequence comes from the chain map

ci ⊗ β1 −→ v2e−1
1 di−2e+1 ⊗ β1 + low

where low stands for “lower filtration elements.” This means that the only differ-
ential in the n = 1 homology version of the spectral sequence is given by ci ⊗ β1 7→
v2e−1
1 di−2e+1 ⊗ β1. The tensor and Tor products in this case (n = 1) can now be read

off from the resulting E∞ term. For instance, when m < 2e, ∂ = 0, so that tensor and
Tor products are both isomorphic to Ai ⊗ BP∗(RP2). However, when m > 2e, the Tor
product has a BP∗/(2) free 2-adic basis given by the elements ci ⊗ β1, for 0 < i < 2e,
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whereas the tensor factor has a graded associated object generated by all di ⊗ β1

(0 < i 6 m), free over BP∗/(2) when m− 2e + 1 < i 6 m and over BP∗/(2, v2e−1
1 )

when 0 < i 6 m− 2e + 1. In any case, since the bottom class α1 ⊗ β1 in the tensor
product is the lowest possible filtration generator, we see that its BP∗-annihilator
ideal does not depend on whether we consider this class as an element in the actual
tensor product or as an element in the associated graded E∞ term. For instance, when
m > 2e, this common annihilator ideal is generated by 2 and v2e−1

1 . As n increases
from 1 to m + e− 1, the corresponding ideal increases to (2, ve

1), which is the (con-
stant) annihilator ideal of α1 ⊗ β1 for all n > m + e− 1.

Example 4.2. Consider the case with e = 2 and m = n = 3. The first round of differ-
entials (identified in Proposition 3.2) are given by ci ⊗ β3 7→ v2

1di ⊗ β1 for i = 1, 2, 3.
However, a straightforward calculation shows that in our chain complex there holds
the relation ∂(c3 ⊗ β2 + c2 ⊗ β3) = v2

1d1 ⊗ β2. This means that the spectral sequence
has the extra δ4-differential c3 ⊗ β2 7→ v2

1d1 ⊗ β2. It can easily be verified that all
other elements left in homological degree 1 are in fact permanent cycles, so that the
spectral sequence collapses from its fifth stage.
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